高中数学复习――数列的极限
- 格式:doc
- 大小:669.50 KB
- 文档页数:9
数列的极限1.数列的极限【知识点的知识】1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0),那么就说数列{a n}以a 为极限,记作푙푖푚a n=a.(注:a 不一定是{a n}中的项)푛→∞2、几个重要极限:3、数列极限的运算法则:4、无穷等比数列的各项和:(1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =푙푖푚S n.푛→∞(2)1/ 3【典型例题分析】典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4푆푛=(푎푛+1)2,其中S n 表示数列{a n}的前n 项푛和.则푙푖푚푎푛=()푛→∞1A.0 B.1 C.2D.2解:∵4S1=4a1=(a1+1)2,∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2,∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数,∴a n﹣a n﹣1=2.数列{a n}是等差数列,∴a n=2n﹣1.푛푛1∴푙푖푚2푛―1=푙푖푚2―1푎푛=푙푖푚푛→∞푛→∞푛→∞푛=12.故选:C.典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设 c n =1푛|푃1푃푛|(푛≥2),求푙푖푚(푐2+푐3+⋯+푐푛)的值;푛→∞(3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,∴b n=2a n+1,a1=0,∵等差数列{a n}的公差为 1(n∈N*),∴a n=0+(n﹣1)=n﹣1.b n=2(n﹣1)+1=2n﹣1.(2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,∴|P1P n| =(푎푛―푎1)2+(푏푛―푏1)2=(푛―1)2+4(푛―1)2=5(푛―1)(n≥2).2/ 3∴c n =1푛|푃1푃푛|=15푛⋅(푛―1)=115(푛―1―1푛),∴c2+c3+…+c n =15[(1―112)+(2―113)+⋯+(푛―1―1푛)]=15(1―1푛),∴푙푖푚(푐2+푐3+⋯+푐푛)=푙푖푚푛→∞푛→∞15(1―1푛)=5;5(3)证明:n≥2,d n=2d n﹣1+a n﹣1,=2d n﹣1+n﹣2,∴d n+n=2(d n﹣1+n﹣1),∴数列{d n+n}为等比数列,首项为d1+1=2,公比为 2,∴푑푛+푛=2푛,∴푑푛=2푛―푛.【解题方法点拨】(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)1(3)求数列极限最后往往转化为푛푚(m∈N)或qn(|q|<1)型的极限.(4)求极限的常用方法:①分子、分母同时除以n m 或a n.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.∞⑤∞﹣∞,∞,0﹣0,等形式,必须先化简成可求极限的类型再用四则运算求极限.3/ 3。
高中数学中的数列极限定义及其应用数列极限出现在高中数学中,是一个重要的概念。
它是指随着自变量趋近于某个数的时候,函数值无限接近于某个数的现象。
在数学中,极限的概念是非常重要的,它广泛应用于计算、物理等科学领域。
下面我们将深入探讨高中数学中的数列极限定义及其应用。
一、数列极限定义数列极限是一个数学概念,它是指在数列中,当数列的每一项都无限接近一个常数时,这个常数就是该数列的极限。
正式的定义如下:设$\{a_n\}$为一个数列,$A$为一个实数,若对于任意一个$\epsilon>0$,都存在自然数$N$,使得当$n>N$时,都有$|a_n-A|<\epsilon$成立,那么称$A$是数列$\{a_n\}$的极限。
在这个定义中,$A$被称为数列$\{a_n\}$的极限,$\epsilon$是一个任意小的正数,$N$则是自然数中的一个整数。
这个定义说明了一个数列极限的核心概念:无限接近。
二、数列极限的概念在数学中的应用1.极限的运用数列极限的概念在证明极限的时候是非常常见的。
在数学中,极限是一种非常常见的概念。
当我们求解一个极限的时候,需要使用到数列极限的概念。
比如说,在分析某个函数的性质时,我们需要求解这个函数值在某个点附近的极限。
在数学中,数列极限的概念是非常重要的工具之一。
2.应用于微积分和数学分析数列极限的概念在微积分和数学分析中也得到了广泛的应用。
比如说,我们在求导的时候,需要求解函数在某个点附近的极限值。
在这种情况下,我们需要使用到数列极限的概念来求解函数的极限值。
3.应用于统计学数列极限的概念在统计学中也发挥着巨大的作用。
在统计学中,我们需要对样本数据进行相应的分析。
在这种情况下,我们可以使用数列极限的概念来判断样本数据是否具有显著性,从而得出更加准确的统计结论。
4.应用于物理学数列极限的概念还在物理学中得到了广泛应用。
比如说,在物理学中,我们需要对某个物理量进行相应的分析。
数列的极限知识点归纳总结数列的极限是高中数学中重要的概念之一,它在解析几何、微积分等数学领域中起着重要的作用。
本文将对数列的极限进行知识点归纳总结,帮助读者更好地理解和掌握这一概念。
一、定义和概念1. 数列的定义:数列是按照一定顺序排列的一组数的集合。
数列可以用公式表示,常用的表示方式为{an}或{an}∞n=1。
