锅炉控制系统的组态设计
- 格式:doc
- 大小:341.00 KB
- 文档页数:24
锅炉控制系统的组态设计随着现代科技的发展,锅炉控制系统的自动化程度不断提高,使得锅炉的控制更加精确、安全、可靠。
而锅炉控制系统的组态设计则是实现锅炉自动化控制的重要环节。
本文将介绍锅炉控制系统组态设计的基本概念、设计过程、实施方法及其优势与不足。
锅炉控制系统是指实现锅炉自动化控制的系统,通常包括控制器、执行器、传感器、作用器等几个部分。
而锅炉控制系统组态设计则是根据锅炉控制的要求,将各个部件组合在一起,形成可靠、灵活、易于维护的控制系统,以满足锅炉运行的安全、稳定、高效等要求。
1、锅炉控制要求的分析首先需要根据锅炉的类型、容量、运行方式等因素,明确锅炉所需要的控制方式和控制要求,比如锅炉水位、压力、温度、流量、烟气排放等控制参数的范围、变化规律和控制策略等。
2、硬件配置和组态方案的制定根据锅炉控制要求,选取适合的控制器、执行器、传感器、作用器等硬件设备,并制定相应的组态方案,确定各个控制设备的接口、信号传输方式、数据处理方法等。
3、软件编程和参数设置将硬件配置和组态方案转化为软件程序,编写相应的控制逻辑、算法、监视功能等,设置控制参数、告警参数、维护参数等,完成控制系统的组态设计。
4、测试和调试在安装设备、连接线路、调试程序后,进行系统的测试和调试,检查控制器、执行器、传感器、作用器等硬件设备和软件功能的性能和稳定性。
并对发现的不足之处进行进一步的优化和完善。
5、运行维护在控制系统投入使用后,需要定期检查和维护,比如检查控制器、执行器、传感器、作用器等设备的性能,更新控制程序,修复故障等。
1、分层设计将控制系统分为硬件层和软件层,针对硬件和软件各自进行优化,提高系统的性能和可靠性。
同时可以利用分层设计,实现控制器的模块化和可重用性。
2、模块化设计将整个控制系统分为多个相对独立的模块,每个模块负责不同的控制功能,模块之间相互协调、通讯,实现系统的高效、灵活、可扩展性。
3、数据分离设计将控制过程中的各种信号和数据进行分离,采用标准化的数据格式和传输方式,方便数据的处理和存储,提高数据的可靠性和安全性。
工业燃煤锅炉DCS控制系统设计(子课题:控制方案的组态及监控画面的制作)摘要:本文叙述了工业燃煤锅炉的工作原理,具体阐述了锅炉控制中对汽水控制系统方案和自动检测的设计,利用了Control Builder 软件、UMC800控制器和FIX软件进行35吨工业燃煤锅炉汽水系统的自动检测与控制回路的组态,并设计了友好的监控画面。
关键词:锅炉FIX UMC800 控制系统汽水系统蒸汽压力Abstract: the paper introduce the principle of the boiler which is used in burning coal industrial,it describes the scheme of the steam controlsystem in boiler control and the design of auto-detection. it use the Control Buildersoftware,UMC800 controller and FIX softwareto auto-detect 35t steam system in burningcoal industrial and configuration the controlloop, and designed the friendly supervisionappearance.Keyword: boiler, FIX, UMC800, control system, steam system, steam pressure引言锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的13,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。
提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。
锅炉供暖控制系统设计摘要:在我国部分偏远地区普遍使用的锅炉供暖技术中,相当多的锅炉仍旧采用传统方式对整个供暖过程进行控制,整个过程能源浪费严重,设备的启停、燃料的投放等都过度依赖操作员人工操作,无论是从工作效率还是工作安全角度,都不是很好的选择。
针对上述问题,本项目针对自供暖对内部供暖要求设计了以自动化控制核心的燃气供暖锅炉控制系统,并配置计算机控制与管理系统,结合现代工业组态软件对整个控制系统进行实时监控,构建人机界面。
整个供暖系统全部由计算机实现自动控制,系统的操作除了工程师外,操作员也可以很容易操作整个系统的运行,这样就节省了大量的人力资源,并且整个操作过程可以在操作室进行,保证了整个操作的安全性。
关键词:锅炉供暖;PLC;WinCC引言目前,农村或城市供暖受到能源、供暖距离等多方面的限制,农村采用集中供暖成本太高,用户只能采用暖炉或空调供暖,暖炉燃烧煤炭污染环境,且可能造成CO中毒;空调制热供暖效率低,制热效果差,电量消耗大,且没有自动换风系统,室内空气质量变差,容易引发呼吸道疾病。
