2019-2020学年河南省三门峡市七年级第二学期期末统考数学试题含解析
- 格式:doc
- 大小:745.00 KB
- 文档页数:19
河南省2019-2020七年级下学期期末考试数学试题一、选择题(共9小题,每小题3分,满分27分)1.下列计算正确的是()A.a3+a2=a5B.a3•a2=a6 C.(a3)2=a9 D.a6÷a2=a42.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣7米C.8×10﹣8米D.8×10﹣9米3.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.4.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3cm;4cm;5cm B.7cm;8cm;15cmC.3cm;12cm;20cm D.5cm;5cm;11cm5.若x2+mx+9是一个完全平方式,那么m的值是()A.9 B.±18 C.6 D.±66.小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为()A.B.C.D.7.如图,已知FD∥BE,则∠1+∠2﹣∠3的值为()A.90° B.135° C.150° D.180°8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS9.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)10.计算:()﹣2+(﹣5)0=.11.一个袋子中有红球和白球两种,从中摸出红球的概率为.已知袋子中红球有5个,则袋子中白球的个数为.12.汽车由平顶山驶往相距约150km的郑州,若它的平均速度为100km/h.则汽车距郑州的路程s (km)关于行驶时间t(h)的函数关系式为.13.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为度.14.如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为cm.15.等腰三角形一边长是10cm,一边长是6cm,则它的周长是cm或cm.16.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是°.三、解答题(共7小题,满分72分)17.乘法公式的探究及应用.(1)如图1,若大长方形的边长为a,小长方形的边长为b,则阴影部分的面积是.若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是.有(1)可以得到乘法公式.(3)若a=18,b=12,则请你求出阴影部分的面积.18.先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.19.如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.(1)分别计算获一、二、三等奖的概率.老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?20.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.21.△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.(1)若△BCD的周长为8,求BC的长.若∠ABD=∠DBC,求∠A的度数.22.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是米,他途中休息了分.分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?23.如图图1,△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E.(1)△ABD与△CAE全等吗?BD与DE+CE相等吗?请说明理由.如图图2,若直线AE绕点A旋转到图2所示的位置(BD<CE)时,其余条件不变,则BD与DE、CE的关系如何?(只须回答结论).(3)如图图3,若直线AE绕点A旋转到图3所示的位置(BD>CE)时,其余条件不变,则BD与DE、CE的关系如何?(只须回答结论).七年级下学期期末数学试卷参考答案与试题解析一、选择题(共9小题,每小题3分,满分27分)1.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a3)2=a9 D.a6÷a2=a4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、幂的乘方和同底数幂的乘除法计算判断即可.解答:解:A、a3+a2不是同类项,不能合并,错误;B、a3•a2=a5,错误;C、(a3)2=a6,错误;D、a6÷a2=a4,正确;故选D.点评:此题考查了合并同类项,幂的乘方,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.2.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣7米C.8×10﹣8米D.8×10﹣9米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000008米用科学记数法表示为8×10﹣8米.故选C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:几何图形问题.分析:根据轴对称图形的概念结合4个汽车标志图案的形状求解.解答:解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选D.点评:本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3cm;4cm;5cm B.7cm;8cm;15cmC.3cm;12cm;20cm D.5cm;5cm;11cm考点:三角形三边关系.分析:根据在三角形中任意两边之和>第三边,任意两边之差<第三边.解答:解:A、3+4>5能构成三角形,故正确;B、7+8=15,不能构成三角形,故错误;C、3+12=15<20,不能构成三角形,故错误;D、5+5=10<11,不能构成三角形,故错误.故选A.点评:本题利用了三角形中三边的关系求解.5.若x2+mx+9是一个完全平方式,那么m的值是()A.9 B.±18 C.6 D.±6考点:完全平方式.分析:这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.解答:解:∵x2+mx+9是一个完全平方式,∴x2+mx+9=(x±3)2,∴m=±6,故选:D.点评:此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.6.小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为()A.B.C.D.考点:几何概率.分析:根据几何概率的求法,小狗停在黑色方砖上的概率为黑色的方砖的面积与总面积的比值,分析题意可得,图中共9个面积相等的正方形,其中有2块黑色的方砖,计算可得答案.解答:解:根据题意,共9个面积相等的正方形,其中有2块黑色的方砖,根据几何概率的求法,小狗停在黑色方砖上的概率为黑色的方砖的面积与总面积的比值,故其概率为.故选:C.点评:此题主要考查了几何概率求法,用到的知识点为:概率=相应的面积与总面积之比.7.如图,已知FD∥BE,则∠1+∠2﹣∠3的值为()A.90° B.135° C.150° D.180°考点:平行线的性质.分析:先根据平行线的性质得出∠2+∠FGB=180°,再由对顶角相等得出∠AGC=∠FGB,故∠2+∠AGC=180°,∠AGC=180°﹣∠2,根据∠1=∠3+∠AGC,可知∠1﹣∠3=∠AGC,进而可得出结论.解答:解:∵DF∥BE,∴∠2+∠FGB=180°,∵∠AGC=∠FGB,∴∠2+∠AGC=180°,∴∠AGC=180°﹣∠2,∵∠1=∠3+∠AGC,∴∠1﹣∠3=∠AGC,∴∠1+∠2﹣∠3=∠AGC+180°﹣∠AGC=180°.故选D.点评:本题考查了三角形外角性质和平行线性质的应用,注意:两直线平行,同旁内角互补.8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS考点:全等三角形的判定与性质.专题:作图题.分析:根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解答:解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.点评:本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.9.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:从A1到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A3随着时间的增多,高度将不再变化,由此即可求出答案.解答:解:因为蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时间匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时间匀速上升,从A4⇒A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.点评:主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.二、填空题(共7小题,每小题3分,满分21分)10.计算:()﹣2+(﹣5)0=5.考点:负整数指数幂;零指数幂.分析:首先利用负整数指数幂的性质和零指数幂的性质进行计算,然后再按照有理数的加法法则计算即可.解答:解:原式=4+1=5.故答案为:5.点评:本题主要考查的是负整数指数幂的性质和零指数幂的性质,掌握负整数指数幂的性质和零指数幂的性质是解题的关键.11.一个袋子中有红球和白球两种,从中摸出红球的概率为.已知袋子中红球有5个,则袋子中白球的个数为20.考点:概率公式.分析:先设袋子中白球的个数为x,然后根据红球的概率公式直接解答即可.解答:解:设袋子中有白球x个,根据题意得:=,解得:x=20,故答案为:20.点评:考查了概率的公式的知识,用到的知识点为:概率=所求情况数与总情况数之比.12.汽车由平顶山驶往相距约150km的郑州,若它的平均速度为100km/h.则汽车距郑州的路程s (km)关于行驶时间t(h)的函数关系式为s=150﹣100t.考点:函数关系式.分析:利用总路程为150km,再利用s=总路程﹣行驶的距离,进而求出即可.解答:解:由题意可得:s=150﹣100t.故答案为:s=150﹣100t.点评:此题主要考查了函数关系式,利用s与行驶路程之间的关系是解题关键.13.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为55度.考点:平行线的性质.分析:根据平行线的性质可求∠B的度数,根据三角形内角和定理求∠A;或根据平角的定义先求∠ACD的度数,再运用平行线的性质求解.解答:解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°.∵∠ACB=90°,∴∠A=90°﹣35°=55°.(直角三角形两锐角互余)故答案为:55.点评:此题考查平行线的性质和三角形内角和定理,属基础题.14.如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为4cm.考点:角平分线的性质.分析:由已知进行思考,结合角的平分线的性质可得DE=AD,而AD=AC﹣CD=10﹣6=4cm,即可求解.解答:解:∵∠A=90°,BD是角平分线,DE⊥BC,∴DE=AD(角的平分线上的点到角的两边的距离相等)∵AD=AC﹣CD=10﹣6=4cm,∴DE=4cm.故填4.点评:本题主要考查平分线的性质:角的平分线上的点到角的两边的距离相等;题目比较简单,属于基础题.15.等腰三角形一边长是10cm,一边长是6cm,则它的周长是26cm或22cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:(1)当腰是6cm时,周长=6+6+10=22cm;当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故填22,26.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是105°.考点:翻折变换(折叠问题).分析:根据两条直线平行,内错角相等,则∠BFE=∠DEF=25°,根据平角定义,则∠EFC=155°(图a),进一步求得∠BFC=155°﹣25°=130°(图b),进而求得∠CFE=130°﹣25°=105°(图c).解答:解:∵AD∥BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°(图a),∴∠BFC=155°﹣25°=130°(图b),∴∠CFE=130°﹣25°=105°(图c).故答案为:105.点评:此题主要是根据折叠能够发现相等的角,同时运用了平行线的性质和平角定义.三、解答题(共7小题,满分72分)17.乘法公式的探究及应用.(1)如图1,若大长方形的边长为a,小长方形的边长为b,则阴影部分的面积是a2﹣b2.若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是(a+b)(a﹣b).有(1)可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(3)若a=18,b=12,则请你求出阴影部分的面积.考点:平方差公式的几何背景.分析:(1)利用正方形的面积公式,图①阴影部分的面积为大正方形的面积﹣小正方形的面积,图②长方形的长为a+b,宽为a﹣b,利用长方形的面积公式可得结论;由(1)建立等量关系即可;(3)将a=18,b=12,代入(a+b)(a﹣b)即可.解答:解:(1)图①阴影部分的面积为:a2﹣b2,图②长方形的长为a+b,宽为a﹣b,所以面积为:(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);由(1)可得:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)将a=18,b=12,代入得:(18+12)(18﹣12)=180,所以阴影部分的面积为:180.点评:本题主要考查了平方差公式的推导过程,利用面积建立等量关系是解答此题的关键.18.先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.考点:整式的混合运算—化简求值.专题:计算题.分析:原式中括号中利用完全平方公式及平方差公式化简,整理后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=(x2+4xy+4y2﹣x2+y2﹣5y2)÷2x=4xy÷2x=2y,当x=﹣2,y=时,原式=1.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.(1)分别计算获一、二、三等奖的概率.老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?考点:概率公式.分析:(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率;找到黄色和蓝色区域的份数占总份数的多少即为获得二、三等奖的概率.用有颜色的区域数除以所有扇形的个数即可求得中奖的概率.解答:解:(1)整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:;整个圆周被分成了16份,黄色为2份,∴获得二等奖的概率为:=;整个圆周被分成了16份,蓝色为4份,∴获得三等奖的概率为=;∵共分成了16份,其中有奖的有1+2+4=7份,∴P(获奖)=;老李摇奖共有四种结果,一等奖、二等奖、三等奖、不中奖.点评:此题考查了概率公式的应用.注意用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中..20.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.考点:平行线的判定与性质.专题:证明题.分析:由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.解答:证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E.点评:此题考查的是平行线的性质,然后根据平行线的判定和等量代换转化求证.21.△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.(1)若△BCD的周长为8,求BC的长.若∠ABD=∠DBC,求∠A的度数.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)根据线段的垂直平分线的性质证明DA=DB,求出AC+BC,根据AC=5,求出BC的长;设∠A=x°,根据线段的垂直平分线的性质证明DA=DB,得到∠ABD的度数,根据等腰三角形的性质用x表示出∠ACB的度数,根据三角形内角和定理列出方程,解方程得到答案.解答:解:(1)∵DE是线段AB的垂直平分线,∴DA=DB,∵△BCD的周长为8,∴AC+BC=8,又AC=5,∴BC=3;设∠A=x°,∵DA=DB,∴∠ABD=x°,∵∠AB D=∠DBC,∴∠DBC=x°,∵AB=AC,∴∠ABC=∠ACB=2x°,则x+2x+2x=180°,解得x=36°.则∠A为36°.点评:本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是3600米,他途中休息了20分.分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?考点:一次函数的应用.分析:根据图象获取信息:(1)小亮到达山顶用时80分钟,中途休息了20分钟,行程为3600米;休息前30分钟行走1950米,休息后30分钟行走(3600﹣1950)米.(3)求小颖到达缆车终点的时间,计算小亮行走路程,求离缆车终点的路程.解答:解:(1)根据图象知:小亮行走的总路程是3600米,他途中休息了20分钟.故答案为3600,20;…小亮休息前的速度为:…小亮休息后的速度为:…(3)小颖所用时间:(分)…小亮比小颖迟到80﹣50﹣10=20(分)…∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100(米)…点评:此题考查一次函数及其图象的应用,从图象中获取相关信息是关键.此题第3问难度较大.23.如图图1,△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E.(1)△ABD与△CAE全等吗?BD与DE+CE相等吗?请说明理由.如图图2,若直线AE绕点A旋转到图2所示的位置(BD<CE)时,其余条件不变,则BD与DE、CE的关系如何?(只须回答结论).(3)如图图3,若直线AE绕点A旋转到图3所示的位置(BD>CE)时,其余条件不变,则BD 与DE、CE的关系如何?(只须回答结论).考点:全等三角形的判定与性质.专题:探究型.分析:(1)根据已知条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.BD=DE+CE.根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(3)同上理,BD=DE+CE仍成立.解答:解:证明如下:(1)∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE;∵AE=DE+AD,∴BD=DE+CE;DE=BD+CE.∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE∴∠ADB=∠CEA=90°,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE;∵DE=AE+AD,∴DE=BD+CE;(3)结论是:当B、C在AE两侧时,BD=DE+CE;当B、C在AE同侧时,BD=DE﹣CE,DE=BD+CE.点评:本题考查了全等三角形的判定和性质,涉及到直角三角形的性质、余角和补角的性质等知识点,熟练掌握全等三角形的判定方法是解题的关键.。