2. 数列的极限定义:对于数列{an},如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|an - a| < ε,那么称数列{an}的极限为a。
3. 数列的收敛和发散:如果数列{an}存在极限,称该数列收敛;否则,称该数列发散。
二、极限的性质1. 极限唯一性:如果数列{an}收敛,那么它的极限是唯一的。
2. 有界性:对于收敛数列{an},存在一个正数M,使得对于任意的n,有|an| ≤ M。
3. 夹逼定理:如果{an} ≤ {bn} ≤ {cn},并且lim an = lim cn = a,那么lim bn = a。
4. 四则运算法则:若数列{an}和{bn}收敛,并且lim an = a,lim bn = b,则有以下运算结果:- lim(an ± bn) = a ± b- lim(an · bn) = a · b- lim(an / bn) = a / b (b ≠ 0)三、重要的数列极限1. 常数数列:对于常数c,数列{an} = c(n为正整数)的极限为c。
2. 等差数列:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,极限为lim an = a1。
3. 等比数列:对于等比数列{an} = a1 · q^(n - 1),其中a1为首项,q为公比,当|q| < 1时,极限为lim an = 0;当|q| > 1时,极限不存在。
4. 幂函数数列:对于幂函数数列{an} = n^p,其中p为实数,当p >0时,极限为正无穷大;当p < 0时,极限为0。
1、数列的极限:设有数列12,,,,n x x x ⋅⋅⋅⋅⋅⋅与常数a ,如果n 无限增大时,n x 无限接近于a ,则称常数a 是数列的{}n x 的极限,记作lim n n x a →∞=或 ()n x a n →→∞.例如:1n a n=,则lim 0n n a →∞=;90.99n n a =⋅⋅⋅个,则lim 1n n a →∞=.2、数列的收敛与发散:若一个数列有极限,则称该数列是收敛的;否则称该数列是发散的. 定理:单调有界的数列必有极限. 例如:1n a n =收敛;()11n n a n=-⋅收敛;()1nn a =-发散;n a n =发散.3、函数的极限:设有函数()f x 和常数0,x A ,如果当x 无限接近于0x 时,()f x 无限接近于A ,则称常数A 是函数()f x 当0x x →时的极限,记作()0lim x x f x A →=或()()0f x A x x →→. 注:(1)可以用+∞或-∞代替0x ,表示x 无限增大或无限减小时()f x 的极限, (2)函数的极限不一定都存在,例如()11x Qf x x Q ∈⎧=⎨-∉⎩.4、极限的运算:若()()00lim ,lim xx x x f x A g x B →→==,则 (1)()()()0lim xx f x g x A B →±=±; (2)()()0lim x x f x g x A B →⋅=⋅; (3)()()()0lim 0x xf x AB g x B→=≠. 推论:①()0lim x x cf x cA →=; ②()()0lim nn x xf x A →=.5、夹逼定理(1)数列中的夹逼定理:设*,n n n a b c n N ≤≤∈,且lim lim n n n n a c a →∞→∞==,那么lim n n b a →∞=. (2)函数中的夹逼定理:设函数,f g 与h 在点0x 的近旁(不包含0x )满足不等式()()()f x h x g x ≤≤如果()()00lim lim x x x x f x g x A →→==,则()0lim x x h x A →=.6、两个重要极限 (1)0sin lim1x xx→=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭.【例1】(1)证明:数列{}n x :22221111123n x n =+++⋅⋅⋅+是收敛的. (2)证明:数列{}n x :1111123n x n=+++⋅⋅⋅+是发散的.(1)22022lim 232n n n n n →++++;(2)2222lim 232n n n n n →∞++++;(3)n ;(4)lim n →∞⎛⎫++⋅⋅⋅;(5)()()1321lim 242n n n →∞⋅⋅⋅⋅-⋅⋅⋅⋅.(1)3031lim 11x x x →⎛⎫- ⎪--⎝⎭;(2)322lim 2121x x x x x →+∞⎛⎫- ⎪-+⎝⎭;(3)3131lim 11x x x →⎛⎫- ⎪--⎝⎭;(4)1lim 12xx x →∞⎛⎫+ ⎪⎝⎭.一.定义1.函数的平均变化率:一般地,已知函数()y f x =,01,x x 是其定义域内不同的两点,记()()101000,x x x y y y f x x f x =-=-=+-,则当0x ≠时,商()()00f x x f x yxx+-=称作函数()y f x =在区间[]00,x x x +或[]00,x x x +的平均变化率.2.设函数()y f x =在0x 及其附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变()()00y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率()()00f x x f x yx x+∆-∆=∆∆趋近于一个常数l ,那么常数l 称为函数()f x 在点0x 的瞬时变化率. 记作()()000lim x f x x f x l x ∆→+∆-=∆或当0x ∆→时,()()00f x x f x l x+∆-→∆.3.