城市采用集中供暖的方式,但多数住户没有换风系统和报警系统,长时间未开窗通风导致细菌滋生引发疾病等,多功能供暖控制系统采用电热水器和天然气两种加热方式提供热源,对于个体供暖和集中供暖都适用,系统排出的水经过循环之后再次进入系统进行加热,整个系统节能环保,还能实时监测室内的空气质量,且能连入物联网。
1锅炉供暖系统工艺简介整个燃气锅炉供暖系统的工作流程为:向燃烧器内供应天然气与空气的混合燃料,点燃后对锅炉内的水进行一次加热,同时,锅炉内的进口与出口的水是通过水温造成的重度差进行循环,将热水传输给需要供暖的区域,对循环回来的冷水进行加热。
整个系统主要由管道内水循环和锅炉燃烧两部分构成:1)管道内水循环:自来水经过过滤软化处理以后,经由分水器进入供暖管道内部,送入锅炉中,进行加热后,经由换热泵管网送至用户处用于取暖。
经由用户出散热后,经过换热站,再次经由循环泵管网送至锅炉内加热。
基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
目录1 绪论 (1)1.1课题背景及研究目的和意义 (1)1.2国内外研究现状 (1)1.3项目研究内容 (2)2 PLC和组态软件基础 (3)2.1可编程控制器基础 (3)2.2组态软件的基础 (5)3 PLC控制系统的硬件设计 (7)3.1PLC控制系统设计的基本原则和步骤 (7)3.3系统整体设计方案和电气连接图 (9)3.4PLC控制器的设计 (10)4 PLC控制系统的软件设计 (13)4.1PLC程序设计的方法 (13)4.2编程软件STEP7--M ICRO/WIN概述 (13)4.3程序设计 (15)5组态画面的设计 (25)5.1组态变量的建立及设备连接 (25)5.2创建组态画面 (28)6系统测试 (32)6.1启动组态王 (32)6.2实时曲线观察 (32)6.3分析历史趋势曲线 (33)6.4查看数据报表 (35)6.5系统稳定性测试 (36)总结 (38)致谢 (39)参考文献 (40)摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。
本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。
电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。
目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。
基于组态软件的供暖锅炉监控系统设计摘要工业锅炉是采暖供热系统的核心设备,它的主要任务是安全可靠、经济有效地把燃料的化学能转化为热能,进而将热能传递给水,生产出满足需要的蒸汽或热水。
本文主要介绍的是通过组态软件(MCGS)做成的一套锅炉监控系统。
大家都知道我们可以把锅炉分为三个相对独立的环节去控制:燃烧系统的控制,汽包液位的控制,过热蒸汽温度的控制。
本文也采用了这样的分环节控制的方法。
首先,用炉膛内的压力与饱和蒸汽的压力组成串级控制系统去控制燃料的供给量,继而控制了燃烧系统。
当然为了安全起见我们还必须用一个压力传感器去测量炉膛内的压力。
其次,用饱和蒸汽的温度和汽包的水位组成串级控制去控制给水量,继而控制汽包的水位。
最后,用过了减温器的蒸汽的温度与过热后的蒸汽的温度组成串级控制去控制减温水的供给量,继而控制过热蒸汽的温度。
该系统具有数据采集实时控制,在线查询等功能,同时能够通过一些简单的传统控制(PID 控制)对其进行相对稳定的控制。
本文针对过路系统三个环节中的每个环节的单独控制(燃烧系统控制,汽包液位控制,过热蒸汽温度控制),得到了比较稳定的锅炉系统,同时又对其进行了较为良好的监控。
关键词:组态软件;锅炉;串级控制;安全目录第1章引言 (1)1.1 锅炉研究的背景和意义 (1)1.2 锅炉研究的现状和存在的问题...................................... 第 2 章 MCGS 组态软件介绍............................................42.1 MCGS 简介 .................................................... 4 2.2 MCGS 的功能和特点 ............................................ 5 2.3 MCGS 的构成 .................................................. 7 2.4 MCGS 的工作方式 ............................................... 7 2.5 MCGS 的操作方式 ............................................... 9 2.6 组建工程的一般过程 (11)第 3 章锅炉工艺流程 ...................................................3.1 锅炉工艺流程简介 ...............................................14 3.2 锅炉控制中的控制参数 ...........................................15 3.2.1 锅炉中的主要控制参数 .......................................15 3.2.2 锅炉参数之间的内在关系 .................................... 