河南省三门峡市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)下列说法中,不正确的是()A . 8的立方根是2B . -8的立方根是-2C . 0的立方根是0D . 125的立方根是±52. (2分)实数5的相反数是()A .B . -C . -5D . 53. (2分) (2019七下·西宁期中) 如图所示是做课间操时,小明、小红、小刚三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A . (0,0)B . (0,1)C . (1,0)D . (1,1)4. (2分) (2019八下·大名期中) 己知P点的坐标为,且P到两坐标轴的距离相等,P点的坐标为()A .B .C .D . 或5. (2分)(2017·内江) 如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A . 19°B . 38°C . 42°D . 52°6. (2分)如图,已知D为BC上一点,∠B=∠1,∠BAC=74°,则∠2的度数为()A . 37°B . 74°C . 84°D . 94°7. (2分)如果a>b,下列不等式中不正确的是()A . a﹣3>b﹣3B . >C . ﹣2a<﹣2bD . 1﹣2a>1﹣2b8. (2分)甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是()A .B .C .D .9. (2分) (2020七下·宁波期中) 用代入法解方程组时,将方程①代入②中,所得的方程正确的是()A . x - 4x - 3 = 8B . x - 4x - 6 = 8C . x - 4x + 6 = 8D . x + 4x - 3 = 810. (2分)下列不等式组的解集,在数轴上表示为如图所示的是()A .B .C .D .11. (2分)在对2015个数据进行整理的频数分布直方图中,各组的频数之和与频率之和分别等于()A . 1,2015B . 2015,2015C . 2015,﹣2015D . 2015,112. (2分)①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向同学们进行调查;④为了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A . ①③B . ①②C . ②④D . ②③13. (2分)某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是().A . 0.1B . 0.2C . 0.3D . 0.414. (2分)若y与x的关系式为y=30x-6,当x=时,y的值为()A . 5B . 10C . 4D . -4二、填空题 (共11题;共55分)15. (2分) (2016八上·长春期中) ﹣的相反数是________,倒数是________.16. (1分)(2014·贵港) 如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是________.17. (1分)(2019·南京) 为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力4.7以下4.74.84.94.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是________.18. (1分)(2019·丹阳模拟) 已知:6a=3b+12=2c,且b≥0,c≤9,则a﹣3b+c的最小值为________.19. (1分) (2019七上·泰兴期中) 若规定a*b=5a+2b-1,则(-5)*6的值为________.20. (7分) (2018七下·玉州期末) 如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x-1=0,② ③x-(3x+1)=-5 中,不等式组的关联方程是________(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可(3)若方程 3-x=2x,3+x= 都是关于 x 的不等式组的关联方程,直接写出 m 的取值范围.21. (5分)(2019·南陵模拟) 《九章算术》中有一道阐述“盈不足”的问题,原文如下:“今有共买鸡,人出九,盈十一;人出六,不足十六﹒问人数、鸡价各几何?”译文为:“现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱﹒问:买鸡的人数、鸡的价格各是多少?”请列方程(组)解答上述问题。
河南省三门峡市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共10分)1. (1分) (2017七下·无棣期末) 若关于的二元一次方程组的解满足,则________.2. (1分) (2016九上·肇源月考) 若不等式ax|a-1|>2是一元一次不等式,则a=________.3. (1分) (2020七下·宁波期中) 如图,直线 AB、CD 被直线 EF 所截,当满足条件________时(只需写出一个你认为合适的条件),AB∥CD.4. (1分)若a<<b,且a、b是两个连续的整数,则ab=________ .5. (1分) (2019八上·揭阳期中) 已知点P(m,2)在第一象限,那么点B(3,﹣m)在第________象限.6. (1分) (2017七下·金山期中) 已知|x﹣2y﹣1|+x2+4xy+4y2=0,则x+y=________.7. (1分)阅读下列材料,解答下面的问题:我们知道方程2x+3y=12有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12,得:y==4﹣(x、y为正整数).要使y=4﹣为正整数,则为正整数,由2,3互质,可知:x为3的倍数,从而x=3,代入y=4﹣=2.所以2x+3y=12的正整数解为问题:(1)请你直接写出方程3x﹣y=6的一组正整数解________ .(2)若为自然数,则满足条件的正整数x的值有________ 个.A.5 B.6 C.7 D.88. (1分)(2017·郴州) 从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是________.9. (1分) (2018八上·定安期末) 在矩形ABCD中,对角线AC和BD交于O点,若∠AOB=60°,AB=3,则AC=________.10. (1分) (2020九上·鞍山期末) 如图,抛物线解析式为y=x2 ,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1 ,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2 ,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是________.二、单选题 (共10题;共20分)11. (2分)下列运算正确的是()A .B .C .D .12. (2分)下列各方程组中,属于二元一次方程组的是().A .B .C .D .13. (2分) (2018八上·重庆期末) 已知,则下列不等式中,不成立的是()A .B .C .D .14. (2分)(2017·连云港模拟) 若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A . a>2B . a<2C . a>4D . a<415. (2分) (2017八下·兴化月考) 下列调查中,适合用普查方式的是()A . 了解某班学生“50米跑”的成绩B . 了解一批灯光的使用寿命C . 了解一批炮弹的杀伤半径D . 了解一批袋装食品是否含有防腐剂16. (2分) (2019七下·古冶期中) 下列各组x,y的値中,不是方程2x+3y=5的解的是()A .B .C .D .17. (2分) (2017七下·个旧期中) 如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x 轴,则点C的坐标为()A . (2,5)B . (3,1)C . (﹣1,4)D . (3,5)18. (2分) (2019七下·贵池期中) 已知关于的不等式组的整数解共有5个,则的取值范围是().A . -3<<-2B . -3<≤-2C . -3≤ ≤-2D . -3≤ <-219. (2分)甲乙两地相距126 km,一辆小汽车从甲地开往乙地,一辆货车从乙地开往甲地,两车同时出发相向而行,经过45分钟两车相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h、ykm/h,则下列方程组正确的是()A .B .C .D .20. (2分)下列说法中正确的个数为()①不相交的两条直线叫做平行线;②平面内,过一点有且只有一条直线与已知直线垂直;③平行于同一条直线的两条直线互相平行;④在同一平面内,两条直线不是平行就是相交。
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确) 1.不等式组2333122x x x -≥⎧⎪⎨+>-⎪⎩的解集在数轴上表示正确的是( ) A . B .C .D .2.下列计算正确的是( )A .2a 3•a 2=2a 6B .(﹣a3)2=﹣a 6 C .a 6÷a 2=a 3 D .(2a )2=4a 23.下面四个图形中,1∠和2∠是同位角的是( )A .②③④B .①②③C .①②③④D .①②④4.如图,EFAB ⊥于点H ,EF CD ⊥于点F ,//HI FG ,FG 与AB 交于点G ,40GFD ∠=︒,则EHI ∠的度数为( )A .40︒B .45︒C .50︒D .55︒5.已知二元一次方程x+7y=5,用含x 的代数式表示y ,正确的是A .57x +B .57x -C .57y +D .57y -6.若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是( ) A .a >4 B .a < 4 C .4a ≥ D .4a ≤7.如图,根据2013﹣2017年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是( )A .2013~2017年财政总收入呈逐年增长B .预计2018年的财政总收入约为253.43亿元C .2014~2015年与2016~2017年的财政总收入下降率相同D .2013~2014年的财政总收入增长率约为6.3%8.点(9,5-)位于平面直角坐标系中的( )A .第一象限B .第二象限C .第三象限D .第四象限9.在下列实数中,无理数是( )A .3.14B .16C .7D .22710.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°, 则3∠的度数等于( )A .50°B .30°C .20°D .15°二、填空题题 11.若{x 1y 2==是方程组ax by 7bx cy 12+=⎧+=⎨⎩的解,则a 与c 的关系是______. 12.规定用符号[m]表示一个实数m 的整数部分,例如[23]=0,[1.14]=1.按此规定[171]-+的值为_____. 13.如图,在中,,,的平分线交于点,于点,则的周长为____________.14.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是__________.15.若关于x 的一元一次不等式组{202x m x m ->+<无解,则m 的取值范围为______.16.用计算器比较大小:-π -.(在横线上填写“>”、“<”或“=”)17.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:测试项目创新能力 综合知识 语言表达 测试成绩(分数) 70 80 95 将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是________________分.三、解答题18.如图,在△ABC 中,点E 在AC 上,∠AEB=∠ABC .(1)图1中,作∠BAC 的角平分线AD,分别交CB 、BE 于D 、F 两点,求证:∠EFD=∠ADC ;(2)图2中,作△ABC 的外角∠BAG 的角平分线AD,分别交CB 、BE 的延长线于D 、F 两点,试探究(1)中结论是否仍成立?为什么?19.(6分) (1)计算:(-3a 3)2·2a 3-1a 12÷a 3;(2)先化简,再求值:(a +b)2-2a(a -b)+(a +2b)(a -2b),其中a =-1,b =1.20.(6分)将下列各式分解因式:()1256x x --; ()22882x x -+; ()322()()a x y b y x -+-.21.(6分)完成下面的证明:已知如图,BE 平分ABD ∠,DE 平分BDC ∠,且1290∠+∠=︒.证明:DE 平分BDC ∠(__________)21BDC ∴∠=∠(__________)BE 平分ABD ∠(已知)ABD ∴∠=____________(角的平分线的定义). BDC ABD ∴∠+∠=___________ +___________()=212∠+∠(____________)1290∠+∠=︒(___________), ABD BDC ∴∠+∠=____________(___________)//AB CD ∴(___________). 22.(8分)解不等式组331{213(1)8x x x x -+≥+--<-,,并写出该不等式组的整数解.23.(8分)沙坪坝区2017年已经成功创建国家卫生城区,现在正全力争创全国文明城区(简称“创文”),某街道积极响应“创文”活动,投入一定资金用于绿化一块闲置空地,购买了甲、乙两种树木共72棵,其中甲种树木每棵90元,乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好,该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了%a ,乙种树木单价下降了2%5a ,且总费用不超过6804元,求a 的最大值. 24.(10分)如图,在所给网格图(每个小正方形的边长都是1)中完成下列各题:(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;(2)求出△A 1B 1C 1的面积;(3)在DE 上画出点Q ,使QA+QC 最小.25.(10分)已知:在ABC ∆中,100A ∠=︒,点D 在ABC ∆的内部,连接BD CD ,,且ABD CBD ∠=∠,ACD BCD ∠=∠.(1)如图1,求BDC ∠的度数;(2)如图2,延长BD 交AC 于点E ,延长CD 交AB 于点F ,若12AED AFD ∠-∠=︒,求ACF ∠的度数.参考答案一、选择题(每题只有一个答案正确)1.A【解析】 解:2333122x x x ①②-≥⎧⎪⎨+>-⎪⎩,由①得:x≤-2,由②得:x >-2.故不等式组的解集为:-2<x≤-2.故选A . 2.D【解析】【分析】根据单项式乘单项式法则、幂的乘方、同底数幂的除法、积的乘方逐一计算即可判断.【详解】解:A 、2a 3•a 2=2a 5,错误;B 、(﹣a 3)2=a 6,错误;C 、a 6÷a 2=a 4,错误;D 、(2a )2=4a 2,正确;故选:D .【点睛】3.D【解析】【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:根据同位角的定义,可得图①②④中,∠1与∠2在两直线的同侧,并且在第三条直线(截线)的同旁,故是同位角,而图③中,∠1与∠2不是两条直线被第三条直线所截形成的同位角.故选D .【点睛】本题主要考查了同位角的定义,解题时注意:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.4.C【解析】【分析】根据EF AB ⊥于点H ,EF CD ⊥于点F 得到∠EFG=90°-40︒=50°,再由//HI FG 得出∠EHI=∠EFG=50°.