函数()y f x =在点0x 的瞬时变化率,通常称为()f x 在点0x 处的导数,并记作()0f x '.这时又称()f x 在点0x 处是可导的.于是上述变化过程,可以记作()()()0000limx f x x f x f x x∆→+∆-'=∆.4.如果()f x 在开区间(),a b 内每一点x 都是可导的,则称()f x 在区间(),a b 可导.这样,对开区间(),a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(),a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数. 注:①x 可正可负.②不是所有函数在每一点都有导数,例如:()f x x =,()11x Qf x x Q∈⎧=⎨-∉⎩.【例4】用定义求下列函数的导函数:(1)()f x c =(c 为常数);(2)()f x kx b =+(,k b 为常数);(3)()sin f x x =;(4)()cos f x x =;(5)()ln f x x =.【例5】若函数()f x 在R 上可导,且()'21f =,则()()222lim2h f h f h h→+--=__________.【例6】己知()f x 在0x 处可导,则()()220003limh f x h f x h h→+--=____________.二.导数的运算法则1.()'''f g f g +=+.例如:()2sin '2cos x x x x +=+.2.()'''f g f g fg ⋅=+.例如:()()()22222'''213x x x x x x x x x x ⋅=⋅+⋅=⋅+⋅=.3.2'''f f g fg g g ⎛⎫-= ⎪⎝⎭.例如:2sin cos sin 'x x x x x x -⎛⎫= ⎪⎝⎭.【例7】求下列函数的导函数:(1)cos ln y x x =+;(2)sin y x x =;(3)1y x x=+;(4)tan y x =;(5)21xy x =+;(6)sin ln y x x x =⋅⋅.4.若函数()u g x =与函数()y f u =均可导,则复合函数()()y f g x =可导,且xu x y y u '''=⋅,或记成dy dy dudx du dx=⋅.【例8】求下列函数的导函数:(1)()()221f x x =+;(2)()2sin f x x =;(3)()()2ln 23f x x x =++;(4)()()sin f x a bx c =+;(5)()()22cos 253f x x x =++;(6)()()2sin sin f x x =.【例9】已知函数()()()()12100f x x x x =--⋅⋅⋅-,则()'1f =__________.【例10】证明:若f 是一个恒取正值的可导函数,则()()()()'ln 'f x f x f x =.【例11】求下列函数的导函数:(1)()af x x =,()0x >;(2)()()0,1xf x a a a =>≠;(3)()()g x y f x =,()f x 在它的定义域上恒有()0f x >;(4)()()cos sin xf x x =,0,2x π⎛⎫∈ ⎪⎝⎭;(5)()xx f x x =,()0x >5.设()y f x =在包含0x 的区间I 上连续且严格单调,如果它在0x 处可导,且()0'0f x ≠,那么它的反函数()1x f y -=在()00y f x =处可导,且()()()11''fy f x -=.【例12】求下列函数的导函数:(1)()af x x =;(2)()()0,1xf x a a a =>≠;(3)()arcsin f x x =;(4)()arctan f x x =;6.高阶导数设函数f 在区间I 上可导,那么()()'f x x I ∈在I 上定义了一个函数'f ,称之为f 的导函数.如果'f 在区间I 上可导,那么'f 的导函数()''f ,记为''f 称为f 的二阶导函数.一般的,对任何正整数n N +∈,可以定义f 的导函数()n f .(Leibniz )设函数f 与g 在区间I 上都有n 阶导数,那么乘积fg 在区间I 上也有n 阶导数,并且()()()()0nn n k kk n k fg C f g -==∑,这里()()00,f f g g ==.【例13】求下列函数的n 阶导函数:(1)()xf x e λ=;(2)()2cos f x x x =(3)()n xf x x e =;【习题1】求下列函数的极限 (1)22251lim 1n n n n →∞+++;(2)220251lim 1n n n n →+++;(3)1123lim 23n n n nn ++→∞++;(4)211lim 31x x x x→---+;(5)201cos lim x xx →-.【习题2】求下列函数的导数(1)5432()5432f x x x x x x =++++;(2)31()f x x =;(3)()ln f x x x =;(4)()3()2f x x =+;(5)1()f x x=;(6)()3()sin 2f x x =+;(7)()ax bf x cx d+=+;(8)()tan ln x f x a bx c dx =+;(9)sin ()xx xf x e =;(10)()f x【习题3】 求()()cos n x e x 和()()sin n x e x .【习题4】若()f x 是定义在R 上的偶函数,且()'0f 存在,则()'0f =___________.【习题5】设()02f x '=,则()()000limh f x h f x h h→+--=( )A .2-B .2C .4-D .4【习题6】设函数()12sin sin2sin n f x a x a x a nx =++⋅⋅⋅+,其中12,,,,n a a a R n N +⋅⋅⋅∈∈. 已知对一切x R ∈,有()sin f x x ≤,证明:1221n a a na ++⋅⋅⋅+≤.。