15 3.3 锅炉设备的控制系统 .............................................16 3.3.1 锅炉汽包水位控制 (16)3.3.2 锅炉燃烧系统的控制 (16)3.3.3 过热蒸汽系统的控制 ........................................ 17 3.4 相关对象的动态特性 .............................................18 3.4.1 汽包水位的动态特性 ........................................ 18 3.4.2 压力的动态特性 .. (20)第 4 章锅炉监控系统设计 (23)4.1 设计方案 (23)4.1.1 汽包水位控制系统设计 (23)4.1.2 燃烧控制系统的设计 (24)4.1.3 过热蒸汽温度控制 (25)4.2 工程的组态 (26)4.2.1 基于 MCGS 组态软件的人机界面图 (26)4.2.2 组态过程 (28)4.3 脚本程序说明 (31)4.4 系统简介 (32)4.4.1 监控系统的功能 (32)4.4.2 实施方式 (34)第5章 MCGS 环境下系统的模拟运行结果..................................36第 6 章仪表选型、清单及概算 (40)6.1 仪表选型 (40)6.1.1 执行器 (40)6.1.2 温度测量仪表的选型 (40)6.1.3 压力测量仪表的选型 (41)6.1.4 液位测量仪表的选型 .........................................41 6.2 仪表清单 ........................................................43 6.3 工程概算 ....................................................... 43 第7章结束语 ....................................................... 44参考文献 (45)致谢 (47)第1章引言1.1锅炉研究的背景和意义工业锅炉是采暖供热系统的核心设备,它的主要任务是安全可靠、经济有效地把燃料的化学能转化为热能,进而将热能传递给水,生产出满足需要的蒸汽或热水。
2011 届毕业设计说明书基于PLC和组态技术的锅炉水温串级控制系统设计摘要本设计论述了基于PLC和组态技术的锅炉内胆水温和夹套水温构成的串级控制系统的设计过程。
下位机编程软件采用SIEMENS公司的STEP 7软件,选用西门子S7-400PLC控制锅炉温度的控制系统,介绍了西门子S7-400PLC和系统硬件及软件的具体设计过程。
上位机组态画面软件采用SIMATIC WINCC,对其进行了简单介绍,并详细介绍了项目的创建、变量的新建、画面的组态。
上位机进行程序编写实现控制,下位机组态画面,建立人机界面,进行远程控制。
锅炉水温具有非线性、时变性、大滞后和不对称性等特点,采用传统的控制方法所得到的控制量的控制品质不高。
锅炉内胆与夹套构成串级控制。
由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果。
串级控制中的主副回路是控制夹套和内胆的温度,温度是一个多变且不易控制的量,而PID控制在这方面具有突出的优点,很适合采用PID控制技术。
综合以上得到一个品质比较高的控制系统。
关键词PLC;组态技术;串级控制;锅炉水温;PID控制ABSTRACTThis design is discussed based on PLC and configuration technology of water temperature and clip boiler water tank consists of cascade control system design process. Lower level computer programming software using the SIEMENS company's STEP 7 software, choose SIEMENS s7-400plc control boiler temperature control system, introduces SIEMENS s7-400plc and system hardware and software, and the specific design process. Upper unit used in the software configuration screen WINCC, the SIMATIC simply introduced, and introduces the creation, variable