【详解】解:∵EF AB ⊥于点H ,EF CD ⊥于点F∴∠EHB=∠EFD=90°∵40GFD ∠=︒∴∠EFG=90°-40︒=50°∵//HI FG∴∠EHI=∠EFG=50°故选C【点睛】本题考查了垂直和平行线,熟练掌握垂直和平行线的性质是解题关键.5.B【解析】【分析】先把x 从左边移到右边,然后把y 的系数化为1即可.【详解】∵x+7y=5,∴y=57x -. 故选B.【点睛】本题考查了等式的基本性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.6.A【解析】【分析】解出不等式组的解集,根据已知不等式组()32224x x a x x ⎧--⎪⎨+⎪⎩<>有解,可求出a 的取值范围. 【详解】解:()32224x x a x x ⎧--⎪⎨+⎪⎩<①>② 由①得x >2,由②得x <2a , ∵不等式组()32224x x a x x ⎧--⎪⎨+⎪⎩<>有解, ∴解集应是2<x <2a ,则2a >2, 即a >1实数a 的取值范围是a >1.故选A .【点睛】本题考查的是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.D【解析】【分析】根据题意和折线统计图可以判断选项中的说法是否正确.根据题意和折线统计图可知,从 2013~2014财政收入增长了, 2014~2015财政收入下降了,故选项A错误;由折线统计图无法估计2018年的财政收入,故选项B错误;∵2014~2015年的下降率是(230.68-229.01) ÷230.68≈0.72%,2016~2017年的下降率是:(243.12-238.86) ÷243.12≈1.75%,故选项C错误;2013~2014年的财政总收入增长率是(230.68-217) ÷217≈6.3%,故选项D正确;所以D选项是正确的.【点睛】本题考查了折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.8.D【解析】【分析】根据点(9,-5)的横纵坐标的符号,可得所在象限.【详解】∵9>0,-5<0,∴点(9,-5)位于平面直角坐标系中的第四象限.故选D.【点睛】本题考查了平面直角坐标系中各象限内点的坐标的符号特征.四个象限内点的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.C【解析】【分析】根据无理数的定义,逐项判断即可.【详解】A、3.14是有数,故不合题意;B4,是有理数,故不合题意;C是无理数,符合题意;D、227是有理数,故不合题意,故选C.本题主要考查无理数、算术平方根,解决此类问题的关键是要抓住无理数的本质.10.C【解析】【分析】根据平行和三角形外角性质可得∠2=∠4=∠1+∠1,代入数据即可求∠1.【详解】如图所示,∵AB∥CD∴∠2=∠4=∠1+∠1=50°,∴∠1=∠4-10°=20°,故选C.二、填空题题11.a-4c=-17【解析】【分析】把x与y的值代入方程组,通过整理即可确定出a与c的关系.【详解】把{12x y==代入方程组得:27212a bb c+=⎧⎨+=⎩①②,2-⨯①②得:417a c-=-,故答案为:417a c-=-【点睛】本题考查了二元一次方程组的解.将解代入方程组中并通过加减消元法得出a与c的关系是解题的关键.12.-1【解析】【分析】先估计171的大小,再求出其整数部分即可.解:∵17≈4.1,∴﹣17+1≈﹣1.1,-+=﹣1,∴[171]故答案为﹣1.【点睛】此题主要考查实数的估算,解题的关键是熟知实数的大小估算方法.13.8【解析】【分析】根据角平分线的性质得到AD=ED,再得到△ABD≌△EBD,得到AB=BE,再根据周长的组成即可求解.【详解】∵的平分线交于点,于点,∴AD=ED,∵BD=BD∴△ABD≌△EBD(HL)∴AB=BE∴的周长为CE+DE+CD=CE+AD+CD=CE+AC=CE+AB=CE+BE=BC=8故填8.【点睛】此题主要考查角平分线的性质,解题的关键是熟知全等三角形的判定.14.1【解析】【分析】根据题意首先设A端点数为x,B点为y,则C点为:7﹣y,D点为:z,得出x+y=3①,C点为:7﹣y,z+7﹣y=12,而得出x+z的值.【详解】设A端点数为x,B点为y,则C点为:7﹣y,D点为:z,根据题意可得:x+y=3①,C点为:7﹣y,故z+7﹣y=12②,故①+②得:x+y+z+7﹣y=12+3,故x+z=1,即AD上的数是:1.故答案为:1.【点睛】【解析】【分析】根据一元一次方程组的解法结合题意可求出m 的取值范围作答即可.【详解】202x m x m -⎧⎨+⎩<①>②,解不等式①得,x <1m ,解不等式②得,x >m-1,∵不等式组无解,∴1m≥m -1,∴m≥-1,故答案为m≥-1.【点睛】本题考查了解一元一次不等式组,解题的关键是熟知:同大取大;同小取小;大小小大中间找;大大小小不用找的原则.16.>.【解析】【分析】求出π的近似值,根据两负数比较法则比较即可.【详解】解:-π=-3.142,=-3.162,∴-π>,故答案为>.【点睛】本题考查了对无理数的大小比较的应用,负数的比较法则:先求出每个负数的绝对值,其绝对值大的反而小.17.1【解析】【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【详解】解:根据题意,该应聘者的总成绩是:532708095101010⨯+⨯+⨯=1(分)故答案为:1.【点睛】此题考查加权平均数,解题的关键是熟记加权平均数的计算方法.三、解答题18.(1)证明见解析;(2)(1)中结论仍成立,理由见解析.【解析】【分析】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠FAE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB-∠FAE,∠ADC=∠ABC-∠BAD,进而得∠EFD=∠ADC.【详解】(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠FAE=∠GAD,∴∠FAE=∠BAD,∵∠EFD=∠AEB-∠FAE,∠ADC=∠ABC-∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.【点睛】此题主要考查了角平分线的定义,三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.19.(1)11a9;(2)-61.【解析】【分析】(1)根据指数幂和同底数幂的乘除运算,即可得到答案;(2)根据完全平方公式和多项式乘以多项式的性质,进行计算即可得到答案.【详解】(1)根据指数幂和同底数幂的乘除运算,则原式=639924a a a •-=11a 9;(2)解:根据完全平方公式和多项式乘以多项式的性质,则原式=222222224a ab b a ab a b ++-++-=234b ab -+;当a =-1,b =1时,原式=31616-⨯-=-61.【点睛】本题考查指数幂、同底数幂的乘除运算、完全平方公式和多项式乘以多项式的性质,解题的关键是熟练掌握指数幂、同底数幂的乘除运算、完全平方公式和多项式乘以多项式的性质.20. (1) ()()61x x -+;(2)()2221x - ;(3)()()()x y a b a b -+- 【解析】【分析】(1)直接运用十字相乘法分解即可;(2)首先提取公因式2,然后利用完全平方公式分解即可;(3)首先对原式变形,再提取公因式,然后利用平方差公式继续分解即可.【详解】解:()1原式()()61x x =-+()2原式()22441x x =-+()2221x =- ()3原式()()22a x y b x y =---()()22x y a b =--()()()x y a b a b =-+-【点睛】此题主要考查因式分解,熟练掌握因式分解的方法是解题关键.21.已知;角的平分线定义;22∠;22,21∠∠,等量代换;已知;180︒;等式性质;同旁内角互补,两直线平行【解析】【分析】根据角平分线的定义和同旁内角互补,两直线平行,以及使用等量代换的方法即可求得.【详解】 DE 平分BDC ∠(已知)21BDC ∴∠=∠(角平分线定义) BE 平分ABD ∠(已知)ABD ∴∠=22∠(角的平分线的定义). BDC ABD ∴∠+∠=22∠ +21∠()=212∠+∠(等量代换)1290∠+∠=︒(已知), ABD BDC ∴∠+∠=180︒(等式性质)//AB CD ∴(同旁内角互补,两直线平行). 【点睛】本题考查角平分线的定义,两直线平行的判定,以及等量代换和等式性质的问题,属基础题.22.﹣2<x≤1;它的整数解为-1,0,1.【解析】【分析】【详解】解:不等式①去分母,得x ﹣3+6≥2x+2,移项,合并得x≤1.不等式②去括号,得1﹣3x+3<8﹣x ,移项,合并得x >﹣2.∴不等式组的解集为:﹣2<x≤1.∴它的整数解为-1,0,1.23.(1)甲种40棵,乙种32棵,(2)1.【解析】【分析】(1)设甲种树苗购买了x 棵,乙种树苗购买了y 棵,根据总费用=单价⨯数量结合“购买了甲、乙两种树木共72棵,共用去资金6160元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总费用=单价⨯数量结合总费用不超过6804元,即可得出关于a 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】解:(1)设甲种树苗购买了x 棵,乙种树苗购买了y 棵,根据题意得:7290806160x y x y +=⎧⎨+=⎩, 解得:4032x y =⎧⎨=⎩. 答:甲种树苗购买了40棵,乙种树苗购买了32棵.(2)根据题意得:290(1%)4080(1%)3268045a a ⨯+⨯+⨯-⨯, 解得:25a .答:a 的最大值为1.【点睛】 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)见解析;(2)3;(3)见解析.【解析】【分析】(1)直接利用轴对称变换的性质得出对应点位置进而得出答案;(2)直接利用三角形面积求法得出答案;(3)直接利用最短路线求法得出Q 点位置. 【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)△A 1B 1C 1的面积为:12×2×3=3; (3)如图所示:点Q 的位置,使QA+QC 最小.【点睛】此题主要考查了轴对称变换以及三角形面积求法和最短路线问题,正确得出对应点位置是解题关键. 25.(1) 140BDC ∠=︒;(2)26ACF =︒∠【解析】【分析】(1) 根据三角形内角和和∠A=100°,解得80ABC ACB ∠+∠=︒,又因为ABD CBD ACD BCD ∠=∠∠=∠,可得1122CBD ABC BCD ACB ∠=∠∠=∠, 在△BDC 中,根据三角形内角和定理即可解答;(2)设ACF α∠=,所以40BCD ABD CBD αα∠=∠=∠=︒-,,又因为AFD ABD BDF AED ACF CDE BDF CDE ∠=∠+∠∠=∠+∠∠=∠,所以()4012AED AFD ACF ABD αα∠-∠=∠-∠=-︒-=︒,从而解得26α=︒ ,即26ACF =︒∠【详解】解:(1)如图1 ∵180100A ABC ACB A ∠+∠+∠=∠=︒︒ ∴80ABC ACB ∠+∠=︒∵ABD CBDACD BCD ∠=∠∠=∠ ∴1122CBD ABC BCD ACB ∠=∠∠=∠ ∴()1402CBD BCD ABC ACB ︒∠+∠=∠+∠= ∵180CBD BCD BDC ∠+∠+∠=︒∴18040140BDC ∠=︒-︒=︒(2)如图2 令ACF α∠=,则40BCD ABD CBD αα∠=∠=∠=︒-,∵AFD ABD BDF AED ACF CDE BDF CDE ∠=∠+∠∠=∠+∠∠=∠∴()4012AED AFD ACF ABD αα∠-∠=∠-∠=-︒-=︒解得26α=︒∴26ACF =︒∠【点睛】本题考查三角形内角和定理,外角性质,角平分线分得的两角相等.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确) 1.三角形A ′B ′C ′是由三角形ABC 平移得到的,点A (-1,4)的对应点为A ′(1,7),点B (1,1)的对应点为B ′(3,4),则点C (-4,-1)的对应点C ′的坐标为( )A .(-6,2)B .(-6,-4)C .(-2,2)D .(-2,-4)2.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( ) A .(﹣1,0)B .(﹣1,﹣1)C .(﹣2,0)D .(﹣2,﹣1) 3.用反证法证明“”,对于第一步的假设,下列正确的是 A . B . C . D .4.如图1,已知AB∥CD,AC⊥BC,∠B=62°,则∠ACD 的度数为( )A .28°B .30°C .32°D .34°5.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重叠,则∠1的度数为( )A .45°B .60°C .75°D .85°6.已知点P 到,x y 轴的距离是2和5,若点P 在第四象限,则点P 的坐标是A .()5,2-B .()2,5-C .()5,2-D .()2,5-7.已知220192a a -=,则240382a a --的值是( )A .2019B .-2019C .4038D .-40388.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为( )A .50°B .130°C .50°或130°D .无法确定9.若a b <,则下列不等式中不正确...的是( ) A .55a b +<+ B .55-<-a b C .55a b -<- D .55ab 10.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:如果一间客房住7个人,那么就剩下7个人安排不下;如果一间客房住9个人,那么就空出一间客房.问现有客房多少间?房客多少人?设现有客房间x ,房客人y ,则可列方程组( )A .()7791x y x y -=⎧⎨+=⎩B .()779-1x y x y +=⎧⎨=⎩C .()7791x y x y -=⎧⎨-=⎩D .()7791x y x y +=⎧⎨+=⎩ 二、填空题题 11.把一根长为100m 的电线剪成3m 和1m 长的两种规格的电线(每种规格的电线至少有一条). 若不造成浪费,有_____种剪法.12.如图,要使AD//BE ,必须满足条件:____________(写出你认为正确的一个条件).13.已知线段MN 平行于x 轴,且MN 的长度为5,若()2,2M -,则点N 的坐标______.14.硬币在桌面上快速地转动时,看上去象球,这说明了_________________。
河南省三门峡市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,直线a、b与直线相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的是()A . ①③;B . ①③④;C . ②④;D . ①②③④.2. (2分)下列数中是无理数的是()A .B . 1.6C . 0.222222…D .3. (2分) (2019八下·硚口月考) 在平面直角坐标系中,已知点A(1,1)和B(4,5),则线段AB的长是()A . 3B . 5C . 4D .4. (2分)在方程组、、、、、中,是二元一次方程组的有()A . 2个B . 3个C . 4个D . 5个5. (2分)由a>b得到am>bm的条件是()A . m>0B . m<0C . m≥0D . m≤O6. (2分) (2019八上·景泰期中) 下列说法不正确的是()A . 的平方根是B . -9是81的一个平方根;C . 0.2的算术平方根是0.02 ;D .7. (2分)下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A .B .C .D .8. (2分)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖③甲、乙两组数据的样本容量与平均数分别相同,若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A . ①B . ②C . ③D . ④9. (2分)点P(5,-8)关于x轴的对称点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)在下列表示的不等式的解集中,不包括-5的是()A . x ≤- 4B . x≥ -5C . x≤ -6D . x ≥ -711. (2分) (2017七下·海安期中) 由方程x﹢t=5,y﹣2t﹦4组成的方程组可得x , y的关系式是()A . x﹢y﹦9B . 2x﹢y﹦7C . 2x﹢y﹦14D . x﹢y﹦312. (2分)(2017·柘城模拟) 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF 延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A . 2B . 3C . 4D . 5二、填空题 (共8题;共18分)13. (2分)比较大小:﹣________ ﹣,________2.14. (1分) (2016七下·潮州期中) 方程x+2y=5的所有正整数解是________.15. (1分) (2019七下·苍南期末) 某养殖户养殖鸡、鸭、鹅数量的扇形统计图如图所示,若已知鸭有300只,则养殖户养殖鸡的数量为________只。