高中数学数列极限的概念及相关题目解析数列是高中数学中的重要概念之一,而数列的极限更是数学学科中的基础知识。
在高中数学的学习中,理解和掌握数列极限的概念及相关题目的解析方法是非常重要的。
本文将从数列极限的定义、性质以及常见的数列极限题目出发,详细解析数列极限的相关知识。
一、数列极限的定义和性质数列极限是指当数列的项无限接近某个确定的值时,这个确定的值就是数列的极限。
数列极限的定义可以用数学符号表示为:对于数列{an},当n趋于无穷大时,如果存在一个常数a,使得对于任意给定的正数ε,都存在正整数N,使得当n>N 时,有|an-a|<ε成立,则称数列{an}的极限为a。
数列极限具有以下性质:1. 数列极限的唯一性:如果数列{an}的极限存在,那么它是唯一的。
2. 有界性:如果数列{an}的极限存在,那么它是有界的,即存在正数M,使得对于所有的n,都有|an|≤M成立。
3. 夹逼准则:如果对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(an)=lim(cn)=a,那么lim(bn)=a。
二、数列极限的题目解析1. 求数列极限的方法:题目:已知数列{an}的通项公式为an=1/n,求lim(an)。
解析:对于这道题目,我们可以通过直接代入数值的方法来求解。
当n取不同的值时,计算出对应的an的值,然后观察an的变化规律。
当n趋于无穷大时,我们可以发现an的值趋近于0。
因此,根据数列极限的定义,lim(an)=0。
2. 判断数列极限是否存在:题目:已知数列{an}的通项公式为an=(-1)^n/n,判断lim(an)是否存在。
解析:对于这道题目,我们可以通过分析数列的变化规律来判断其极限是否存在。
当n取不同的奇数时,an的值为正数,而当n取不同的偶数时,an的值为负数。
因此,数列{an}的值在正数和负数之间不断变化,没有趋于一个确定的值,所以lim(an)不存在。
3. 利用夹逼准则求数列极限:题目:已知数列{an}的通项公式为an=√(n^2+1)-n,求lim(an)。
高中数学知识点归纳数列与函数的极限高中数学知识点归纳:数列与函数的极限数列与函数的极限是高中数学中的重要部分,它们涉及到数学分析和数学推理的重要思想。
本文将对数列和函数的极限理论进行归纳总结,以帮助学生更好地理解和掌握这一知识点。
一、数列的极限数列是由一系列实数按照一定规律排列而成的序列。
在数学中,数列的极限是指随着自变量无限接近某个值时,函数值的变化趋势。
下面将分别介绍数列的极限的两个重要概念。
1.1 数列的收敛对于数列{an},如果存在实数a,使得对于任意给定的正数ε(无论多么小),都存在一个正整数N,使得当n>N时,满足|an - a| < ε,那么称数列{an}收敛于a,记为lim(n→∞)an = a。
简单来说,数列的极限是指数列中的元素随着序号的增大无限接近一个固定的值。
1.2 数列的发散如果不存在实数a,使得对于任意给定的正数ε,都存在一个正整数N,当n>N时,满足|an - a| < ε,那么称数列{an}发散。
换句话说,发散的数列没有随着序号的增大趋于一个确定的数。
二、函数的极限函数是一种关系:对于给定的自变量值,通过某种规则可以确定唯一的函数值。
函数的极限是指当自变量无线贴近某个值时,函数值的变化趋势。
下面将介绍函数的极限的概念。
2.1 函数在无穷远处的极限对于定义在区间(a, +∞)上的函数f(x),如果存在实数L,对于任意给定的正数ε,存在实数M,当x>M时,满足|f(x) - L| < ε,那么称函数f(x)在无穷远处的极限为L,记为lim(x→+∞)f(x) = L。
2.2 函数在有限点的极限对于定义在区间(a, b)上的函数f(x),如果存在实数L,对于任意给定的正数ε,存在一个实数δ,当0 < |x - x0| < δ时,满足|f(x) - L| < ε,那么称函数f(x)在点x0处的极限为L,记为lim(x→x0)f(x) = L。
第92-93课时:第十二章 极限——数列的极限、数学归纳法课题:数列的极限、数学归纳法一知识要点(一) 数列的极限1定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数,都能在数列中找到一项a N ,使得当n>N 时,|an-A|A a n n =∞→lim lim nn a →∞lim nn b →∞lim()lim lim n n n nn n n a b a b →∞→∞→∞±=±lim()lim lim n n n nn n n a b a b →∞→∞→∞⋅=⋅)0lim (lim lim lim ≠=∞→∞→∞→∞→n n n n nn n n n b b a b aS=⎪⎩⎪⎨⎧-=>=<=∞→)11()1(1)1(0lim a a a a a n n 或不存在数分别是0n =112322+++n n n nnn b ∞→lim122limnn na a a nb →∞+++na +222221lim()111n n n n n →∞-++++++)2(lim 2n n n n -+∞→nnn a a a a a a 24221lim ++++++∞→ 1)11(lim 2=--++∞→b an n n n lim()n n n A S n →∞-1(1,2,)n n S n S +=nn T ∞→lim n )31(1A 2A||||lim11n n n n n A A A A -+∞→)1,(,12131211>∈<-++++n N n n n 12)1(+n n n 131211++++ n 2131211++++ 22+n na a a a ,,,,321 nb b b b ,,,,321 nn n n b b b b B a a a a A ++++== 321321,2)(1n a a n +b b b b 112101145=+++=,…a b n a n =+⎛⎝ ⎫⎭⎪log 11131log a n b +nn S ∞→lim )]211()511)(411)(311([lim +----∞→n n n nn n a 1S lim =∞→122321222)2221(lim -∞→+++++++n nn n n n C C C nn n S S 1lim+∞→⎪⎪⎭⎫⎝⎛++⋯++++∞→32323221lim n n n n n n n n nn n S nalim ∞→nn n1i 1i i nS lim 则,a a 1∞→=+∑=nn a ∞→lim 9423lim=+-∞→nn n a a nn a ∞→lim 11)2(3)2(3lim+-∞→-+-+n n n n n )1n 2n1n 31n 21n 1(lim 2222n ++++++++∞→ n876n 321n a a a a a a a a lim ++++++++∞→ n n nnn a a a a --∞→+-lim ••8100.0••810000.0nn n21)1(21211212121122⋅-+-+-++++nb)(11+:1212=1,与M 交于点A 、B ,L 与φ交于点C 、D ,求22||||lim CD AB n ∞→1)n(n 3221n +++⋅+⋅= n =1,2,3……,b 1)n(n a nn+= n =1,2,3……,用极限定义证明21lim =∞→n n b 85年练习(数学归纳法)1.由归纳原理分别探求:1凸n 边形的内角和fn= ; 2凸n 边形的对角线条数fn= ;3平面内n 个圆,其中每两个圆都相交于两点,且任意三个圆不相交于同一点,则该n 个圆分平面区域数fn=2.平面上有n 条直线,且任何两条不平行,任何三条不过同一点,该n 条直线把平面分成fn 个区域,则fn1=fn3.当n 为正奇数时,求证nn被整除,当第二步假设n=2─1时命题为真,进而需验证n= ,命题为真。
高考数学数列极限知识点汇总在高考数学中,数列极限是一个重要的知识点,也是许多同学感到头疼的部分。
为了帮助大家更好地掌握这一知识点,下面就为大家详细汇总一下数列极限的相关内容。
一、数列极限的定义如果当项数n 无限增大时,数列的通项an 无限接近于某个常数A,那么就称 A 是数列{an}的极限,记作lim(n→∞) an = A 。
这里要注意“无限接近”的含义,并不是说数列的项最终等于这个常数,而是它们之间的距离可以任意小。
二、数列极限的性质1、唯一性:如果数列{an}有极限,那么这个极限是唯一的。
2、有界性:如果数列{an}有极限,那么数列{an}一定是有界的。
3、保号性:如果lim(n→∞) an = A,且 A > 0(或 A < 0),那么存在正整数 N,当 n > N 时,an > 0(或 an < 0)。
三、常见数列的极限1、常数列:若{an}为常数列,即 an = C(C 为常数),则lim(n→∞) an = C 。
2、等差数列:若{an}为等差数列,首项为 a1,公差为 d 。
当 d =0 时,lim(n→∞) an = a1 ;当d ≠ 0 时,数列{an}没有极限。
3、等比数列:若{an}为等比数列,首项为 a1,公比为 q 。
当|q| < 1 时,lim(n→∞) an = 0 ;当 q = 1 时,lim(n→∞) an = a1 ;当|q| > 1 时,数列{an}没有极限。
四、数列极限的运算1、四则运算:如果lim(n→∞) an = A,lim(n→∞) bn = B ,那么(1)lim(n→∞)(an ± bn) = A ± B ;(2)lim(n→∞)(an · bn) = A · B ;(3)当B ≠ 0 时,lim(n→∞)(an / bn) = A / B 。
2、指数运算:若lim(n→∞) an = A ,则lim(n→∞) an^k = A^k (k 为正整数)。
高等数学:数列的极限一、引言在高等数学中,数列是极为重要的概念之一。
数列是由一系列按照一定规律排列的数所组成的序列。
而数列的极限则是指在数列中的某种规律性趋势下,数列中的项逐渐接近一个确定的数。
本文将深入探讨高等数学中数列的极限这一概念。
二、数列的定义数列是由一系列有序的数按确定的规律排列而成的序列。
一般来说,数列可以表示为 $a_1, a_2, a_3, \\ldots$,其中a a表示数列的第a项。
数列可以有无穷多项,也可以有有限项。
三、数列极限的定义考虑一个数列 $a_1, a_2, a_3, \\ldots$,如果数列中的项a a随着a的增大趋近于一个常数a,那么我们称常数a是该数列的极限,记作 $\\lim_{n\\to\\infty} a_n = A$。
简单来说,数列的极限就是数列中的项在逐渐接近一个确定的值。
四、数列极限的性质在研究数列的极限时,我们可以利用一些性质来简化计算或判断。
以下是一些常用的数列极限性质:1.数列极限的唯一性:若数列的极限存在,那么极限是唯一的。
