平面内曲线平移伸缩变换的技巧

  • 格式:doc
  • 大小:24.00 KB
  • 文档页数:3

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面内曲线平移伸缩变换的技巧

平移变换是在向量中提出来的,而伸缩变化是在三角函数介绍的,因为有了初中的“左加右减,上加下减”的结论,在教学过程中,很多同学往往会简单的套用这个结论,导致得到和正确答案完全相反的结论,我在近几年教学中,总结了一套简单且容易操作的处理方法,以供参考。

曲线平移和放缩都可以依据以下结论处理:所有的平移和放缩都是x,y在变,且变化的规律与习惯相反。

一、平移

规律中的“习惯”就是在坐标平面内特征,即左右平移是x在变化,且向左变小,向右变大;上下平移是y在变,且向下变小,向上变大。下面举例说明。

例1 将函数的图象向左平移2个单位,向上平移1个单位。求平移后的函数解析式。

解:向左平移2个单位,“习惯”是越左越小,而变化的结果将原来解析式中的x变成;向上平移1个单位,“习惯”是越上越大,而变化的结果是将原来解析式中的y变成。

所以平移后的函数解析式是。

例2 求向右平移个单位,向下平移2个单位后的得到的函数解析式。

解:依据以上规律,就是将原来的解析式中的x变成,y变成,

所以平移后的函数解析式是,

化简后得。

例1也可以用“左加右减,上加下减”来处理,但如果不能从本质上弄清问题,就会出现错误,如例2还是套用“左加右减,上加下减”来处理,得到的结论就可能是。

二、放缩

课本在三角函数这一章中给出了放缩的规律,笔者发现这个规律可以和平移规律整合在一起。

具体的规律是:纵坐标不变横坐标变为原来的ω倍就是将原来解析式中的x 变成;横坐标不变纵坐标变为原来的A倍就是将原来解析式中的y变成。

例3 (2000年理科全国卷)经过怎样的平移和伸缩得到。

解:。

(变化一)

(1)y变成了2y,故横坐标不变,纵坐标变为原来的;

(2)x变成了2x,故纵坐标不变,横坐标变为原来的;

(3)x变成了,故将图象右移个单位,需要将写成;

(4)y变成了,故将图象上移个单位。

变换一和变换二的差别就先放缩后平移还是平移后放缩,变换一的第(3)步比较容易错,如果理解“都是x、y在变,变化规律与习惯相反”的规律后,每一步只需抓住变的实质,就可以轻松处理类似问题