河南省三门峡市2020年七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·桥东期中) 如图,分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A .B .C .D .2. (2分)π、,﹣,,3.1416,0. 中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019七上·宝安期末) 为完成下列任务,适合普查的是A . 了解一批智能手机的使用寿命B . 了解全国青少年的平均身高C . 了解本班同学哪个月份出生的人数最多D . 了解深圳市中学生的视力情况4. (2分)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A . 4B . 3C . 2D . 15. (2分) 9的平方根是()A . ±3B .C . 3D . -36. (2分) (2017七下·荔湾期末) 下列各点中,在第二象限的点是()A . (﹣1,4)B . (1,﹣4)C . (﹣1,﹣4)D . (1,4)7. (2分)数学老师在如图所示的黑板上写了一个关于x,y的方程,若和是该方程的两组解,则m,n的值分别为()A . 3,3B . 2,2C . 3,2D . 2,38. (2分)哥哥与弟弟各有数张纪念卡,已知弟弟给哥哥10张后,哥哥的张数就是弟弟的2倍,若哥哥给弟弟10张,两人的张数就一样多.设哥哥的张数为x,弟弟的张数为y,根据题意列出方程组正确的是()A .B .C .D .9. (2分)某班60名学生喜欢各类体育活动,他们最喜欢的一项体育活动情况见扇形统计图,现给出以下说法①最受欢迎的球类运动是乒乓球;②最喜欢排球的学生达到班级学生总数的;③最喜欢羽毛球的学生达到班级学生总数的12人.④最喜欢其他运动的学生达到12%其中正确的结论为()A . ①②③B . ①③④C . ①②④D . ①②③④10. (2分)如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2等于()A . 50°B . 60°C . 65°D . 90°二、填空题: (共7题;共10分)11. (1分)关于x,y的二元一次方程组的解满足x=y,则k=________.12. (1分) (2018八上·北仑期末) 命题“等腰三角形两底角相等”的逆命题是________。
河南省三门峡市2019-2020学年初一下期末统考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题只有一个答案正确)1.若,则下列式子中错误..的是()A.B.C.D.【答案】D【解析】【分析】根据不等式的基本性质,即可解答.【详解】根据不等式的基本性质,不等式的两边减去同一个数,不等号的方向不变,A对;不等式的两边乘以或除以同一个正数,不等号的方向不变,B,C对,不等式的两边,乘以或除以同一个负数,不等号的方向改变,D错.故选:D.【点睛】此题考查不等式的性质,解题关键在于掌握其性质.2.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( )A.5x+16=B.5x﹣16=52xC.5x+10=52xD.5x﹣10=52x【答案】B【解析】试题分析:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程515x62x -=.故选B.考点:由实际问题抽象出分式方程3.下列调查中,适合抽样调查的是()A.了解某班学生的身高情况B.全国人口普查C.选出某校短跑最快的学生参加全市比赛D.检测某地的空气质量【答案】D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解某班学生的身高情况适合全面调查;B、全国人口普查是全面调查;C、选出某校短跑最快的学生参加全市比赛适合全面调查;D、检测某地的空气质量适合抽样调查;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.在平面直角坐标系中,点M(2,-1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据点的横坐标2>0,纵坐标﹣1<0,可判断这个点在第四象限.【详解】∵点的横坐标2>0为正,纵坐标﹣1<0为负,∴点在第四象限.故选D.【点睛】本题考查点在直角坐标系上的象限位置,解题的关键是熟练掌握各象限的横纵坐标符号.5.如图,已知:∠1=∠2,那么下列结论正确的是()A.∠C=∠D B.AB∥CD C.AD∥BC D.∠3=∠4【答案】B【解析】【分析】∠1和∠2是直线AB 、CD 被直线DB 所截的内错角,若∠1=∠2,则AB ∥CD .【详解】解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选:B .【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到( )条折痕.如果对折n 次,可以得到( )条折痕A .15,21n -B .15,21n -C .13,2n n 1-+D .10,22n n + 【答案】A【解析】【分析】 对前三次对折分析不难发现每对折1次把纸分成的部分是上一次的2倍,折痕比所分成的部分数少1,求出第4次的折痕即可;再根据对折规律求出对折n 次得到的部分数,然后减1即可得出折痕条数.【详解】解:由图可知,第1次对折,把纸分成2部分,1条折痕;第2次对折,把纸分成4部分,3条折痕;第3次对折,把纸分成8部分,7条折痕;所以,第4次对折,把纸分成16部分,15条折痕;…第n 次对折,把纸分成2n 部分,(2n -1)条折痕.故选A.【点睛】本题考查了图形变化规律. 观察得到对折得到的部分数与折痕的关系是解题的关键.7.下列二次根式中,最简二次根式的是( )A.15B.0.5C.5D.50【答案】C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、15=5,被开方数含分母,不是最简二次根式;故A选项错误;B、0.5=22,被开方数为小数,不是最简二次根式;故B选项错误;C、5,是最简二次根式;故C选项正确;D.50=52,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.考点:最简二次根式.8.已知,下列不等式变形不正确的是()A.B.C.D.【答案】D【解析】【分析】根据不等式的性质:不等式左右两边都加上或减去同一个数或整式,不等号方向不变;不等式左右两边都乘以或除以同一个正数,不等号方向不变;不等式左右两边都乘以或除以同一个负数,不等号方向改变,即可做出判断.【详解】A. 由知,此选项变形正确;B. 由知,此选项变形正确;C. 由知,此选项变形正确;D. 由知−a<−b ,则,此选项变形错误;故选:D.【点睛】此题考查不等式的性质,解题关键在于掌握其性质定义.9.不等式组x a x b >⎧⎨<⎩无解..,那么a 、b 的关系满足( ). A .a >bB .a <bC .a≥bD .a≤b 【答案】C【解析】【分析】不等式组的解集是无解,根据“小大大小取不了”即可解答此题.【详解】∵不等式组x a x b>⎧⎨<⎩无解, ∴a≥b ,故选C .【点睛】本题是反向考查不等式组的解集,解题的关键是在不等式组有实数解的情况下确定不等式中字母的取值范围.10.把一副三角板按如图所示摆放,使FD BC ∕∕,点E 恰好落在CB 的延长线上,则BDE ∠的大小为( )A .10︒B .15︒C .25︒D .30【答案】B【解析】【分析】 依据平行线的性质,即可得到∠FDB 的度数,再根据∠FDE=45°,即可得到∠BDE 的度数.【详解】∴∠FDB=∠ABC=60°,又∵∠FDE=45°,∴∠BDE=60°-45°=15°,故选:B .【点睛】考查了平行线的性质等知识点的应用,能综合运用性质进行推理和计算是解此题的关键.二、填空题11.计算2(1)-=_____.【答案】1【解析】【分析】根据二次根式的性质即可求出答案.【详解】解:原式1=,故答案为1【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.12.将正整数按如图所示的规律排列下去,若用有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是________.【答案】1【解析】通过观察可知每排的第1个数存在规律,第一排为1,第2排的第1个数为1+1=2,第3排的第1个数为1+1+2=4,第4排的第1个数为1+1+2+3=7……所以第7排的第1个数为1+1+2+3+4+5+6=22,从而得第7排的第2个数为1.13.已知关于x 的不等式组{5210x x a -≥-->有5个整数解,则a 的取值范围是______.【答案】21a -≤<-【解析】【分析】求出两个不等式的解集,找出不等式组的解集,根据已知得出即可.解:5210x x a -≥-⎧⎨-⎩①② , ∵解不等式①得:x ≤3,解不等式②得:x≥a ,∴不等式组的解集是:a <x≤3,∵不等式组5210x x a -≥-⎧⎨-⎩①②, 只有5个整数解:-1,0,1,2,3.∴-2≤a<-1.故答案为21a -≤<-.【点睛】本题考查了解一元一次不等式(组)的应用,解此题的关键是能根据不等式组的解集得出a 的取值范围. 14.如图,点B 在∠ADE 的边DA 上,过点B 作 DE 的平行线 BC ,如果∠D=49°,那么∠ABC 的度数为______________ .【答案】49°【解析】【分析】利用平行线的性质解决问题即可.【详解】解:∵BC ∥DE ,∴∠ABC=∠D=49°,故答案为:49°.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,BC ⊥AC ,垂足是点C ,AB=5,AC=3,BC=4,则点B 到AC 距离是_____________.【解析】【分析】根据“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”即可解答.【详解】∵AC⊥BC,∴点B到AC的垂线段为线段BC,∴点B到AC的距离为线段BC的长度1.故答案为:1.【点睛】本题主要考查了点到直线的距离,熟知“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”是解决问题的关键.16.如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,若∠1=150°,∠2=110°,则∠3=_________°.【答案】70【解析】【分析】利用三角形的外角的性质求出∠DAC,可得∠BAC=80°,求出∠B,利用平行线的性质即可解决问题.【详解】∵AD平分∠BAC,∴∠DAC=∠DAB,∵∠1=∠2+∠DAC,∠1=150°,∠2=110°,∴∠DAC=40°,∴∠BAC=80°,∵∠1=∠BAC+∠B,∴∠B=70°,∵EF∥BC,∴∠3=∠B=70°,故答案为70°.【点睛】此题考查平行线的性质,三角形内角和定理,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.17.若|23|x y -与|1|x y --互为相反数,则xy =_____.【答案】6【解析】【分析】根据相反数的和等于0可得|23|x y -+|1|x y --=0,继而根据非负数的性质求得x 、y 的值后即可求得答案.【详解】由题意得:|23|x y -+|1|x y --=0,则有23010x y x y -=⎧⎨--=⎩, 解得:32x y =⎧⎨=⎩, 所以xy=6,故答案为:6.【点睛】本题考查了相反数的意义,非负数的性质,根据非负数的性质求出x 、y 的值是解题的关键.三、解答题18.计算:(-1)2019+(3.14-π)0+(12)-2-|-3| 【答案】1【解析】【分析】首先计算乘方,再做加减运算即可.【详解】解:(-1)2019+(3.14-π)0+(12)-2-|-3| =-1+1+4-3=1.【点睛】此题主要考查了实数的运算,要注意运算顺序:从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.19.把如图所示的方格中的“风筝”图形向右平移5格,再向上平移3格,在方格中画出最后的图形.【答案】见解析.【解析】【分析】根据平移的性质作图即可.【详解】如图所作.【点睛】本题考查了图形的平移,熟练运用平移的性质是解决问题的关键.20.如图,方格纸中每个小正方形的边长都为1.在方格纸内将格点ABC ∆经过一次平移后得到'''A B C ∆,图中标出了点B 的对应点'B .(1)在给定方格纸中画出平移后的'''A B C ∆;(2)画出ABC ∆中AC 边上的中线BD 和AB 边上的高线CE .【答案】(1)见解析(2)见解析【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用三角形高线以及中线作法得出答案.【详解】(1)如图所示:'''A B C 即为所求;(2)如图所示:中线BD 和高线CE 即为所求.【点睛】此题主要考查了平移变换以及基本作图,正确得出对应点位置是解题关键.21.在平面直角坐标系xOy 中,对于任意三点A,B,C 的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(−3,1),C(2,−2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.已知点A(1,2),B(−3,1),P(0,t).(1)若A ,B ,P 三点的“矩面积”为12,求点P 的坐标;(2)直接写出A ,B ,P 三点的“矩面积”的最小值.【答案】(1)(0,4)或(0,−1);(2)4【解析】【分析】(1)求出“水平底”a 的值,再分t>2和t<1两种情况求出“铅垂高”h ,然后表示出“矩面积”列出方程求解即可;(2)根据a 一定,h 最小时的“矩面积”最小解答.【详解】(1)由题意:“水平底”a=1−(−3)=4,当t>2时,h=t−1,则4(t−1)=12,解得t=4,故点P 的坐标为(0,4);当t<1时,h=2−t ,则4(2−t)=12,解得t=−1,故点P 的坐标为(0,−1),所以,点P 的坐标为(0,4)或(0,−1);(2)∵a=4,∴当1<t <2时,“铅垂高”h 最小为1,此时,A ,B ,P 三点的“矩面积”的最小值为4.【点睛】此题考查三角形的面积,坐标与图形性质,解题关键在于列出方程.22.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,∠COF=90°,(1)若∠BOE=70°,求∠AOF 的度数;(2)若∠BOD :∠BOE=1:2,求∠AOF 的度数.【答案】(1)∠AOF =50°,(2)∠AOF=54°.【解析】试题分析:(1)根据角平分线的定义求出BOC ∠的度数,根据邻补角的性质求出AOC ∠的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.试题解析:(1)∵OE 平分∠BOC,70BOE ∠=,∴2140BOC BOE ∠=∠=,∴18014040,AOC ∠=-= 又90COF ∠=,∴904050AOF ∠=-=;(2)∵∠BOD:∠BOE=1:2,OE 平分∠BOC ,∴∠BOD:∠BOE:∠EOC=1:2:2,∴36BOD ∠=,∴36AOC ∠=,又∵90COF ∠=,∴903654.AOF ∠=-=23.解不等式213x -﹣512x +<1. 【答案】x >﹣3511.【解析】【分析】利用去分母、去括号、移项、合并同类项、系数化为1解不等式即可.【详解】解:去分母得,2(2x ﹣1)﹣3(1x+1)<30,去括号得,4x ﹣2﹣11x ﹣3<30,移项得,4x ﹣11x <30+3+2,合并同类项得,﹣11x <31,x 的系数化为1得,x >﹣3511. 【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.24.一次智力测验,共设20道选择题,评分标准为:对1题得a 分,答错或不答1题扣b 分.下表记录了2名参赛学生的得分情况.(1)若参赛学生小亮只答对了16道选择题,则小亮的得分是多少?(2)参赛学生至少要答( )道题,总分才不会低于60分.【答案】(1)小亮的得分是76分.;(2)14.【解析】【分析】根据题意,有182********a b a b -=⎧⎨-=⎩,解方程组可得; 设小明答对x 道题,根据总分不低于60分列出一元一次不等式即可.【详解】(1)根据题意,有182********a b a b -=⎧⎨-=⎩解这个方程组,得:51a b =⎧⎨=⎩165(2016)76⨯--=答:小亮的得分是76分.(2)设小明答对x 道题,根据题意可得5x-2(20-2-x )≥60解得:x≥1357因为x 是整数,所以x 所取最小值为14,【点睛】本题考查了一元一次不等式的应用及二元一次方程组的应用,找出关系式列出式子是解题的关键. 25.如图,格点ABD ∆在长方形网格中,边BD 在直线l 上.(1)请画出ABD ∆关于直线l 对称的CBD ∆;(2)将四边形ABCD 平移得到四边形1111D C B A ,点A 的对应点1A 的位置如图所示,请画出平移后的四边形1111D C B A【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:作点A 关于直线l 的对称点C ,连接BC 、CD 即可,CBD ∆即为所求;(2)如图所示:将四边形ABCD 向右平移3个单位即,四边形1111D C B A ,即为所求.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.。