2.数列加减乘除的极限性质:若$\\lim_{n\\to\\infty}a_n = A$,$\\lim_{n\\to\\infty} b_n = B$,则$\\lim_{n\\to\\infty} (a_n \\pm b_n) = A \\pm B$,$\\lim_{n\\to\\infty} a_n b_n = A \\cdot B$,$\\lim_{n\\to\\infty} \\frac{a_n}{b_n} =\\frac{A}{B}$(当a aa0时)。
五、数列的极限计算方法计算数列的极限通常可以通过分析数列的规律性和使用一些极限运算法则来进行。
以下是一些常用的数列极限计算方法:1.利用等式化简:有时数列的极限可以通过等式化简来得到。
例如,将复杂的数列分解成更简单的形式,进而计算极限。
2.利用夹逼准则:对于某些比较复杂的数列,我们可以利用夹逼准则来证明数列的极限值。
高中数学中的数列极限定义及其求解法则数列极限是高中数学课程中的一个重要内容,也是大学数学中的基础概念之一。
在高中阶段,我们需要学习数列极限的定义、判定和求解法则,理解其本质和应用,为进一步深入学习数学打好基础。
一、数列的极限定义在数学中,数列是按照一定规律排列的数的序列,表示为{an},其中an表示数列中第n个数。
如1,2,3,4……即为一个自然数数列。
当数列中的数逐渐趋向于一个确定的数L时,我们称L为该数列的极限,也称数列的极限存在。
数学上表示为:lim(n→∞)an = L其中lim表示“当n无限趋近于正无穷时的极限值”,an表示数列中的第n个数,L为数列的极限值。
二、常用的数列极限判定法则1. 夹逼准则夹逼准则是求解数列极限的常用方法,其核心思路是通过夹逼使得数列趋近于某个范围内的值。
具体来说,对于数列{an},如果有:an ≤ bn ≤ cn,且lim(n→∞)an = lim(n→∞)cn = L,则有lim(n→∞)bn= L。
其中,an和cn是分别代表着L的下限和上限的数列。
该方法的原理是利用如果一个数列逼近L,同时另外两个数列且夹在中间,则这两个数列同样逼近L。
例如:求解数列an =(n+2)/(2n+1)的极限。
将分子分母同时除以n,得到an = 1/2+3/(4n+2)。
由于lim(n→∞)3/(4n+2)= 0,所以an的极限等于lim(n→∞)1/2=1/2。
2. 单调有界准则单调有界准则是指如果数列{an}单调递增(或递减),且有一个数M使得|an|≤ M对于所有n成立,则该数列有极限。
此时,数列的极限就是其单调递增(或递减)的极限。
例如:求解数列an =(n+1)/n²的极限。
由于当n≥1时,有an ≤(n+1)/n,所以an为单调递减的数列。
同时,1/n是单调递减的有界数列,其最小值为0,所以an也是单调有界的。
因此,数列an有极限,其极限值等于an的单调递减极限:lim(n→∞)an=lim(n→∞)(n+1)/n²=0。
高三第一轮复习数学---数列的极限一、教学目标:理解数列极限的概念,会判断一些简单数列的极限,掌握极限的四则运算法则,会求某些数列的极限。
二、教学重点:1、按定义直观地感受一个数列是否有极限以及极限常数是什么,这是本节重点之一。
2、掌握三个常用极限是本节重点之二。
3、利用定义证明一个数列的极限,需要写成ε—N 语言的形式,这是本节难点。
三、教学过程:(一)主要知识: 1、 数列极限定义(1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim∞→n a n =a 。
对前任何有限项情况无关。
*(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε<a n <a+ε,即a n ∈(a-ε,a+ε);因此,借助数轴可以直观地理解数列极限定义:不论a 点的ε邻域怎么小,数列{a n }从某一项以后的所有项都要进入这个邻域中,也可以说点a 的任意小的ε邻域(a-ε,a+ε)中含有无穷数列{a n }的几乎所有的项,而在这个邻域之外至多存在有限个项,由此可以想像无穷数列{a n }的项是多么稠密地分布在点a 的附近。
2、应该牢固掌握的常用极限①lim ∞→n C=C (常数列的极限就是这个常数) ②设a>0,则特别地 01lim=∞→nn ③设q ∈(-1,1),则lim∞→n q n =0;;1lim ,1==∞→nn q q ,1-=q 或nn q q ∞→>lim ,1不存在。
若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:qa s s n n -==∞→1lim 13、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B(3)lim∞→n n n b a =BA(B ≠0) 极限不存在的情况是1、±∞=∞→n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1….4、一个重要的极限:ennn=⎪⎭⎫⎝⎛++∞→11lim思维方法:直接从常用的重要极限出发,运用数列极限的运算法则解题。
高中数学中的数列极限数列是高中数学中的重要概念之一,而数列的极限也是数学教学中的重要内容。
数列极限是数列中的一个重要属性,它描述了数列随着项数无限增加时所趋近的值。
本文将介绍数列的概念,解释数列极限的定义并探讨数列极限的性质和计算方法。
一、数列的概念数列是由一系列实数按照一定规律排列而成的序列。
数列可以用公式或递归关系式表示,其中公式表示数列的通项公式,递归关系式表示每一项与前一项之间的关系。
二、数列极限的定义数列极限是指当数列的项数趋近无穷大时,数列中的数值趋近的一个值。
设数列{an}表示一个数列,当对于任意给定的正数ε(epsilon),存在一个正整数N,当n>N时,对应的数列项an满足|an - A|< ε,其中A为数列的极限。