of project construction, picture configuration. PC for programming realize control, lower frame) unit, establish normal screen man-machine interface, carries on the remote control.Boiler water temperature with nonlinearness, time delay and asymmetry wait for a characteristic, USES the traditional control method can get control portion control quality is not high. Boiler of the bladder and clip constitutes a cascade control. Due to the cascade control has effectively improve the dynamic characteristics, improve process working frequency, reducing the time constant and accelerate equivalent process characteristic, the response speed of the controlled system in overcome delay to the good result is achieved. Cascade control the principal deputy loop is control of the temperature of the clamping and bladder, temperature is a variable and not easy to control, and the amount of PID control in this respect has outstanding advantages, very suitable PID control technology. Comprehensive above gets a quality higher control system.Key words plc;configuration technology;cascade control;boiler water temperature;pid control目录1 引言 (4)1.1 系统的设计背景 (4)1.2 系统设计内容及技术要求 (5)1.3 系统的设计原理 (5)1.4 系统的整体设计方案 (6)2 串级控制系统设计 (7)2.1 串级控制系统的概述 (7)2.2 PID控制系统的简介 (8)2.3 PID控制器的参数整定 (10)3 硬件系统设计 (13)3.1 PLC的基本介绍 (13)3.2 S7-400简介 (14)3.3 其它器件介绍 (16)4 STEP 7简介及组态硬件、程序编写 (18)4.1 STEP 7简介 (18)4.2 STEP 7项目的创建 (20)4.3 组态硬件 (22)4.4 SETP 7编程介绍 (25)4.5 变量及系统程序 (26)5 WINCC简介及人机界面组态 (33)5.1 WinCC简介 (33)5.2 WinCC系统功能 (34)5.3 WinCC的项目创建及组态方法 (35)6 控制系统整体调试 (46)6.1 系统整体测试 (46)6.2 系统测试的结果 (47)结束语 (48)参考文献 (49)致谢 (51)1 引言1.1 系统的设计背景自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
第3章锅炉组态界面的设计3.1 组态画面的绘制3.1.1 力控集成环境开发系统(Draw):是一个集成环境,可以创建工程画面,配置各种系统参数,启动力控其它程序组件等。
界面运行系统(View):界面运行系统用来运行由开发系统Draw创建的画面。
实时数据库(DB):是数据处理的核心,构建分布式应用系统的基础。
它负责实时数据处理、历史数据存储、统计数据处理、报警处理、数据服务请求处理等。
I/O驱动程序:I/O驱动程序负责力控与I/O设备的通信。
它将I/O设备寄存器中的数据读出后,传送到力控的数据库,然后在界面运行系统的画面上动态显示。
网络通信程序(NetClient/NetServer):网络通信程序采用TCP/IP通信协议,可利用Intranet/Internet实现不同网络结点上力控之间的数据通信。
开发系统(Draw)、界面运行系统(View )和数据库系统(DB)都是组态软件的基本组成部分。
Draw和View主要完成人机界面的组态和运行,DB主要完成过程实时数据的采集(通过I/O 驱动程序)、实时数据的处理(包括:报警处理、统计处理等)、历史数据处理等串行通信程序(SCOMClient/SCOMServer):两台计算机之间,使用RS232C/422/485接口,可实现一对一的通信;如果使用RS485总线,还可实现一对多台计算机的通信。