河南省三门峡市数学七年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020七下·偃师月考) 下列方程为一元一次方程的是()① ② ③ ④ ⑤A . 1个B . 2个C . 3个D . 4个2. (2分) (2019八下·九江期中) 下列大学的校徽图案是轴对称图形的是()A .B .C .D .3. (2分)如右图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18 个正三角形,依此递推,第10层中含有正三角形个数是……()A . 102个B . 114个C . 126个D . 138个4. (2分) (2019七上·赛罕期中) 有一批画册,若3人合看一本,则多余2本;若2人合看一本,就有9人没有,设人数为x,则列出的方程是()A . 3x+2=2x﹣9B . ﹣2=C . +2=D . +2= ﹣95. (2分) (2019八上·陇县期中) 在△ABC中,AB=AC,AC的垂直平分线DE交AC于点D,交BC于点E,且∠BAE=90°,若DE=1,则BE=()A . 4B . 3C . 2D . 无法确定6. (2分)关于x,y的方程组的解互为相反数,则k的值是()A . 8B . 9C . 10D . 117. (2分)(2019·秦安模拟) 如图,四边形是正方形,延长到点,使,连结交于点,则等于()A .B .C .D .8. (2分)(2019·东城模拟) 若一个多边形的内角和与外角和总共是900°,则此多边形是()A . 四边形B . 五边形C . 六边形D . 七边形9. (2分)(2017·临高模拟) 如图,OA,OB分别为⊙O的半径,若CD⊥OA,CE⊥OB,垂足分别为D,E,∠P=70°,则∠DCE的度数为()A . 70°B . 60°C . 50°D . 40°10. (2分)在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A . 21元B . 22元C . 23元D . 不能确定11. (2分) (2020七下·合肥期中) 不等式组的整数解有()A . 1个B . 2个C . 3个D . 无数个12. (2分)(2017·临沂) 一个多边形的内角和是外角和的2倍,则这个多边形是()A . 四边形B . 五边形C . 六边形D . 八边形二、填空题 (共4题;共4分)13. (1分) (2020八下·奉化期中) 请你写出一个解为2的一元一次方程:________14. (1分)(2017·松江模拟) 在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为________.15. (1分)(2017·平顶山模拟) 不等式组的解集是________.16. (1分) (2017七下·乐亭期末) 如图,在△ABC中,的平分线交于点, , 与的平分线相交于点的平分线交与点,要使∠An的度数为整数,则n的最大值为________三、综合题 (共6题;共50分)17. (10分) (2019七下·哈尔滨期中)(1)解不等式,并在数轴上表示数集:(2)18. (15分) (2019八上·梁园期中) 如图,在平面直角坐标系中, 的顶点坐标分别为A(2,3)、B (1,1)、C(2,1)( 1 )画出关于轴对称的 ,并写出点的坐标为_▲_.( 2 )将向左平移4个单位长度得到 ,直接写出点的坐标为_▲_.( 3 )直接写出点B关于直线n(直线n上各点的纵坐标都为-1)对称点B'的坐标为_▲_.( 4 )在轴上找一点P,使PA+PB的值最小,标出P点的位置(保留画图痕迹)19. (5分)小明的妈妈在菜市场买回2斤萝卜和1斤排骨,准备做萝卜排骨汤,下面是他的爸爸和妈妈的一段对话:小明根据爸爸、妈妈的对话,很快就知道了今天买的萝卜和排骨的单价,请你通过计算分别求出今天萝卜和排骨的单价.20. (2分) (2017九下·六盘水开学考) 如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA= ,BC=6,求⊙O的半径.21. (3分) (2019七上·永登期末) 如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.22. (15分) (2020八下·江都期末) 如图1,矩形ABCD中,AB=3,BC=4 ,将矩形ABCD绕着点A顺时针旋转,得到矩形BEFG.(1)当点E落在BD上时,则线段DE的长度等于________ ;(2)如图2,当点E落在AC上时,求 BCE的面积;(3)如图3,连接AE、CE、AG、CG,判断线段AE与CG的位置关系且说明理由,并求CE 2+AG 2的值;(4)在旋转过程中,请直接写出的最大值.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、综合题 (共6题;共50分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
河南省三门峡市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017七上·昆明期中) 下列运算正确的是()A . 5xy-4xy=1B . 3x2+2x3=5x5C . x2-x=xD . 3x2+2x2=5x22. (2分) (2019七下·长兴期中) 据测定,某种杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A . 1.05×105B . 1.05×10-5C . 1.05×10-4D . 105×10-73. (2分) (2017七下·岳池期末) 若,则下列不等式错误的是()A .B .C .D .4. (2分) (2020九下·无锡期中) 数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果,那么下列命题中,具有以上特征的命题是()A . 两直线平行,同位角相等;B . 如果,那么;C . 相等的弧所对的圆心角相等;D . 如果,那么 .5. (2分) (2020七下·唐县期末) 小红家离学校1200米,其中有一段为上坡路,另一段为下坡路。
她去学校共用了16分钟。
假设小红上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时。
若设小红上坡用了x 分钟,下坡用了y分钟,依题意可得方程组()A .B .C .D .6. (2分)如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是()A . ∠3=∠4B . ∠1=∠2C . ∠B=∠DCED . ∠D+∠DAB=180°二、填空题 (共10题;共10分)7. (1分)(2020·淅川模拟) 计算:=________.8. (1分)如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=________度.9. (1分) (2020八下·农安月考) 计算 ________10. (1分) (2017七下·南京期中) 一个三角形的两条边长度分别为1和4,则第三边a可取________.(填一个满足条件的数)11. (1分)等式=中的括号应填入________.12. (1分) (2018九上·安溪期中) 计算:( +1)( -1)=________.13. (1分)(2020·晋中模拟) 如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P 不与点B ,点C重合),过点P作直线PQ∥BD ,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,则∠CQP=________.14. (1分)(2017·德州模拟) 已知:不等式2x﹣m≤0只有三个正整数解,则化简 +|m﹣9|=________.15. (1分) (2020八上·柳州期末) 如图,点、分别在的、边上,沿将翻折,点的对应点为点,,,且,则等于________(用含、的式子表示).16. (1分) (2020七下·沭阳期末) 如图,五边形ABCD中,∠1、∠2、∠3是它的三个外角,已知∠C=120°,∠E=90°,那么∠1+∠2+∠3=________.三、解答题 (共11题;共79分)17. (10分) (2018七上·惠东期中) 先化简,再求值.a2+4a﹣2a2﹣6a+5a2﹣2,其中a=1;18. (5分) (2019七下·富宁期中) 先化简,再求值 ,其中x= ,y=19. (10分) (2019八下·九江期中) 分解因式:(1);(2)20. (7分) (2019九上·重庆开学考)(1)解分式方程:=1(2)解不等式组:,在数轴上表示解集,并指出它的所有的非负整数解.21. (5分) (2017七下·靖江期中) 已知方程组和有相同的解,求a2﹣2ab+b2的值.22. (6分)(2020·吉林模拟) 如图均是5×5的正方形网络,每个小正方形的顶点称为格点,的顶点,,都在格点上,按照下列要求画图.(1)在图1中,画的高 .(2)在图2中,① ________;②画以为顶角的等腰三角形,使点在格点上________ .(3)在图3中,画出的角平分线 .(要求:只用直尺,不能用圆规,不要求写出画法)23. (5分)如图,直线l1∥l2,∠BAE=125°,∠ABF=85°,则∠1+∠2等于多少度?24. (10分) (2019七下·上杭期末) 某县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25. (5分)如图1,AB与CD相交于点O,若∠D=38°,∠B=28°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试求:(1)∠P的度数;(2)设∠D=α,∠B=β,∠DAP= ∠DAB,∠DCP= ∠DCB,其他条件不变,如图2,试问∠P与∠D、∠B 之间存在着怎样的数量关系(用α、β表示∠P),直接写出结论.26. (5分)老王把5000元按一年期定期储蓄存入银行.到期支取时,扣去利息税后实得本利和为5080元.已知利息税税率为20%,问当时一年期定期储蓄的年利率是多少?27. (11分) (2019七下·武汉期末) 如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若∣x+2y-5∣+∣2x-y∣=0,试分别求出1秒钟后,A、B两点的坐标.(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共79分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、25-2、26-1、27-1、27-2、27-3、。
河南省三门峡市2020年七年级第二学期期末预测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3,4,8 B.4,4,9 C.5,7,12 D.7,8,9【答案】D【解析】【分析】根据三角形的三边关系即可判断.【详解】A. ∵3+4<8,∴不能摆成三角形;B. 4+4<9,∴不能摆成三角形;C. 5+7=12,∴不能摆成三角形;D. 7+8>9,∴能摆成三角形;故选D.【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形的三边关系.2.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是()A.5253x yx y+=⎧⎨+=⎩B.5352x yx y+=⎧⎨+=⎩C.5352x yx y+=⎧⎨=+⎩D.5=+352x yx y⎧⎨+=⎩【答案】B【解析】【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【详解】设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据题意得:5352x yx y+=⎧⎨+=⎩,故选B.【点睛】根据文字转化出方程条件是解答本题的关键.3.如图,△ABC中,AB=AC,AB 的垂直平分线交AB 于点D,交CA 的延长线于点E,∠EBC=42°,则∠BAC=()A.159°B.154°C.152°D.138°【答案】C【解析】分析:根据等腰三角形的性质得到∠ABC=∠C,由三角形外角的性质得到∠EAB=2∠ABC,根据线段垂直平分线的性质得到∠EBA=∠EAB=2∠ABC,得到∠ABC=14°,根据三角形的内角和即可得到结论.详解:∵AB=AC,∴∠ABC=∠C,∵∠EAB=∠ABC+∠C,∴∠EAB=2∠ABC,∵DE垂直平分AB,∴∠EBA=∠EAB=2∠ABC,∴∠EBC=3∠ABC=42°,∴∠ABC=14°,∴∠BAC=180°-2∠ABC=152°,故选C.点睛:此题考查了线段垂直平分线的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.4.如图,AOB中,30B∠=.将AOB绕点O顺时针旋转52得到A OB'',边A B''与边OB交于点C(A'不在OB上),则A CO∠'的度数为()A.22B.52C.60D.82【答案】D【解析】分析:根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO 是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.详解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.点睛:本题考查的是图形的旋转及三角形外角与内角的关系,图形旋转角即为原三角形的一边与形成新三角形后该对应边的夹角.5.如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,连接AD.若△ABC的周长是17cm,AE=2cm,则△ABD的周长是()A.13cm B.15cm C.17cm D.19cm【答案】A【解析】分析:根据“线段垂直平分线的定义和性质”结合已知条件分析解答即可.详解:∵AC的垂直平分线交BC于点D,交AC于点E,∴AC=2AE=4cm,AD=CD,∵AB+BC+AC=17cm,∴AB+BC=17cm-4cm=13cm,∵△ABD的周长=AB+BD+AD,∴△ABD的周长=AB+BD+CD=AB+BC=13cm.故选A.点睛:熟记“线段垂直平分线的定义和性质”是解答本题的关键.6.若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,﹣2)【答案】C【解析】【分析】可先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】解:∵M到x轴的距离为1,到y轴的距离为2,∴M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴M坐标为(2,﹣1).故选C.【点睛】考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.7.如果等腰三角形的一个外角等于100度,那么它的顶角等于()A. 100° B. 80° C. 80°或40° D. 80°或20°【答案】D【解析】分析:此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180°,可求出顶角的度数.解答:解:①若100°是顶角的外角,则顶角=180°-100°=80°;②若100°是底角的外角,则底角=180°-100°=80°,那么顶角=180°-2×80°=20°.故选D.8.两个三角板按如图方式叠放,∠1=()A.30B.45C.60D.75【答案】D【解析】【分析】由∠ABD+∠CDB=90°可知AB∥CD,据此得∠ABE=∠C=30°,根据∠1=∠A+∠ABC可得答案.【详解】解:如图,∵∠ABD+∠CDB=90°,∴∠ABD+∠CDB=180°,∴AB∥CD,∴∠ABE=∠C=30°,则∠1=∠A+∠ABC=75°,故选:D.【点睛】本题考查了三角形外角性质、平行线的判定和性质,解题的关键是先证明AB∥CD.9.下列结论正确的是()A.带根号的数都是无理数B.立方根等于本身的数是0C.-18没有立方根D.无理数是无限不循环小数【答案】D【解析】【分析】分别根据无理数的定义、立方根的定义逐一判断即可.【详解】A42,是有理数,故本选项不合题意;B.立方根等于本身的数是0和±1,故本选项不合题意;C.−18的立方根为−12,故本选项不合题意;D.无理数是无限不循环小数,正确.故本选项符合题意.故选D.【点睛】本题主要考查了无理数的定义以及立方根的定义,注意:带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.如图,在△ABC中,AB=AC,∠A=40°.如果P为三角形内一点,且∠PBC=∠PCA,那么∠BPC等于()A .110°B .125°C .130°D .65°【答案】A【解析】 试题分析:根据三角形内角和定义以及角度之间的关系可得:∠BPC=90°+40°÷2=110°.考点:三角形内角和定理二、填空题11.如图,己知B DEF ∠=∠,AB DE =,请添加一个条件使ABC DEF ∆≅∆,则需添加的条件是________.(不再添加字母和辅助线)【答案】BE CF =【解析】【分析】要使△ABC ≌△DEF ,已知AB=ED ,∠B=∠DEF ,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【详解】解:要使△ABC ≌△DEF ,已知∠B=∠DEF ,AB=DE ,则可以添加BC=EF ,运用SAS 来判定其全等; 也可添加一组角运用AAS 来判定其全等,如∠A=∠D ,或∠ACB=∠DFE .故答案为BC=EF ,或∠A=∠D ,或∠ACB=∠DFE .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.12.如图,点D 在AOB ∠的平分线OC 上,点E 在OA 上,//ED OB ,50AOB ∠=︒,则ODE ∠的度数是_______.【答案】25︒【解析】【分析】利用角平分线与平行线的性质得到ODE AOC BOC ∠=∠=∠即可得到答案.【详解】解:OC 平分AOB ∠,AOC BOC ∠=∠∴//ED OB ,,BOC ODE ∴∠=∠50AOB ∠=︒1252ODE AOC BOC AOB ∴∠=∠=∠=∠=︒. 故答案为:25︒.【点睛】本题考查的是角平分线的性质,平行线的性质是中考必考的一个考点,掌握此相关联的性质是解题的关键. 13.为了了解荆州市2017年3.6万名考生的数学中考成绩,从中抽取了1名考生的成绩进行统计,在这个问题中,下列说法:①这3.6万名考生的数学中考成绩的全体是总体;②每个考生数学中考成绩是个体;③从中抽取的1名考生的数学中考成绩是总体的一个样本;④样本容量是1.其中说法正确的有(填序号)______【答案】①②③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这3.6万名考生的数学中考成绩的全体是总体,正确;②每个考生数学中考成绩是个体,正确;③从中抽取的1名考生的数学中考成绩是总体的一个样本,正确;④样本容量是1,正确;故答案为①②③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.【答案】35°【解析】分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.详解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案为35°.点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.15.