三、数列极限的性质1. 数列极限的唯一性:若数列{an}的极限存在,那么它的极限是唯一的。
2. 有界性:如果数列{an}是有界的,那么它一定存在极限。
3. 数列极限的保号性:如果数列{an}的极限为A,且A>0(或A<0),那么从某一项开始,数列的项都大于0(或小于0)。
4. 数列极限的四则运算法则:设{an}和{bn}分别是两个数列,且它们的极限分别为A和B,那么以下四个极限成立:- {an + bn}的极限为A + B;- {an - bn}的极限为A - B;- {an * bn}的极限为A * B;- {an / bn}的极限为A / B(当B≠0时)。
四、数列极限的计算方法1. 常见数列的极限:- 等差数列的极限为首项与末项的平均值;- 等比数列(公比小于1)的极限为0;- 等比数列(公比大于1)的极限为正无穷大或负无穷大。
2. 利用数列极限的性质进行计算:- 利用极限的保号性可以确定极限的正负性;- 利用数列极限的四则运算法则进行极限的计算。
3. 利用数列的局部性质进行计算:- 极限运算与局部性质:如果数列的部分项与极限的差异可以忽略不计,那么这两个数值可以互相替代。
●知识梳理1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n },当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim (a n ·b n )=a ·b ; ∞→n limn n b a =ba(b ≠0). 特别提示(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个.1.下列极限正确的个数是①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n limnn n n 3232+-=-1 ④∞→n lim C =C (C 为常数)A.2B.3C.4D.都不正确 解析:①③④正确. 答案:B2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]等于A.0B.1C.2D.3解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ] =∞→n lim 22+n n=2. 答案:C3.下列四个命题中正确的是 A.若∞→n lim a n 2=A 2,则∞→n lim a n =AB.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n解析:排除法,取a n =(-1)n ,排除A ;取a n =n1,排除B;取a n =b n =n ,排除D .答案:C4.(2005年春季上海,2) ∞→n lim n n ++++ 212=__________.解析:原式=∞→n lim 2)1(2++n n n =∞→n lim 221212nn n ++=0.答案:05.(2005年春季北京,9) ∞→n lim 32222-+n nn =____________.解析:原式=∞→n lim23221nn -+=21. 答案:21思考讨论【例1】 求下列极限:(1)∞→n lim757222+++n n n ;(2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n + (22)n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim757222+++n n n =∞→n lim 2275712nnn +++=52.(2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21. (3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n 1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n 2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误: ①∞→n lim (n n +2-n )= ∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n lim n n +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim22n +∞→n lim 24n +…+∞→n lim22n n=0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n nn n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim nn n n c c 323211+---. ①当c =2时,原式=-41;②当c>2时,原式=∞→n lim cc c n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim 22||||CD AB .剖析:要求∞→n lim 22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n .又r =1,∴|AB |2=4(1-d 2)=218nn+. 设点C (x 1,y 1), D (x 2,y 2),由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0, ∴x 1+x 2=nn 12+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-n x 2)2=414nn +, ∴|CD |2=(x 1-x 2)2+(y 1-y 2)2=41n(4n +1)(n 2+1). ∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2)11)(14(8nn ++=2.评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =n n a a 2+=n n cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴n n b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c , ∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3.解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0.故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.夯实基础1.已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是A.2B.3C.21D.6解析:由∞→n lim c bn can ++=2,得a =2b .由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b . ∴ca =6. ∴∞→n lim a cn c an ++22=∞→n lim 22na c n ca ++=ca =6. 答案:D2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411B.2417C.2419D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n n n nnn n nn即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n nn∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…).∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n . ∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_________________.解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于A.52B.72C.41D.254 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n .∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0.答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *).(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值. 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n .①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1). ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2.(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ] =41∞→n lim [1+21-n 1-11+n ]=83. 能力提高7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2. 又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1,∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S . 解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n --+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得 .1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n nS S =p . 当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qb p a q bp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得 2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32.教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围.解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1.当q =1时,21a -1=21,∴a 1=3. 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21.综上,得0<a 1<1且a 1≠21或a 1=3.。