5.3半群
- 格式:ppt
- 大小:187.50 KB
- 文档页数:7
第五章代数系统5-1代数系统的引入5.1.1设集合{1,2,3,…,10},问下面定义的映射*关于集合是否封闭?a) x*y=max(x,y);b) x*y=min(x,y);c) x*y=GCD(x,y);d) x*y=LCM(x,y);e) x*y=素数p的个数,其中x≤p≤y。
解:a)封闭。
b)封闭。
c)封闭。
d)不封闭。
e)不封闭。
5.1.2在下表所列出的集合和映射中,请根据映射是否在相应集合上封闭,在相应位置上填写“是”或“否”,I表示整数集,N表示自然数集合。
5.1.3设B={0,a,b,1},S1={ a,1}, S2={ 0,1}, S3={ a,b},二元运算⊕和*定义如下表:⊕0 a b 1 * 0 a b 10 0 a b 1 0 0 0 0 0a a a 1 1 a 0 a 0 ab b 1 b 1 b 0 0 b b1 1 1 1 1 1 0 a b 1试问(S1,*,,⊕)是代数系统吗?是(B,*,⊕,1,0)的子代数系统吗?(S2,*,,⊕,1,0)是(B,*,⊕,1,0)的子代数系统吗?(S3,*,,⊕)是代数系统吗?解:⊕ a 1 * a 1a a 1 a a a1 1 1 1 a 1因此(S1,*,,⊕)是代数系统。
它不是(B,*,⊕,1,0)的子代数系统。
因为S1中缺少0。
(S2,*,,⊕,1,0)是(B,*,⊕,1,0)的子代数系统。
⊕ a b * a ba a 1 a a 0b 1 b b 0 b因为⊕和*在{a,b}上不封闭,所以(S3,*,,⊕)不是代数系统。
5-2运算及其性质5.2.1对于实数集合R,下表所列的二元运算是否具有左边一列中那些性质,请在相应位置上填写“是”或“否”。
∣-y∣max min x-+*结合律交换律有单位元有零元解:max min x∣-y∣-+*结合律是否是是是否交换律是否是是是是有单位元是否是否否否有零元否否是否否否5.2.2设代数系统({a,b,c},*)中,*是{a,b,c}上二元运算,下面运算表中分别讨论交换性,等幂性,问有否单位元?若有,问每个元素有否逆元?有否零元?a)b)c)d)* a b c * a b c*a b c* a b ca abc a a b c a a b c a a b cb bc a b b a c b a b c b b b cc c a b c c c c c a b c c c c b解:a)可交换,不等幂,a为单位元,a 的逆元是a,b和c互为逆元。
第一节 半群与群的基本概念定义1.1 设代数系统<S,*>,其中*为二元运算。
如果*是可结合的,则称<S,*>为一个半群(semigroup ),如果半群的二元运算有单位元,则称此半群为独异点(含幺半群)。
如果独异点的每个元素都是可逆的,则称它为群(group)。
根据定义,代数系统<G ,*>为成一个群当且仅当二元运算*满足下述条件: (1)适合结合律(*)**(*),,,a b c a b c a b c G =∀∈。
(2)有单位元e G ∈∀∈==,**a G a e e a a 。
(3)a G ∀∈,有逆元1a G −∈,使得11**a a a a e −−==群<G ,*>可简记作G ,a*b 可略去*,简记作ab 。
如果半群,独异点和群中的运算是可交换的,则分别称作为交换半群,交换独异点和交换群。
交换群又称作阿贝尔(Abel )群。
如果群中的运算不是可交换的,则称它为非交换群。
习惯上,常将群中的二元运算叫作乘法,记做 。
定义1.2 若群G 所含元素个数有限,则称G 是有限群,否则称G 是无限群。
群G 中元素个数称作群的阶。
当G 是有限群时,用|G|表示它的阶。
例1.1,,Z +<+>是半群,但不是独异点,因为它没有单位元,,N <+>是独异点,但不是群,因为除0外其它元素无逆元。
而,Z +是一个群,并且是一个交换群,叫作整数加法群。
例1.2模n剩余类加法群<⊕>,n Z 是阿贝尔群,这里{[0],[1],,[1]}n Z n =−L ,[][][()mod ]x y x y n ⊕=+, [0]是它的单位元,对于每个x=0,1,2,…,n-1,[x]的逆元是[-x]=[n-x]。
例1.3 (),n M R <•>是独异点,这里•是矩阵乘法,n 阶单位矩阵是单位元,但它不是可交换的,而且不是每一个矩阵都是可逆的。
第九章半群与群(Semigroups and Groups)本章讨论含一个二元运算的特殊的代数系统――半群与群。