等腰三角形的周长是15,其中一条边的长度为3,那么它的腰长是__________.【答案】6【解析】【分析】由于已知的长为3cm的边,没有说明是底还是腰,所以要分类讨论,最后要根据三角形三边关系定理来验证所求的结果是否合理.【详解】解:当腰长为3cm时,底长为:15-3×2=9;3+3<9,不能构成三角形;当底长为3cm时,腰长为:(15-3)÷2=6;6-3<6<3+6,能构成三角形;故此等腰三角形的腰长为6cm.故答案为:6.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.16.△ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,则至少旋转____________度后能与原来图形重合.【答案】120°.【解析】试题分析:连接OA、OB、OC,易知OA=OB=OC,A、B、C三点可看作对应点,且∠AOB=∠BOC=∠COA=120°,可知旋转角至少是120°.考点:旋转的性质.17.小亮解方程组2212x yx y+=⎧⎨-=⎩●的解为5xy★=⎧⎨=⎩,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●和★的值为__________.【答案】8和2-【解析】【分析】把x=5代入方程组中第二个方程求出y的值,即为“★”表示的数,再将x与y的值代入第一个方程求出“●”表示的数即可.【详解】解:把x=5代入1x-y=11中,得:y=-1,把x=5,y=-1代入得:1x+y=10-1=8,则“●”“★”表示的数分别为8,-1.故答案为:8,-1.【点睛】此题考查了二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.三、解答题18.某学校开展了“好读书、读好书”的课外阅读活动,为了解同学们的读书情况,从全校随机抽取了50名学生,并统计它们平均每天的课外阅读时间(单位:min),然后利用所得数据绘制成如下不完整的统计图表.课外阅读时间频数分布表课外阅读时间t频数百分比1030t≤<48%3050t≤<816%5070t≤<a40%7090t≤<16b90110t≤<24%合计50100%请根据图表中提供的信息回答下列问题:(1)填空:a=__________,b=__________;(2)将频数分布直方图补充完整;(3)若全校有1800名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min?【答案】 (1)20,32%;(2)见解析;(3)1368名【解析】【分析】(1)利用百分比=所占人数总人数,计算即可;(2)根据a的值即可补全图形;(3)用一般估计总体的思想思考问题即可.【详解】(1))∵总人数=50人,∴a=50×40%=20,b=1650×100%=32%,故答案为20,32%.【注:b要写成百分数的形式】(2)频数分布直方图,如图所示.(3)201621800136850++⨯=(名),(或1800(0.40.320.04)1368⨯++=名)答:估计该校有1368名学生平均每天的课外阅读时间不少于50min【点睛】本题考查表示频数分布直方图、频数分布表、总体、个体、百分比之间的关系等知识,解题的关键是记住基本概念,属于中考常考题型.19.某综合实践小组为了了解本校学生参加课外读书活动的情况,随机抽取部分学生,调查其最喜欢的图书类别,并根据调查结果绘制成如下不完整的统计表与统计图:图书类别画记人数百分比文学类艺体类正 5科普类其他正正14合计 a 100%请结合图中的信息解答下列问题:(1)随机抽取的样本容量a 为________;(2)在扇形统计图中,“艺体类”所在的扇形圆心角应等于_________度;(3)补全条形统计图;(4)已知该校有600名学生,估计全校最喜欢文学类图书的学生有________人.【答案】(1)50;(2)36;(3)见解析;(4)240【解析】【分析】(1)利用其他类的人数以及所占百分比,即可求出被调查的学生人数;(2)利用艺体类所占百分比乘360︒即可得到其所在的扇形圆心角;(3)通过计算出文学类和科普类的人数,进而画出图形即可;(4)用样本中文学类所占百分比乘以总人数可得答案【详解】(1)随机抽取的样本容量a 为1428%50÷=;(2)艺体类占总人数的百分比为5100%10%50⨯=,则所对圆心角为36010%36︒⨯=︒; (3)文学类人数50(51114)20-++=人;科普类人数:5022%11⨯=人,条形统计图如下所示:(4)估计全校最喜欢文学类图书的学生有20600(100%)24050⨯⨯=人. 【点睛】 本题主要考查了统计图表的相关知识,该部分内容比较基础,注意计算的准确性.20.如图,在正方形网格中,ABC 的三个顶点都在格点上,点O 也在格点上.(1)画A B C ''',使A B C '''与ABC 关于直线OP 成轴对称.(2)画A B C ''''''△,使A B C ''''''与A B C '''关于点O 成中心对称.【答案】(1)作图见解析;(2)作图见解析【解析】【分析】(1)分别作出A,B,C的对称点A′,B′,C′即可.(2)分别作出A′,B′,C′的对称点A″,B″,C″即可.【详解】(1)如图△A′B′C′即为所求.(2)如图△A''B''C''即为所求.【点睛】本题考查轴对称变换,旋转变换等知识,解题的关键是熟练掌握基本知识.21.如图,在正方形网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l.(1)求作点A关于直线l的对称点1A;△周长的最小值.(2)P为直线l上的点,连接BP、AP,求ABP【答案】(1)详见解析;(2)10【解析】【分析】(1)根据轴对称的性质即可得到;(2)连接1A 、B 交直线l 于点P ,连接AB ,AP ,根据两点之间线段最短可知AP BP +的最小值16A B =,此时ABP △的周长的最小值,即可求出最小值.【详解】解:(1)如图所示(2)连接1A 、B 交直线l 于点P ,连接AB ,AP ,则1AP A P =.根据两点之间线段最短可知AP BP +的最小值16A B =,即ABP △的周长的最小值6410=+=.【点睛】此题考查轴对称的性质,最短路径问题,掌握最短路径问题的解题方法是解答此题的关键.22.有一个小正方体,正方体的每个面分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?【答案】(1)这个游戏不公平.(2)游戏规则修改见解析(答案不唯一)【解析】试题分析:分别求出甲胜利的概率和乙胜利的概率,比较大小看判断游戏是否公平,游戏规则修改只要是两人获胜的概率相等即可.试题解析:(1)这个游戏不公平.因为正方体的每个面分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方的胜利的机会不是均等的,所以说这个游戏不公平.(2)可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则游戏是公平的.(答案不唯一)考点:简单事件的概率.23.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC 平移,使点A移动到点A',点B、C的对应点分别是点B'、C'.(1)△ABC的面积是;(2)画出平移后的△A'B'C';(3)若连接AA'、CC′,这两条线段的关系是.【答案】(1)72;(2)见解析;(3)平行且相等.【解析】【分析】(1)利用割补法求解可得;(2)由点A及其对应点A′得出平移方式为:先向左移5格,再向下移2格,据此作出点B和点C的对应点,再顺次连接即可得;(3)根据平移变换的性质可得答案.【详解】解:(1)△ABC的面积是3×3﹣12×1×2﹣12×2×3﹣12×1×3=72,故答案为72;(2)如图所示,△A'B'C'即为所求,(3)若连接AA'、CC′,这两条线段的关系是平行且相等,故答案为平行且相等.【点睛】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及割补法求三角形的面积.24.先化简(2x-1)2-(3x+1)(3x-1)+5x(x-1),再选取一个你喜欢的数代替x,并求原代数式的值.【答案】﹣9x+1,当x=0时,原式=﹣9×0+1=1.【解析】试题分析:先算乘法,再合并同类项,最后代入求出即可.解:(1x﹣1)1﹣(3x+1)(3x﹣1)+5x(x﹣1)=4x1﹣4x+1﹣9x1+1+5x1﹣5x=﹣9x+1,当x=0时,原式=﹣9×0+1=1.25.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是13.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.【答案】(1)15 (2)4 15【解析】分析:(1)、首先根据绿球的个数和概率求出总球数,然后得出黄球的数量;(2)、根据概率的计算法则得出答案.详解:(1)、总球数:,黄球:15-4-5=6个(2)、∵红球有4个,一共有15个,∴P(红球)= .点睛:本题主要的是概率的计算法则,属于基础题型.理解概率的计算法则是解决这个问题的关键.。
2019-2020学年河南省三门峡市七年级第二学期期末数学试卷一、选择题(共10小题).1.在π,,﹣,,3.1416,0.3中,无理数的个数是()A.1个B.2个C.3个D.4个2.若a>b,则下列判断中错误的是()A.a+2>b+2B.ac2<bc2C.﹣3a<﹣3b D.3.如图,下列条件,不能判断直线l1∥l2的是()A.∠1=∠3B.∠1=∠4C.∠2+∠3=180°D.∠3=∠54.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况5.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限6.下列命题是真命题的是()A.同旁内角互补B.两个无理数的和仍是无理数C.若a2=b2,则a=bD.同角的余角相等7.下列调查中,适宜采用抽样调查的是()A.对宇宙飞船零部件质量的调查B.对全班50名同学身高的调查C.对本校七年级学生周末写作业时间的调查D.对奥运会运动员使用兴奋剂的调查8.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中:①;②;③3x+(100﹣x)=100;④(100﹣y)+3y=100正确的是()A.①③B.①④C.②③D.②④9.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)10.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二、填空题(每小题3分,共15分)11.(+)=.12.已知:≈1.42091,≈4.49332,则(精确到0.01)≈.13.如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠BOC=130°,则∠DOE =.14.已知二元一次方程=1,则它的正整数解是.15.若方程组的解满足0<y﹣x<1,则k的取值范围是.三、解答题(本大题共8个小题,满分55分)16.计算:+|1﹣|.17.解方程组.18.解不等式组:并写出它的所有正整数解.19.某社区要调查社区居民双休日的学习情况,采用下列调查方式:甲:从一幢高层住宅楼中选取200名居民;乙:从不同住宅楼中随机选取200名居民;丙:选取社区内200名在校学生.(1)上述调查方式最合理的是;(2)将最合理的调查方式得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).在这个调查中,200名居民双休日在家学习的有人;(3)调查的200名居民中在家学习1小时的有人;(4)请估计该社区1400名居民双休日学习时间不少于3小时的人数.20.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.试判断CD和AB的位置关系,并说明理由.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=,b=,c=;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是.22.某校计划组织师生共435人参加一次大型公益活动,如果租用5辆小客车和6辆大客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多12个.(1)求每辆小客车和每辆大客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.23.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.参考答案一、选择题(每小题3分,共30分)1.在π,,﹣,,3.1416,0.3中,无理数的个数是()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:是分数,属于有理数;,是整数,属于有理数;3.1416,0.3是有限小数,属于有理数;无理数有:π,﹣共2个.故选:B.2.若a>b,则下列判断中错误的是()A.a+2>b+2B.ac2<bc2C.﹣3a<﹣3b D.【分析】根据不等式的性质对各选项进行逐一判断即可.解:A、∵a>b,∴a+2>b+2,故本选项不符合题意;B、∵a>b,∴ac2≥bc2,故本选项符合题意;C、∵a>b,∴﹣a<﹣b,∴﹣3a<﹣3b,故本选项不符合题意;D、∵a>b,∴>,故本选项不符合题意.故选:B.3.如图,下列条件,不能判断直线l1∥l2的是()A.∠1=∠3B.∠1=∠4C.∠2+∠3=180°D.∠3=∠5【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.解:A、∠1=∠3不能判断直线l1∥l2,故此选项符合题意;B、∠1=∠4根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;C、∠2+∠3=180°根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;D、∠3=∠5根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:A.4.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是50名学生的身高情况.故选:C.5.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.6.下列命题是真命题的是()A.同旁内角互补B.两个无理数的和仍是无理数C.若a2=b2,则a=bD.同角的余角相等【分析】根据平行线的性质、二次根式的加法法则、有理数的平方、余角的概念判断即可.解:A、两直线平行,同旁内角互补,本选项说法是假命题;B、﹣==0,0是有理数,则两个无理数的和仍是无理数,是假命题;C、若a2=b2,则a=±b,本选项说法是假命题;D、同角的余角相等,本选项说法是真命题;故选:D.7.下列调查中,适宜采用抽样调查的是()A.对宇宙飞船零部件质量的调查B.对全班50名同学身高的调查C.对本校七年级学生周末写作业时间的调查D.对奥运会运动员使用兴奋剂的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、对宇宙飞船零部件质量的调查,适宜全面调查,不宜采用抽样调查;B、对全班50名同学身高的调查,具有破坏性,适宜全面调查,不宜采用抽样调查;C、对本校七年级学生周末写作业时间的调查,适宜采用抽样调查;D、对奥运会运动员使用兴奋剂的调查,适宜全面调查,不宜采用抽样调查.故选:C.8.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中:①;②;③3x+(100﹣x)=100;④(100﹣y)+3y=100正确的是()A.①③B.①④C.②③D.②④【分析】设大和尚有x人,小和尚有y人,根据100个和尚分100个馒头且大和尚1人分3个馒头、小和尚3人分一个馒头,即可得出关于x,y的二元一次方程组,变形后可得出3x+(100﹣x)=100,此题得解.解:设大和尚有x人,小和尚有y人,依题意,得:,∴y=100﹣x,∴3x+(100﹣x)=100.∴②③正确.故选:C.9.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.10.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6【分析】分3x﹣7≥3﹣2x和3x﹣7<3﹣2x两种情况,依据新定义列出方程求解可得.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二、填空题(每小题3分,共15分)11.(+)=4.【分析】根据二次根式的乘法法则运算.解:原式=×+×=3+1=4.故答案为4.12.已知:≈1.42091,≈4.49332,则(精确到0.01)≈44.93.【分析】根据算术平方根和近似数即可求解.解:因为≈4.49332,所以≈44.93,故答案为:44.93.13.如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠BOC=130°,则∠DOE=40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.解:∵∠BOC=130°,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=130°﹣90°=40°故答案为:40°.14.已知二元一次方程=1,则它的正整数解是.【分析】先将含x的项移到等式右边,再两边都乘以2即可得解.解:∵=1,∴y=2×(1﹣)=2﹣,正整数解为.故答案为:.15.若方程组的解满足0<y﹣x<1,则k的取值范围是<k<1.【分析】本题有两种方法:(1)解方程组求出x、y的值,代入0<y﹣x<1进行计算;(2)①﹣②可得y﹣x=2k﹣1,将y﹣x看做一个整体来计算.解:①﹣②可得y﹣x=2k﹣1,于是:0<2k﹣1<1,解得<k<1.三、解答题(本大题共8个小题,满分55分)16.计算:+|1﹣|.【分析】直接利用立方根、二次根式的性质、绝对值的性质分别化简得出答案.解:原式=﹣4+﹣1=2﹣5.17.解方程组.