Web服务器程序(Web Server):Web服务器程序可为处在世界各地的远程用户实现在台式机或便携机上用标准浏览器实时监控现场生产过程。
控制策略生成器(StrategyBuilder):是面向控制的新一代软件逻辑自动化控制软件。
提供包括:变量、数学运算、逻辑功能和程序控制处理等在内的十几类基本运算块,内置常规PID、比值控制、开关控制、斜坡控制等丰富的控制算法。
同时提供开放的算法接口,可以嵌入用户自己的控制程序。
3.1.2力控组态1、建立工程打开工程管理器,选择“新增应用”,在应用名称对话框中输入一个应用程序的名称“基于组态软件的锅炉控制系统设计”,按“确定”按钮。
电气传动2021年第51卷第2期ELECTRIC DRIVE 2021Vol.51No.2Abstract:PLC was used as the hardware platform ,the ladder map was adopted to achieve PID control ,a configuration software was selected to complete the design of the human-machine interface ,and the design of the boiling boiler monitoring system based on PLC and configuration software configuration was realized.The trial operation shows that the system can meet the design requirements ,the purpose of automatic monitoring and control of key parameters in the production process of boiling boiler can be achieved.Key words:programmable controller ;configuration software ;boiling boiler ;monitor基金项目:贵州省教育厅创新群体重大研究项目(黔教合KY 字[2016]044)作者简介:马林联(1966—),男,硕士,教授,Email :mll.2006@摘要:采用PLC 作为硬件平台,运用梯形图实现PID 控制,选择一种组态软件来完成人机界面的设计,实现基于PLC 和组态软件配置的沸腾锅炉监控系统设计,试运行表明,该系统能满足设计要求,可以达到对沸腾锅炉生产过程关键参数自动监测和控制的目的。
组态王课程设计–锅炉温度控制系统本文档是组态王课程设计–锅炉温度控制系统的设计方案及实现过程。
项目概述锅炉温度控制系统是一个典型的温度控制应用系统,以PLC为核心,采用PID 算法控制锅炉温度,同时通过组态软件进行监控,实现对锅炉温度的精确控制。
系统组成系统由三部分组成:1.PLC:使用的为三菱PLC Q系列(Q00UCPU)。
2.人机界面:使用组态王软件。
3.温度传感器:使用PT100型热电阻温度传感器。
系统架构系统架构如下图所示:+-----------+|PT100温度传感器|+-----------+|+-----------+ +---------+ +--------------+ +---------+| 温度放大器 |------| PLC |-----|PID算法控制程序|-----| 组态软件 |+-----------+ +---------+ +--------------+ +---------+ PLC程序设计在PLC中搭建一个PID控制程序,输入温度信号,输出控制信号,使得锅炉温度接近于设定温度。
程序流程如下:1.初始化:变量赋初值。
2.采集温度信号:从温度传感器中获取实时温度数据。
3.PID算法计算:根据当前温度值和设定温度值,使用PID算法计算控制量。
4.控制量输出:将计算所得的控制量传送给控制对象。
5.控制命令输出:根据控制量输出对应的控制命令。
6.返回第2步,循环执行。
组态软件设计组态软件作为人机界面,需要支持实时监控温度值、设定温度、控制命令等信息,并能够进行实时调试和操作。
主要包括以下界面和功能:1.温度监控界面:显示温度曲线,并标记出设定温度和实际温度。
2.控制命令调试界面:显示当前控制命令,并提供手动控制输入接口,支持手动修改命令值。
3.故障诊断界面:显示系统故障信息,并提供故障诊断工具。
实现过程1.开始前,准备好硬件设备:PLC(Q00UCPU)、温度传感器(PT100)、转换器(AD8)、继电器模块(Y140)、人机界面(组态王)。
西南科技大学专业方向设计报告课程名称:自动化专业方向设计设计名称:基于MCGS的锅炉温度控制系统设计姓名:赵XX学号: 2010XX班级:自动10XX班指导教师:王顺利起止日期: 2013.10.20——2013.11.15 西南科技大学信息工程学院制方向设计任务书学生班级:自动10XX班学生姓名:赵XX 学号:2010XXXX 设计名称:基于MCGS的锅炉温度控制系统设计起止日期:2013.10.20——2013.11.15 指导教师:王顺利方向设计学生日志基于MCGS的锅炉温度控制系统设计摘要:锅炉是工业生产中主要的供热设备。
