九年级数学下册 5.1 函数与它的表示法(2)课件 (新版)青岛版
- 格式:ppt
- 大小:14.04 MB
- 文档页数:16
青岛版数学九年级下册5.1《函数和它的表示方法》教学设计2一. 教材分析《函数和它的表示方法》是青岛版数学九年级下册第五章第一节的内容。
本节内容主要介绍函数的概念和表示方法,是学生进一步学习函数性质和图像的基础。
教材通过实例引入函数的概念,引导学生理解函数的表示方法,包括列表法、解析式法和图象法。
本节课的内容在学生的认知发展过程中起着承上启下的作用,对于学生形成系统的数学知识结构具有重要意义。
二. 学情分析九年级的学生已经具备了一定的代数基础,对数学概念和逻辑推理有一定的理解能力。
但是,对于函数这一抽象的数学概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要教师通过生动的实例和具体的操作,帮助学生建立函数的概念,理解函数的表示方法。
三. 教学目标1.理解函数的概念,知道函数的表示方法有列表法、解析式法和图象法。
2.能够根据实际问题选择合适的函数表示方法。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.重点:函数的概念,函数的表示方法。
2.难点:函数概念的理解,函数表示方法的选择和应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过具体的问题情境,引导学生探究函数的表示方法,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.准备相关的实例和问题,用于引导学生探究函数的表示方法。
2.准备函数图象展示工具,如函数图象软件或板书图象。
3.分组合作学习的安排。
七. 教学过程1.导入(5分钟)教师通过一个具体的问题情境,如投篮问题,引导学生思考什么是函数。
学生通过思考和讨论,初步理解函数的概念。
2.呈现(10分钟)教师呈现一组具体的数据,如某个物体在不同时间的位置,引导学生用列表法表示这个函数。
学生通过动手操作,理解列表法表示函数的方法。
3.操练(10分钟)教师给出一个实际问题,如气温随时间的变化,让学生选择合适的函数表示方法。
学生通过讨论和操作,选择合适的表示方法,并解释原因。
5.1 函数和它的表示法
四、典型例题:
五、对应训练:
2.
3。
4。
5。
6.
六、当堂检测:
2。
3.
七、小结:函数的定义、三种表示法、求函数自变量取值范围的方法.
八、作业:
1.
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
青岛版九年级下册数学第五章对函数的再探索5.1《函数与它的表示法》参考教案第一课时
相应地确定一个函数值;函数关系是用什么方式表示的.
(2)、用来表示函数关系的数学式子叫做函数解析式或函数关系式.用数学式子表示函数的方法叫做解析法.用表格表示函数关系的方法,叫做列表法.用图象表示函数关系的方法,叫做图像法.
(3)、两个变量之间的函数关系,可以有不同的表示方法,上面的三种方法在解决具体问题时,都有着广泛的应用.
(三)、学以致用:
1、巩固新知:
课本6页1题.
意在进一步巩固图象法和列表法表示生活中的函数关系,并能从图象中获取有用的信息.
2、能力提升:
课本第6页练习2题.
错题分析:圆的内接正三角形的面积的计算方法
(四)、达标测评:
1.常用来表示函数的方法有_______法._________法和________法.
2.正常人的体温一般在37℃左右,但一天中的不同时刻的体温不尽相同,如图是某天24小时内小莹体温T(℃)随时刻t(h)的变化情况:
这天_______时她的体温最高,_______时体温最低,12时的体温约是_________℃.
3.列车以90km/h的速度从A地开往B地.
(1)填写下表:
行驶时间
1 2 3 4 5
x/h
行驶路程
y/km
(2)写出y与x之间的函数解析式.
五、课堂小结:
(1)谈一谈,这节课你有哪些收获?
(2)对于本节所学内容你还有哪些疑惑?
六、作业布置:配套练习册.
七、教学反思:。
优品课件
初三数学下册《函数与它的表示法》知识点青岛版
初三数学下册《函数与它的表示法》知识点青岛版
函数的概念
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:
如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
函数的定义域、值域要写成集合或区间的形式。
(补充)定义域:
能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1;
(5)如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是使各部分都有意义的x的值组成的集合;
(6)指数为零底不可以等于零;
(7)实际问题中的函数的定义域还要保证实际问题有意义。
注意:求出不等式组的解集即为函数的定义域。
优品课件,意犹未尽,知识共享,共创未来!!!。