【分析】方程组整理后,利用代入消元法求出解即可.解:,①×3得:3x+9y=﹣15③,③﹣②,得13y=﹣13,∴y=﹣1,把y=﹣1代入①,得x=﹣2,∴是原方程组的解.18.解不等式组:并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:由①,得x>﹣3.由②,得x≤2.∴﹣3<x≤2.∴正整数解为1,2.19.某社区要调查社区居民双休日的学习情况,采用下列调查方式:甲:从一幢高层住宅楼中选取200名居民;乙:从不同住宅楼中随机选取200名居民;丙:选取社区内200名在校学生.(1)上述调查方式最合理的是乙;(2)将最合理的调查方式得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).在这个调查中,200名居民双休日在家学习的有120人;(3)调查的200名居民中在家学习1小时的有24人;(4)请估计该社区1400名居民双休日学习时间不少于3小时的人数.【分析】(1)根据抽样调查的特点,可以选取合适的调查方法;(2)根据图1中的数据,可以计算出200名居民双休日在家学习的人数;(3)根据图2中的数据,可以得到调查的200名居民中在家学习1小时的人数;(4)根据图2中的数据,可以计算出该社区1400名居民双休日学习时间不少于3小时的人数.解:(1)由题意可得,上述调查方式最合理的是B,故答案为:乙;(2)200名居民双休日在家学习的有200×60%=120(人),故答案为:120;(3)由图2可知,调查的200名居民中在家学习1小时的有24人,故答案为:24;(4)1400×=476(人),答:该社区1400名居民双休日学习时间不少于3小时有476人.20.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.试判断CD和AB的位置关系,并说明理由.【分析】结论:AB∥CD,根据已知条件证明∠BAF=∠ACG,再根据平行线的判定即可求解.解:CD∥AB.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=∠ACE﹣∠ECG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG,即CD∥AB.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=0,b=2,c=9;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是.【分析】(1)利用已知图表,得出横坐标加4,纵坐标加2,直接得出各点坐标即可;(2)把△ABC的各顶点向上平移2个单位,再向右平移4个单位,顺次连接各顶点即为△A′B′C′;(3)求面积时,根据坐标可求出三角形的底边长和高,即可计算出面积.解:(1)由表格得出:∵利用对应点坐标特点:A(a,0),A′(4,2);B(3,0),B′(7,b);C(5,5),C′(c,7)∴横坐标加4,纵坐标加2,∴a=0,b=2,c=9.故答案为:0,2,9;(2)平移后,如图所示.(3)△A′B′C′的面积为:×3×5=.故答案为:.22.某校计划组织师生共435人参加一次大型公益活动,如果租用5辆小客车和6辆大客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多12个.(1)求每辆小客车和每辆大客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多12个以及师生共435人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为(435+20)人,进而得出不等式求出答案.解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意可得:,解得:,答:每辆小客车的乘客座位数是33个,大客车的乘客座位数是45个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则33a+45(11﹣a)≥435+20,解得:a≤3,符合条件的a最大整数为3,答:租用小客车数量的最大值为3.23.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标(﹣2,0);(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=2秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.【分析】(1)根据平移的性质即可得到结论;(2)①由点C的坐标为(﹣3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t);③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(﹣2,0);故答案为:(﹣2,0);(2)①∵点C的坐标为(﹣3,2)∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t);③能确定,如图,过P作PF∥BC交AB于F,则PF∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.。
河南省三门峡市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·利辛月考) 在如图所示的平面直角坐标系中,△ABC经过平移后得到△A′B'C′,已知△ABC中有一点D,经过变换后它的对应点D′的坐标为(-2.6,2),则点D的坐标为()A . (1.4,-1)B . (1.4,-2)C . (1.6,-1)D . (1.6,-2)2. (2分)(2017·天门) 下列运算正确的是()A . (π﹣3)0=1B . =±3C . 2﹣1=﹣2D . (﹣a2)3=a63. (2分)(-5)3×40000用科学记数法表示为()A . 125×B . -125×C . -500×D . -5×4. (2分)下列计算中,正确的是()A . 2a2+3a2=5a4B . (a﹣b)2=a2﹣b2C . (a3)3=a6D . (﹣2a2)3=﹣8a65. (2分)下列不等式变形正确的是()A . 由a>b得ac>bcB . 由a>b得﹣2a>﹣2bC . 由a>b得﹣a<﹣bD . 由a>b得a﹣2<b﹣26. (2分) (2017七下·长春期中) 如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A . 20°B . 30°C . 40°D . 50°7. (2分)(2016·深圳模拟) 已知下列命题:()①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有.A . 1 个B . 2个C . 3个D . 4个8. (2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()A . 20°B . 55°C . 20°或55°D . 75°9. (2分)(2018·柘城模拟) 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是()A . 47,46B . 48,47C . 48.5,49D . 49,4910. (2分) (2020九上·川汇期末) 已知A(0,﹣1),B(1,﹣3),先将线段AB向左平移3个单位,再以原点O为位似中心,在第一象限内,将其扩大为原来3倍,则点A的对应点坐标为()A . (3,9)B . (6,3)C . (6,9)D . (9,3)二、填空题 (共8题;共10分)11. (1分) (2017七下·西华期末) 已知,则x﹢y =________.12. (2分)如果一个两位数的十位数字与个位数字的和为6,那么这样的两位数共有:________ 个,它们分别是:________13. (1分) (2017九下·福田开学考) 因式分解:3a2﹣3=________.14. (1分)已知∠AOB=50°,∠BOC=30°,则∠AOC=________.15. (1分) (2016八下·鄄城期中) 某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.16. (2分) (2020七上·南浔期末) 2019年的《最强大脑》节目中,有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为________和________。
三门峡市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·余姚期末) 下列各式正确的是()A . = ±3B . = ±3C . =3D . =-32. (2分)在﹣1、、﹣、π这3个数中,无理数有()A . 0个B . 1个C . 2个D . 3个3. (2分)若a-b<0,则下列各式中一定成立的是()A . a>bB . ab>0C . <0D . -a>-b4. (2分)(2017·洛阳模拟) 下列说法中,正确的是()A . 将一组数据中的每一个数据都加同一个正数,方差变大B . 为了解全市同学对书法课的喜欢情况,调查了某校所有女生C . “任意画出一个矩形,它是轴对称图形”是必然事件D . 为了审核书稿中的错别字,选择抽样调查5. (2分)若实数 a 是不等式 2x-1>5 的解,但实数 b 不是不等式 2x-1>5 的解,则下列选项中,正确的是()A . a<bB . a>bC . a≤bD . a≥b6. (2分) (2020七下·淮南月考) 若点P(x,y)的坐标满足方程组,则点P不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)若点P(a,b)在第四象限内,则a,b的取值范围是()A . a>0,b<0B . a>0,b>0C . a<0,b>0D . a<0,b<08. (2分)某校对全体学生进行体育达标检测,七、八、九三个年级共有800名学生,达标情况如表所示.则下列三位学生的说法中正确的是()甲:“七年级的达标率最低”;乙:“八年级的达标人数最少”;丙:“九年级的达标率最高”A . 甲和乙B . 乙和丙C . 甲和丙D . 甲乙丙9. (2分)如图,矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,EC=2cm,AD上有一点P,PA=6cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使P与E重合,折痕交PF于Q,则线段PQ的长是()cm.A . 4B . 4.5C .D .10. (2分)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A . 52B . 50C . 48D . 46二、填空题 (共8题;共13分)11. (2分)(2019七下·綦江期中) 方程是二元一次方程,则,m=________,n=________ .12. (1分) (2019七下·邓州期中) 不等式3x-2≤5x+6的最大负整数解为________.13. (5分) (2020七下·太原期中) 补全解答过程:已知:如图,直线,直线与直线,分别交于点,;平分,.求的度数.解:与交于点,(已知).(________),(已知).(________),与,交于点,,(已知)(________)________平分,(已知)________ .(角平分线的定义)14. (1分) (2019八下·仁寿期中) 已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N 到y轴的距离为5,则点N的坐标为________.15. (1分)若不等式(x﹣m)>3﹣m的解集为x>3,则m的值为________16. (1分)(2020八下·海安月考) 如图,点A,B在数轴上分别表示a,b,化简:=________.17. (1分)(2018·江西) 中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为________.18. (1分) (2017七下·濮阳期中) 如图,AB∥CD,直线MN分别交AB、CD于点E,F,EG平分∠AEF,EG⊥FG 于点G,若∠BEM=60°,则∠CFG=________.三、解答题 (共8题;共87分)19. (5分)(2016·安顺) 计算:cos60°﹣2﹣1+ ﹣(π﹣3)0 .20. (20分) (2019七下·陆川期末) 计算或解方程:(1)计算(-1)2016- +| |(2)解方程组(3)解方程组(4)解不等式,并把解集表示在数轴上21. (5分)(2020·广西模拟) 解不等式组:,并将其解集表示在数轴上.22. (10分)(2019·宿迁) 在中, .(1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点 .求证:;(2)在图②中作,使它满足以下条件:①圆心在边上;②经过点;③与边相切.(尺规作图,只保留作图痕迹,不要求写出作法)23. (15分)如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C 与点C'分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的;(2)连接BC',直接写出∠CBC'与∠B'C'O之间的数量关系;(3)若点M(a-1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4-b),求a和b的值.24. (12分) (2017七下·自贡期末) 某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分为四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以下不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了 ________ 名同学的体育测试成绩,扇形统计图中B级所占的百分比 b = ________;(2)补全条形统计图;(3)若该校九年级共有300名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)共多少人?25. (10分) (2017九下·张掖期中) 某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1) A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.26. (10分) (2019八上·绥化月考) 已知x,y,z满足|x | .(1)求x,y,z的值;(2)试判断以x,y,z为三边的△ABC的形状,并说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共87分)19-1、20-1、20-2、20-3、20-4、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。
2020年河南省三门峡市初一下期末检测数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.如图,四边形ABCD 中,点M N ,分别在,AB BC 上,100,70,A C ∠=∠=将BMN △沿MN 翻折,得FMN ,若////,MF AD FN DC ,则B 的度数为( )A .80B .85C .90D .95【答案】D【解析】【分析】 首先利用平行线的性质得出100,70BMF FNB =︒=︒∠∠,再利用翻折的性质得出50,35FMN BMN FNM MNB ==︒==︒∠∠∠∠,进而求出∠B 的度数.【详解】∵//,//MF AD FN DC ,100,70,A C ∠=∠=∴100,70BMF FNB =︒=︒∠∠∵将△BMN 沿MN 翻折,得△FMN∴50,35FMN BMN FNM MNB ==︒==︒∠∠∠∠∴180503595F B ==︒-︒-︒=︒∠∠故答案为:D .【点睛】本题考查了四边形翻折的问题,掌握翻折的性质、平行线的性质是解题的关键.2.已知3m n m n x y +-与719m n x y -+-的和是单项式,则m ,n 的值分别是( ).C .m=2910,n=65D .m=54,n=-2 【答案】B【解析】【分析】由和为单项式可知两式是同类项,根据同类项的定义可得关于m 、n 的方程组,解方程组即可得.【详解】由题意得:71m n m m n n +=-⎧⎨-=+⎩, 解得:31m n =⎧⎨=⎩, 故选B.【点睛】本题考查了合并同类项,同类项的概念,二元一次方程组,由两个单项式的和仍是单项式判断出这两个单项式是同类项是解题的关键.3.若a b >,则下列各式中一定成立的是( )A .22a b +>+B .ac bc <C .22a b ->-D .33a b ->- 【答案】A【解析】【分析】根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A 、若a >b ,则a+2>b+2,故本选项正确;B 、若a >b ,当c >0时,ac >bc ,当c <0时,ac <bc ,故本选项错误;C 、若a >b ,则-2a <-2b ,故本选项错误;D 、若a >b ,则-a <-b ,则1-a <1-b ,故本选项错误;故选A .【点睛】此题主要考查了不等式的性质,关键是注意不等式的性质1.4.对于二元一次方程3211x y +=,下列结论正确的是( )【答案】D【解析】分析: 将二元一次方程3x+2y=11,化为用一个未知数表示另一个未知数的情况,即可解答.详解: 原方程可化为y=11-32x ,可见对于每一个x 的值,y 都有唯一的值和它相对应,故方程有无数个解. 故选D点睛: 考查二元一次方程的解的定义,要求理解什么是二元一次方程的解.5.若关于x 的方程x ﹣2+3k=3x k +的解是正数,则k 的取值范围是( ) A .k >34 B .k≥34 C .k < 34 D .k≤34【答案】C【解析】解方程x ﹣2+3k=3x k +得:x=-4k+3, ∵方程得解为正数,∴-4k+3>0,解得:k <34. 故选C. 6.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),∴−8=−4m,解得:m=1,故A点坐标为(1,−8),∵kx+b>−4x时,(k+4)x+b>0,则关于x的不等式(k+4)x+b>0的解集为:x>1.故选:A.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.7.下列计算正确的是()A.2a3•a2=2a6B.(﹣a3)2=﹣a6C.a6÷a2=a3D.(2a)2=4a2【答案】D【解析】【分析】根据单项式乘单项式法则、幂的乘方、同底数幂的除法、积的乘方逐一计算即可判断.【详解】解:A、2a3•a2=2a5,错误;B、(﹣a3)2=a6,错误;C、a6÷a2=a4,错误;D、(2a)2=4a2,正确;故选:D.【点睛】本题主要考查整式的运算,解题的关键是掌握单项式乘单项式法则、幂的乘方、同底数幂的除法、积的乘方.8.下列调查中,最适宜采用普查方式的是()A.对我市初中学生视力状况的调查B.对“五一”期间居民旅游出行方式的调查C.旅客上高铁前的安全检查D.检查某批次手机电池的使用寿命【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.解:A 、对我市初中学生视力状况的调查适合抽样调查;B 、对“五一”期间居民旅游出行方式的调查适合抽样调查;C 、旅客上高铁前的安全检查适合全面调查;D 、检查某批次手机电池的使用寿命适合抽样调查;故选:C .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.若433339x x x x +++=,则x =( ) A .-2B .-1C .0D .14【答案】A【解析】【分析】 43333439x x x x x +++=⨯=,由此可知x 的值. 【详解】 解:43333439x x x x x+++=⨯=,21339x -==,所以2x =-. 故选:A【点睛】 本题考查了负指数幂,熟练掌握负指数幂的性质是解题的关键.10.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为【 】A .20° B.25° C.30° D.35°【答案】A 。