电力、机械、冶金、化工、民用都需要锅炉提供热量,但是根据行业的不同,对锅炉的大小规模不尽相同。
作为重要的工业设备,在保证其安全和稳定运行的情况下则应考虑其自动生产,提高自动运行能力及工作效率。
本设计基于AE2000B实验设备上模拟现场锅炉温度控制系统,通过西门子S7-200 PLC作为控制器,MCGS 作为上位机,通过通信链接对锅炉温度进行实时监控,同时设计系列联锁,保证系统安全运行。
关键词: 锅炉温度 AE2000B PLC MCGSBased on the MCGS boiler temperature control system design Abstract:The boiler is the main heating equipment in the industrial manufacture.The electric power, the machinery, the metallurgical industry ,the chemical industry and the civil all need the heat the boiler offers. However, according to different industries, The size of the boiler varies from one to another. As an important industrial equipment, if we could ensure its safe and stable operation ,we should consider its automatic production and improve the automatic ability and its working efficiency. This design is based on AE2000B experimental device to simulate the spot boiler temperature control system by using the Siemens S7-200 PLC as the controller and the MCGS as upper machine. Meanwhile, the communication link will supervise the boiler temperature timely and the interlocking series will guarantee the safe operation of the system.Keywords: boiler temperature AE2000B PLC MCGS1 设计目的和意义锅炉生产在国民是工业中占据着重要的地位,早期的锅炉自动化程度很低,监控系统不完善,导致系统故障不断,但是锅炉因为适合各种行业仍然被广泛使用,锅炉的广泛使用使锅炉现代化成为必然。
电厂锅炉补水处理PLC控制系统及组态1引言电厂锅炉进行补给水处理,需要结合不同的水质情况而运用相应的处理技术开展工作,未经处理的水中含有多种固态杂质和液态杂质,形成水垢和大量沉积物,影响锅炉的使用寿命。
因此必须经过物理法、化学法、物理化学法和生物化学法等去除杂质。
规范电厂锅炉补给水处理工作,不但可以有效防止和减少锅炉结垢、腐蚀及其蒸汽质量恶化而造成的事故,而且有利于促进电厂锅炉运转的安全、经济、节能、环保。
电厂锅炉补给水的洁净处理在锅炉整体运转中起着至关重要的作用。
2controllogix系列plc应用设计锅炉补给水监控系由电源柜、plc控制柜、操作员站组成。
锅炉补给水系统选用rockwell公司controllogix系列plc。
所有通过背板进行通讯的模块均是基于生产者/客户(producer/consumer)的模式。
每个模块占用一个单独的槽位,并且模块可以插在各种1756框架的任意槽位。
更换模块时无需断开接线,用户配线时将连接线接到可拆卸的端子排(rtbs)上,并将端子排插入模块的前面。
所有模块均可以带电插拔。
光电隔离和数字滤波可有效地减少信号干扰。
作为一种故障诊断帮助,在模块的前面还设有状态指示器,用于指示输入或输出以及故障状态。
i/o模块可直接将故障情况报告给处理器。
数字量i/o模块覆盖了从10v到265vac以及10v到146vdc的范围,提供的继电器触点输出模块的范围从10v到265vac或者5v到150vdc。
模拟量信号的电压范围包括标准的模拟量输入和输出,以及直接的热电偶及rtd温度输入信号。
模拟量模块的可选特性包括适用于干扰源及干扰环境下的数字滤波,以及每个i/o通道的量程选择,以增加用户的灵活性。
模拟量模块的综合自诊断功能可以监测:输入开路/开环监测,板级故障监测,针对上限的2个报警级别(hi和hi-hi)外加一个超物理量程报警,针对下限的2个报警级别(lo和lo-lo)外加一个低物理量程报警。