群论近世代数中发展最早、内容最丰富、应用最广泛的部分,也是建立其他代数系统的基础。
群论在自动机政论、形式语言,语法分析快速加法器设计、纠错码制定等方面均有卓有成效的应用。
2-1 半群与含幺半群定义2-1.1 满足结合律的代数系统U=<S,*>称为半群。
例2-1.1 <N,+>,<N,×>,<2I+,+>和<2I+,×>都是半群。
例2-1.2 <Nm ,+m>和<Nm,×m>都是半群。
例2-1.3 <M2(I),+>和<M2(I),·>都是半群。
定义2-1.2含幺元e的半群U=<S,*>称为含幺半群,常记作U=<S,*,e>。
在例2-1.1~例2-1.3中,除<2I+,+>和<2I+,×>外都是含幺半群。
例2-1.4 设S是任意非空集合,则<p(S),∪>和<p(S),∩>都是含幺半群。
例2-1.5在形式语言中,我们常称非空有限字符集合为字母表。
字母表中字符的n重序元称为字符串,由m个字符所组成的字符串称为长度为m 的字符串。
长度为0的字符串称为空串,用来表示。
如对V={a,b}, =aa 和β=ab都是长度为2的字符串;γ=aab和δ=bab都是长度为3的字符串。
我们用*来表示两个字符串的邻接运算,如,α*δ=aabab,α*γ=aaaab。
设用V*表示字母表V的所有有限长度字符串的集合,而用V+表示V*-{ },则显然<V+,*>是半群,<V+,*, >是含幺半群。
定义2-1.3对运算满足交换律的半群(含幺半群)称为交换半群(交换含幺半群)。
《离散数学》教学大纲一、教学目的与要求(一)目的本课程教学的目的是培养学生的数学思维能力,使学生得到良好的数学训练,提高学生的抽象思维和逻辑推理能力,为从事计算机的应用提供坚实的理论基础。
通过教学,最终使学生能够在众多的概念中要找出最重要的,在众多的定理中找出最根本的,将这些少量的概念和定理能够透彻地理解,自如地运用。
(二)要求1. 有效地掌握该门课程中的所有概念。
通过讲课和布置一定数量的习题使学生能够使用所学的概念对许多问题作出正确的判断。
2. 通过课程中许多定理的证明过程复习概念,了解证明的思路,学会证明的方法,并使学生掌握定理的内容和结果。
3. 通过介绍各种做题的方法,启发学生独立思维的能力。
创造性的提出自己解决问题的方法,提高学生解决问题的能力。
4.通过该门课程的学习使学生掌握逻辑思维和逻辑推理的能力,培养学生正规的逻辑思维方式。
二、教学重点及难点(一)重点1.集合论:集合恒等式,关系运算,关系性质,等价关系,偏序关系2.数理逻辑:等价演算,推理理论3.代数系统:代数系统,群的性质,子群,陪集与拉格朗日定理,循环群,置换群4.图论:图的基本概念,图的矩阵,根树,有向树和有序树。
5.代数系统:代数系统,群的性质,子群,陪集与拉格朗日定理,循环群,置换群(二)难点关系的运算,偏序关系,一阶逻辑推理,陪集,置换群,根树的应用三、教学方法采用多媒体和板书相结合,采用启发式和案例教学,以知识为载体,培养学生分析解决问题的思维方式和方法,激发学生创造性思维。
四、教学时数54学时,每周3学时五、考试或考察方式本课程为考试课考试方式六、学时安排序号章节内容学时1 第一章集合与关系122 第二章命题逻辑123 第三章谓词逻辑94 第四章图论125 第五章代数系统9合计54第一章集合与关系 1.1 集合的概念与运算一、教学目的及要求:1、掌握集合的两种表示法2、判别元素是否属于给定的集合3、判别两个集合之间是否存在包含、相等、真包含等关系4、掌握集合的基本运算(幂集运算,普通运算和广义运算)并能化简集合表达式二、教学难点及重点:教学重点:1. 集合的两种表示法2. 集合之间的包含、相等、真包含等关系3. 集合的基本运算(幂集运算,普通运算和广义运算)教学难点:集合的运算三、教学基本内容:1.集合的概念,集合的两种表示法2.元素与集合的关系3.两个集合之间的关系:包含、相等、真包含等关系4.空集,全集,幂集的概念5. 集合的基本运算(幂集运算,普通运算和广义运算),化简集合表达式四、作业习题1.1 2、3、5、7、9第一章集合与关系(1.2,1.3)一、教学目的及要求:1.掌握有序对的定义2.掌握笛卡儿积运算和性质3.熟练掌握二元关系的定义4.掌握二元关系表达式、关系矩阵、关系图的表示法5. 掌握关系的逆和合成运算二、教学难点及重点:教学重点:1.有序对的定义2.笛卡儿积运算和性质3.二元关系的定义4.二元关系表达式、关系矩阵、关系图的表示法5. 