2019-2020学年河南省三门峡市七年级第二学期期末统考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题只有一个答案正确)1.··100=( )A.B.C.D.【答案】D【解析】【分析】先把100化为10,再根据同底数幂相乘,度数不变,指数相加,即可解得.【详解】原式==故选D.【点睛】本题考查同底数幂的乘法,熟练掌握计算法则是解题关键.2.下列各数中最大的数是A.6-B5C.πD.0【答案】C【解析】【分析】根据负数<0<正数,排除A,C,通过比较其平方的大小来比较B,C选项.【详解】解:∵255=,29.85π≈,∴605π-<<,则最大数是π.故选C.【点睛】本题主要考查比较实数的大小,解此题的关键在于用平方法比较实数大小:对任意正实数a、b有22a b a b >⇔> .3. 已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b += 【答案】D【解析】【分析】把3{2x y =-=-,代入1{2ax cy cx by +=-=,即可得到关于,,a b c 的方程组,从而得到结果. 【详解】由题意得,321322a c c b --=⎧⎨-+=⎩①②, 3,2⨯⨯①②得,963644a c c b --=⎧⎨-+=⎩③④-④③得941a b +=,故选:D .4.作∠AOB 的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是( )A .SASB .ASAC .AASD .SSS【答案】D【解析】【分析】 连接CD 、CE,根据作图步骤知OD=OE 、CD=CE 、OC=OC ,据此根据三角形全等的判定可得;【详解】连接CD 、CE,根据作图步骤知OD=OE 、CD=CE 、OC=OC所以根据SSS 可判定△OCE ≌△OCD,所以∠BOC=∠AOC ,OC 平分∠AOB故用尺规作图画∠AOB 的角平分线OC ,作图依据是SSS ,故选:D .【点睛】本题主要考查作图-复杂作图,解题的关键是熟练掌握全等三角形的判定与性质.5.现有一列数:a 1,a 2,a 3,a 4,…,a n-1,a n (n 为正整数),规定a 1=2,a 2- a 1=4,326a a -=,…,12n n a a n --=(n≥2),若12311115041009n a a a a ++++=,则n 的值为( ). A .2015 B .2016 C .2017 D .2018 【答案】C【解析】 分析:根据条件a 1=2,a 2﹣a 1=4,a 3﹣a 2=6,…,a n ﹣a n ﹣1=2n (n ≥2),求出a 2=a 1+4=6=2×3,a 3=a 2+6=12=3×4,a 4=a 3+8=20=4×5,由此得出a n =n (n +1).根据1n a =1n ﹣11n +化简21a +31a +41a +…+1n a =12﹣11n +,再解方程12﹣11n +=5041009即可求出n 的值. 详解:∵a 1=2,a 2﹣a 1=4,a 3﹣a 2=6,…,a n ﹣a n ﹣1=2n (n ≥2),∴a 2=a 1+4=6=2×3,a 3=a 2+6=12=3×4,a 4=a 3+8=20=4×5,…∴a n =n (n +1).∵21a +31a +41a +…+1n a =12﹣13+13﹣14+14﹣15+…+1n ﹣11n +=12﹣11n +=5041009, ∴11n +=12﹣5041009, 解得:n =1.故选C .点睛:本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出a n =n (n +1).6.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不是轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.7.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【答案】B【解析】【分析】∠,根据三角形的外角性质计算,得到答案.根据图形求出1【详解】∠=-=,解:如图,1904545∠α=+=,则6045105故选B.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.8.下列运算中,不正确的是()A.m3+m3=m6B.m4•m=m5C.m6÷m2=m4D.(m5)2=m10【答案】A【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法、同底数幂的除法以及幂的乘方逐一判断即可.【详解】解:A.m3+m3=2m3,故选项A符合题意;B.m4•m=m5,故选项B不合题意;C.m6÷m2=m4,故选项C不合题意;D.(m5)2=m10,故选项D不合题意.故选:A.【点睛】本题主要考查了幂的运算以及合并同类项的法则,熟练掌握幂的运算性质是解答本题的关键.9.在锐角三角形ABC中,∠A=50°,则∠B的范围是()A.0°<∠B<90°B.40°<∠B<130° C.40°≤∠B≤90°D.40°<∠B<90°【答案】D【解析】【分析】根据三角形的内角和即可得到结论.【详解】∵在锐角三角形ABC中,∠A=50°,则∠B的范围是40°<∠B<90°,故选:D.【点睛】本题主要考查了三角形的内角和,正确理解∠B的范围的确定方法是解决本题的关键.10.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【答案】B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.二、填空题11.如图,点O为直线AB上一点,OC⊥OD,如果∠1=35°,那么∠2的度数是______________;【答案】55°【解析】分析:由OC⊥OD,得到∠COD=90°,再根据∠1+∠2=90°,即可得出结论.详解:∵OC⊥OD,∴∠COD=90°,∴∠2=90°-∠1=90°-35°=55°.故答案为55°.点睛:本题主要考查角的运算,比较简单.12.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是____.【答案】(−4,3)【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=−4,y=3.即点P的坐标是(−4,3),故答案为:(−4,3).【点睛】此题考查象限及点的坐标的有关性质,坐标确定位置,解题关键在于掌握其性质.13.如图,C岛在A岛的北偏东50°方向,从C岛看A,B两岛的视角∠ACB=105°,则C岛在B岛的北偏西_____方向.【答案】55°【解析】【分析】过C点作CD∥AE,根据平行线的性质即可求解.【详解】解:过C点作CD∥AE,∵C岛在A岛的北偏东50°方向,∴∠EAC=50°,∴∠ACD=50°,∵∠ACB=105°,∴∠BCD=55°,∵AE∥BF,∴CD∥BF,∴∠CBE=55°,∴C岛在B岛的北偏西55°方向.故答案为:55°.【点睛】此题主要考查方位角的计算,解题的关键是熟知平行线的性质.14.如图,已知l1∥l2,直线l与l1、l2,相交于C、D两点,把一块含30°角的三角尺ABD按如图位置摆放,∠ADB=30°.若∠1=130°,则∠2=________.【答案】20°【解析】【分析】利用两直线平行,同位角相等求出∠3的度数,再利用平角为180°,列式求出∠2的度数.【详解】解:如图∵ l1∥l2,∴∠1=∠3=130°,∵∠3+∠2+∠ADB=180°,∴∠2=180°-30°-130°=20°故答案为:20°【点睛】此题考查平行线的性质,解题关键在于求出∠3的度数.15.五子棋深受广大棋友的喜爱,其规则是:在15 15 的正方形棋盘中,由黑方先行,轮流奕子,在任何一方向(横向、竖向或斜线方向)上连成五子者为胜。
如图 3 是两个五子棋爱好者甲和乙的部分对弈图(甲执黑子先行,乙执白子后走),观察棋盘思考:若 A 点的位置记作(8,4),若不让乙在短时间内获胜,则甲必须落子的位置是___________.【答案】(5,3)或(1,7)【解析】分析:根据五子连棋的规则,电信脑已把(2,6)(3,5)(4,4)三点凑成在一条直线,王博只有在此三点两端任加一点即可保证不会让电脑在短时间内获胜,据此即可确定点的坐标.详解:根据题意得,电脑执的白棋已有三点(2,6)(3,5)(4,4)在一条直线上,王博只有在此直线上距离(2,6)(4,4)最近的地方占取一点才能保证不会让电脑在短时间内获胜,即为点(1,7)或(5,3).点睛:本题考查了点的坐标.16.计算(13)2017•32018=_____. 【答案】1【解析】【分析】根据同底数幂相乘,积的乘方的法则即可作出判断.【详解】 原式=(13)2017×12017×1 =1×[(13)×1]2017 =1×12017=1.故答案为:1.【点睛】本题考查了同底数幂的乘法,积的乘方,正确理解法则是解题的关键.17.在平面直角坐标系中,有点(4,2)A 、点(1,0)B ,若在坐标轴上有一点C ,使AOC AOB S S ∆∆=,则点C 的坐标可以是_________________________________.【答案】(1,0)或(-1,0)或(0,12)或(0,- 12) 【解析】【分析】根据三角形面积和坐标特点解答即可.【详解】如图所示,∵点A (4,2)、点B (1,0),∴S △AOB =12×1×2=1, ∵S △AOC =S △AOB ,当点C 在x 轴上时,则C (1,0)或(-1,0),当点C 在y 轴上时,则C (0,12)或(0,-12) 故答案为:(1,0)或(-1,0)或(0,12)或(0,- 12) 【点睛】此题考查了坐标与图形性质以及三角形面积,关键是根据面积相等和坐标特点解答.三、解答题18.完成下面的证明:如图,AB 和CD 相交于点O ,C COA ∠=∠,D BOD ∠=∠.求证://AC BD ,A B ∠=∠.证明:C COA ∠=∠,D BOD ∠=∠(___________),又COA BOD ∠=∠(________________),C ∴∠=________(_______________),//AC BD ∴(_______________), A B ∴∠=∠(_______________). 【答案】已知;对顶角相等;D ∠;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【解析】【分析】由已知条件得出C D ∠=∠,得到//AC BD ,可得结论.【详解】证明:C COA ∠=∠,D BOD ∠=∠(已知),又COA BOD ∠=∠(对顶角相等),C ∴∠= _D ∠_(等量代换),//AC BD ∴(内错角相等,两直线平行), A B ∴∠=∠(两直线平行,内错角相等). 【点睛】本题考查平行线的判定与平行线的性质,特别考查推理过程中的逻辑语言的使用,掌握相关知识是解题的关键.19.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【答案】(1)200;(2)补图见解析;(3)12;(4)300人.【解析】【分析】(1)由76÷38%,可得总人数;先算社科类百分比,再求小说百分比,再求对应圆心角;(2)结合扇形图,分别求出人数,再画图;(3)用社科类百分比×2500可得.【详解】解:(1)200,126;(2)(3)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300(人)【点睛】本题考核知识点:数据的整理,用样本估计总体.解题关键点:从统计图获取信息. 20.解方程组:(1)4{22x yx y-=+=-①②,(2)414 {3314312x yx y+=---=①②【答案】(1)2{2xy==-;(2)3{114xy==.【解析】试题分析:(1)根据加减消元法可以解答此方程组;(2)先化简,然后根据加减消元法即可解答本题.试题解析:(1)422 x yx y-⎧⎨+-⎩=①=②①×2+②,得3x=6,解得,x=2,将x=2代入①,得y=-2,故原方程组的解是2{2xy==-;(2)414{3314312x yx y①②+=---=,化简,得414342x yx y+⎧⎨--⎩=③=④③+④,得4x=12,解得,x=3,将x=3代入③,得y=11 4,故原方程组的解是3 {114xy==.21.如图,已知ABC∆中,10cmAB AC==,8cmBC=,点D为AB的中点,点P在线段BC上以3cm/s 的速度由B点向C点运动(点P不与点C重合),同时点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间是1s时,BPD∆与CQP∆是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当BPD∆与CQP∆全等时,点Q的运动时间是_______________;运动速度是_________________.【答案】(1)△BPD≌△CQP,理由见详解;(2)43s;15/4cm s.【解析】【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等即可;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度.【详解】解:(1)△BPD≌△CQP,理由如下:∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.∵PC=BC-BP,BC=8cm,∴PC=8-3=5cm,∴PC=BD.∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,PC BD B CBP CQ ⎪∠⎪∠⎧⎨⎩==,=∴△BPD ≌△CQP (SAS );(2)∵v P ≠v Q ,∴BP ≠CQ ,若△BPD ≌△CPQ ,∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP s = ∴v Q =5154/34CQ cm s t == 故答案为:43s ;15/4cm s . 【点睛】本题主要考查了等腰三角形的性质、全等三角形的判定与性质、路程=速度×时间等知识,熟练运用全等三角形的判定和性质是解题的关键.22.将一副三角板中的两块直角三角板的直角顶点C 按如图方式叠放在一起,友情提示:∠A =60°,∠D =30°,∠E =∠B =45°.(1)①若∠DCE =45°,则∠ACB 的度数为_____.②若∠ACB =140°,则∠DCE 的度数为_____.(2)由(1)猜想∠ACB 与∠DCE 的数量关系,并说明理由;(3)当∠ACE <90°且点E 在直线AC 的上方时,当这两块角尺有一组边互相平行时,请写出∠ACE 角度所有可能的值.并说明理由.【答案】 (1)①135°;②40°;(2)∠ACB+∠DCE =180°,理由见解析;(3)30°、45°.【解析】【分析】(1)①根据直角三角板的性质结合∠DCB =45°即可得出∠ACB 的度数;②由∠ACB=140°,∠ECB=90°,可得出∠ACE 的度数,进而得出∠DCE 的度数;(2)根据①中的结论可提出猜想,再由∠ACB=∠ACD+∠DCB ,∠ACB+∠DCE=90°+∠DCB+∠DCE 可得出结论;(3)分CB∥AD、EB∥AC两种情况进行讨论即可.【详解】(1)①∵∠DCB=45°,∠ACD=90°,∴∠ACB=∠DCB+∠ACD=45°+90°=135°,故答案为135°;②∵∠ACB=140°,∠ECB=90°,∴∠ACE=140°﹣90°=50°,∴∠DCE=90°﹣∠ACE=90°﹣50°=40°,故答案为40°;(2)猜想:∠ACB+∠DCE=180°,理由如下:∵∠ACE=90°﹣∠DCE,又∵∠ACB=∠ACE+90°,∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE,即∠ACB+∠DCE=180°;(3)30°、45°.理由:当CB∥AD时(如图1),∴∠AFC=∠FCB=90°,∵∠A=60°,∴∠ACE=90°-∠A=30°;当EB∥AC时(如图2),∴∠ACE=∠E=45°.【点睛】本题考查了三角板的性质,直角三角形两锐角互余,角的和差,平行线的性质等知识,熟练掌握相关知识是解题的关键.23.核桃和枣是我省著名的农特产,它们营养丰富,有益人体健康,深受老百姓喜爱。