;济南铁道职业技术学院电气工程系毕业设计指导书课题名称:锅炉控制系统的组态设计《专业电气自动化班级电气0831姓名 cmy~设计日期至指导教师 ly?2010、11济南铁道职业技术学院电气工程系毕业设计指导书2010、11一、设计课题:!锅炉控制系统的组态设计锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。
本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。
由此组成一个简单的液位控制系统。
二、设计目的:通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。
三、设计内容:掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。
—四、设计要求及方法步骤:1.设计要求:(1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。
(2)各控制画面要有手/自动切换。
(3)掌握PID控制算法。
2.运用的相关知识(1)组态控制技术。
(2)过程控制技术。
~3.设计步骤:(1)熟悉、掌握锅炉的生产工艺。
(2)设计各分系统的控制方案。
(3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。
(4)编写设计论文。
五、设计时间的安排:熟悉题目、准备资料 1周@锅炉控制系统的工艺了解 1周监控画面的设计 2周控制算法的编制和系统调试 3周论文的编写 2周准备毕业设计答辩 1周六、成绩的考核在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。
…答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。
成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。
成绩按优秀、良好、中、及格、不及格五个等级进行评定。
济南铁道职业技术学院毕业设计(论文)任务书~目录摘要 (2)第一章组态技术简介 (3)1.1组态技术概述 (3)1.2组态软件概述 (3)第二章锅炉简介 (4))锅炉工艺流程 (4)锅炉设备的控制 (5)锅炉汽包水位的控制 (5)锅炉燃烧系统的控制 (7)锅炉过热蒸汽温度的控制 (7)第三章锅炉控制系统的设计 (9)系统硬件配置 (9)监控系统的软件设计及实现...................................10 {设备定义 (10)变量的定义 (11)各控制画面的设计 (12)应用程序语言的设计 (13)结束语 (14)第四章总结 (15)致谢 (16)参考文献 (17)。
{《摘要#为提高控制系统的性能,使显示与控制在同一台工控机上实现,获得简单、经济的锅炉控制系统.自动控制系统硬件采用通用的工控机,同时配备必要的基本板卡;软件系统选用国产的组态王软件,利用其自带的命令语言,使用先进的控制算法实现了PID控制功能,使锅炉控制系统运行状态稳定.结果控制系统可靠性较高,成本较低,便于维护,兼容性好,运行效果良好.该系统对建立小型的锅炉控制系统,特别是对旧系统的改造,具有很强的适用性,性能可靠且可大大降低成本.本文主要介绍锅炉过程控制、组态王软件及其基于组态王开发的锅炉监控系统。
详述该系统的硬件组成、控制方法、组态过程、组态软件的运行环境。
该系统具有界面友好、参数在线整定方便、扩展性强等优点。
关键词: 锅炉组态王自动控制系统:.】第一章组态技术简介组态技术概述组态技术是一种计算机控制技术。
利用组态控制技术构成的计算机测控系统与一般计算机测控技术在结构上没有本质区别,它们都是由被控对象、传感器、I/O接口、计算机和执行机构几部分组成,如图所示。
—图一般计算机控制系统的结构组成计算机控制系统按照设计方法的不同分为以单片机为核心的计算机测控系统、以plc(可编程控制器)为核心的计算机测控系统和以IPC(工业PC机或称工业控制计算机)核心的计算机测控系统。
利用组态技术构成的计算机控制系统是在以上三者特别是以IPC为核心的系统的基础上发展起来的。
组态(Configuration)的意思就是模块的任意组合。
采用组态技术构成的计算机系统在硬件设计上,除采用工业pc机外,系统大量采用各种成熟通用的I/O接口设备和现场设备,基本不再需要单独进行具体电路设计。
这不仅节约了硬件开发时间,更提高了工控系统的可靠性。
在软件设计上由于采用成熟的工控专用软件进行系统设计,软件周期大大缩短了。
组态软件实际上是一个专为工控开发的工具软件。
它为用户提供了多种通用工具模块,用户不需要掌握太多的编程技术,就能很好地完成一个复杂工程所需要的所有功能。
一般来说,只要采用IPC,选择通用接口部件和组态软件,这样构成的系统都是基于组态控制系统的。
国内外许多自动化设备生产厂家生产了许多基于这种技术的DCS计算机系统,如德国西门子公司、日本三菱、台湾研华、中国时利和等。
这些系统提供各种工业PC机、I/O板卡、模块和专门针对自己系统的组态软件,供自动化系统设计人员组态选择。
与各系统专用组态软件相对的是各种通用组态软件,常用的国产通用组态软件有微控可视组态、MCGS、Kingview(组态王)等。
组态技术是计算机控制技术综合发展的结果,是技术成熟化的标志。