关系的逆和合成运算教学难点:笛卡儿积运算和性质、关系的合成三、教学基本内容:1.有序对的概念2.有序对的性质3.有序n元组4.笛卡儿积的定义5.笛卡儿积的运算和性质6.二元关系的概念7.集合A到B的关系、集合A上的关系的定义8.关系表达式、关系矩阵、关系图的表示法9.关系的逆和合成运算四、作业习题1.2 1、3、4、5、6 习题1.3 1、2、7、11第一章集合与关系(1.4)一、教学目的及要求:1.掌握二元关系的基本性质及其关系矩阵、关系图上的体现2.掌握二元关系的各种性质存在的充要条件3.了解二元关系各种性质与集合运算的关系4.掌握自反性、对称性、传递性的证明方法二、教学难点及重点:教学重点:1.二元关系的基本性质:自反性,非自反性,对称性,反对称性,传递性2.二元关系的各种性质存在的充要条件3.二元关系的基本性质在关系矩阵、关系图上的体现4.二元关系各种性质与集合运算的关系5.自反性、对称性、传递性的证明方法教学难点:1.二元关系的各种性质存在的充要条件2.自反性、对称性、传递性的证明方法三、教学基本内容:1.自反性的定义及关系矩阵、关系图的特征2.非自反性的定义及关系矩阵、关系图的特征3.对称性的定义及关系矩阵、关系图的特征4.反对称性的定义及关系矩阵、关系图的特征5.传递性的定义及关系矩阵、关系图的特征6.二元关系的各种性质存在的充要条件7.集合的并、交运算对自反性的保持8.集合的并、交运算对对称性的保持9.集合的并、交运算对传递性的保持10.二元关系性质的证明四、作业习题 1.4 1、2、3、4、8第一章集合与关系(1.5) 一、教学目的及要求:1.掌握二元关系闭包的含义2.掌握二元关系闭包的性质3.掌握二元关系闭包的计算方法二、教学难点及重点:教学重点:1.二元关系的闭包:自反闭包、对称闭包、传递闭包2.二元关系的闭包计算的基本定理3.利用关系矩阵和关系图计算闭包4.二元关系的闭包的性质教学难点:二元关系闭包的求法三、教学基本内容:1.闭包的定义:自反闭包、对称闭包、传递闭包2.利用集合与闭包的关系计算闭包3.利用关系矩阵和关系图计算闭包4.二元关系的闭包的性质5.闭包与闭包之间的关系6. 集合、关系矩阵、关系图之间的转换四、作业习题1.5 1、2、3、9第一章集合与关系(1.6) 一、教学目的及要求:1.掌握等价关系及其条件2.掌握等价关系与划分的联系二、教学难点及重点:教学重点:1.等价关系及充要条件2.等价关系与划分的联系教学难点:等价关系的划分三、教学基本内容:1.等价关系的定义2.利用矩阵表示等价关系3.等价关系的充要条件4.等价类与商集的定义5.等价关系与划分的联系四、作业习题 1.6 2、4、5、6第一章集合与关系(1.7) 一、教学目的及要求:1.了解序关系的概念2.掌握偏序与拟序3. 掌握哈斯图4. 掌握全序与良序二、教学难点及重点:教学重点:1.偏序与拟序2.哈斯图3. 全序与良序教学难点:全序与良序三、教学基本内容:1.序关系的概念:偏序关系、拟序关系2.偏序的充分必要条件3.拟序的充分必要条件4.覆盖的定义5.哈斯图6.极大元与极小元7.全序结构与良序结构四、作业习题 1.7 2、5、8第二章命题逻辑(2.1、2.2) 一、教学目的及要求:1.分清简单命题(既原子命题)与复合命题2.深刻理解5种常用联结词的涵义,每种联结词的真值3.分清“相容或”与“排斥或”4. 掌握命题公式及其真值表5. 掌握命题公式的类型与判定二、教学难点及重点:教学重点:1. 命题的概念2.简单命题(既原子命题)与复合命题3. 5种常用联结词4. “相容或”与“排斥或”5. 命题公式及其真值表6. 命题公式的类型与判定教学难点:“相容或”与“排斥或”逻辑区别、命题公式的判定三、教学基本内容:1.命题的概念,真命题,假命题,真值2.命题的判断,简单命题的符号化3.联结词4.每个联结词表示的逻辑关系5.每个联结词的真值6. 命题公式的真值表7. 命题公式的类型8. 命题公式的判定四、作业习题2.1 2、3、4 习题2.2 1、2、3、5第二章命题逻辑(2.3) 一、教学目的及要求:1.掌握命题公式的等价2.掌握命题公式的蕴含3.理解置换定理与对偶定理二、教学难点及重点:教学重点:1.命题公式的等价2.命题公式的蕴含3.置换定理与对偶定理教学难点:命题公式的关系及真值表演算三、教学基本内容:1.命题公式的等价2.命题公式的蕴含3.置换定理与对偶定理四、作业习题2.3 1、2、3、4第二章命题逻辑(2.4)一、教学目的及要求:1.了解文字、简单析取式、简单合取式、析取范式,合取范式,主析取范式与主合取范式等概念。