由于组态技术的介入,计算机控制系统的应用速度大大加快了。
组态软件概述组态软件是在工业自动化领域兴起的一种新型的软件开发工具,开发人员通常不需要编制具体的指令和代码,只要利用组态软件包中的工具,通过硬件组态(硬件配置)、数据组态、图形图像组态等工作即可完成所需应用软件的开发工作。
在过程控制实验装置中,要实现锅炉液位控制,以往采用仪表作为调节器,该仪表通过仪表面板的按键来改变参数值,没有实时数据输出曲线,故参数调节不方便,且系统的控制精度低。
为了改变这种状况,利用组态王软件开发了锅炉液位监控系统,采用计算机采集、处理数据。
根据组态王的锅炉液位实时曲线输出,用滑动输入块改变参数的值,使系统输出稳定到设定值,从而提高了工作效率。
组态王软件是一套基于Windows95/98/NT/XP操作系统,可用来快速生成上位机监控系统的组态软件包,它能够完成现场数据采集、实时和历史数据处理、流程控制、动画显示、报警和安全机制、趋势曲线、报表输出等功能,是帮助用户解决工程实际问题的完整方案和操作工具。
该软件具有多任务、多线程功能,其系统框架采用VC++编程,提供丰富的设备驱动构件、动画构件,用户可随时方便地扩充系统的功能。
组态王软件系统包括开发环境和运行环境两大部分,用户所有的组态配置过程都是在组态环境中进行的。
运行系统按照开发环境中的组态方式进行各种处理,完成用户组态设计的目标和功能。
目前,组态王软件已经在石油、化工、电力等多种工程领域获得成功的应用。
…第二章锅炉简介锅炉是石油化工、发电等工业生产过程中必不可少的重要动力设备。
它所产生的蒸汽不仅能够为工业生产的蒸馏、干燥、蒸发、化学反应等过程提供热源,而且还可以为压缩机、泵、涡轮机等提供动力源。
锅炉是应用广泛的工业和民用设备,我国目前运行的多数锅炉由于控制水平不高,其效率普遍低于国家标准,大多数锅炉仍处于能耗高、环境污染严重的生产状态,每年因为热效率低而多消耗的标准煤近2000万吨。
传统的手工仪表监控系统已不适应节能降耗的要求,当今大多数企业采用自动控制系统实现对锅炉的控制。
锅炉工艺流程锅炉的种类很多,按所用燃料分类,有燃煤锅炉、燃油锅炉、燃气锅炉、燃气锅炉,还有利用残渣、残油等为燃料的锅炉。
所有这些锅炉,虽然其燃料种类各不相同,但蒸汽发生系统和蒸汽处理系统是基本相同的。
常见的锅炉设备主要工艺流程如图所示:%图锅炉设备主要工艺流程图由图可知,燃料和热空气按一定比例进入燃烧室燃烧,生成的热量传递给蒸汽发生系统,生成饱和蒸汽Ds。
然后经过热器,形成一定的过热蒸汽D,汇集至蒸汽母管。
压力为Pm的过热蒸汽,经负荷设备控制阀供给生产负荷设备使用。
与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变为过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。
锅炉设备是重要的动力设备,对其要求是提供合格的蒸汽,使锅炉产汽量适应负荷的需要。
为此,生产过程的各个主要工艺参数必须加以严格控制。
锅炉设备的控制;锅炉汽包水位的控制汽包水位是锅炉运行的重要指标,保持水位在一定范围内是保证锅炉安全运行的首要条件,水位过低或过高,都会给锅炉及蒸汽用户的安全操作带来不利的影响。
如果水位过低,则因汽包内的水量加速减少,水位迅速下降,如果不及时控制,会使汽包内的水全部汽化,导致锅炉的水冷壁烧坏,甚至引起爆炸;水位过高会影响汽包内的汽水分离,产生蒸汽带液现象,会使过热器管壁结垢而损坏。
由此可见,水位过低或过高时所产生的后果都是极为严重的,所以汽包水位操作的平稳显得尤为重要,必须严加控制。
图三冲量控制方案系统框图采用三冲量调节,即根据给水流量、汽包液位和蒸汽流量调节主给水阀,保证锅炉汽包水位的稳定,是前馈—反馈串级调节回路,如图:锅炉给水系统中,由锅炉提供两个给水调节阀,其中DN150调节阀是主调节阀,在正常负荷和高负荷运行时使用;旁通管设一个DN100的调节阀,在低负荷时使用,同时也作为主调节阀的备用阀。
在自动给水状态下,只允许其中之一自动调节给水,此时,另一调节阀可画面手动给水;在程序投入之前,操作人员需要事先选定哪一个调节阀自动投入。
如果此次未能设定,将按照上一次的设定执行。
图汽包水位控制系统的结构图、其中:SP——汽包液位设定点PID1——汽包液位调节,为主调,反作用PID2——给水量调节,为副调PV1——汽包液位测量值PV2——给水流量测量值Σ——加法器,其公式如下:X0=X2+2×(X1-50%)X0——输出X1——汽包液位调节的输出X2——蒸汽流量信号将液位进行PID1调节后输出,和蒸汽流量进行加法运算,其结果作为PID2的设定点,PID2将此设定点与给水流量的偏差进行调节,输出带动执行机构,调节给水阀。
汽包液位是主被调量,给水量是副被调量,蒸汽流量是前馈量。
当汽包液位上升时,PID1的输出减小,则加法器的输出也减小,给水阀关小,就减小了给水量。
当汽包负荷变大时,即蒸汽流量增加,加法器的输出就增大,给水阀开大,就增大了给水量。
当蒸汽负荷突然增加,而出现“假液位”时,由于PID1是反作用,PID1的输出就减小,即加法器里的X1就减小;由于负荷增加,加法器里的X2就增加,这样,加法器的输出基本变化不大。