高一数学集合知识点归纳及典型例题
- 格式:docx
- 大小:1.71 MB
- 文档页数:4
完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。
其中的各事物叫作集合的元素或简称元。
集合的元素具有三个特性:确定性、互异性和无序性。
确定性指元素是明确的,如世界上最高的山。
互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。
无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。
集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。
集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。
集合的表示方法有列举法和描述法。
常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。
2.集合间的关系集合间有包含关系和相等关系。
包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。
如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A和B是同一集合,则称A是B的子集,记作A⊆B。
反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。
相等关系表示两个集合的元素完全相同,记作A=B。
真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。
如果XXX且B⊆C,则A⊆C。
如果XXX且B⊆A,则A=B。
空集是不含任何元素的集合,记为Φ。
规定空集是任何集合的子集,空集是任何非空集合的真子集。
3.集合的运算集合的运算包括交集、并集和补集。
交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。
补集是由S中所有不属于A的元素所组成的集合,记作A的补集。
如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。
高一数学集合知识点总结高一数学集合知识点总结一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB (或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A 且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。
高一年级数学《集合》知识点总结【一】一.知识归纳:1.集合的相关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存有x0∈B但x0A;记为AB(或,且)3)交集:A∩B={xx∈A且x∈B}4)并集:A∪B={xx∈A或x∈B}5)补集:CUA={xxA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握相关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.相关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:【例1】已知集合M={xx=m+,m∈Z},N={xx=,n∈Z},P={xx=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。
第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:1)元素的确定性如:世界上最高的山2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B 注意:B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高一数学集合知识点归纳及典型例题集合一、知识点:1、元素:(1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中对象元素的性质:确定性、互异性、无序性;(3)集合表示方法:列举法、描述法、图示法;(4)常用数集:R Q Z N N N ;;;;;*+2、集合的关系:子集相等3、全集交集并集补集4、集合的性质:(1);,,A B B A A A A A ⋂=⋂=⋂=⋂φφ(2) ;,A B B A A A ⋃=⋃=⋃φ(3) );()(B A B A ⋃⊆⋂(4);B B A A B A B A =⋃⇔=⋂⇔⊆(5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ⋂=⋃⋃=⋂二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。
例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。
例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。
\例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ=I I ,,试求b , c的值。
例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,(1)若Φ=B A I , 求m 的范围;(2)若A B A =Y , 求m 的范围。
例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。
三、练习题1. 设集合M =,24},17|{=≤a x x 则( )A. M a ∈B. M a ∉C. a = MD. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( )A. M ={(3,2)} , N ={(2,3)}B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M I , 则a 的取值集合是( )A. }21,2,3{-B. {-3}C. }21,3{-D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a 的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x y y x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( )A. ΦB. MC. ND. R8. 已知A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。
高一上册数学集合知识点总结及例题讲解学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。
下面是店铺为大家整理的高一数学集合知识点,希望对大家有所帮助! 高一数学集合知识点总结一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若,,则 ;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。
4.有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
高一数学必修 1第一章集合一、集合有关概念1.集合的含义:必然范围的、肯定的、可区别的事物,看成一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。
2.集合的中元素的三个特性:(1)元素的肯定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方式:列举法与描述法。
注意:常常利用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方式。
{x∈R| x-3>2} ,{x|x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无穷集含有无穷个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的大体关系1.“包括”关系—子集A⊆有两种可能(1)A是B的一部份,;(2)A与注意:BB是同一集合。
反之: 集合A不包括于集合B,或集合B不包括集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:若是A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③若是 A⊆B, B⊆C ,那么 A⊆C④若是A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即CSA=},|{AxSxx∉∈且韦恩图示A B图1A B图2性质A A=AA Φ=ΦA B=B AA B⊆AA B⊆BA A=AA Φ=AA B=B AA B⊇AA B⊇B(CuA) (CuB)= Cu(A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.SA例题1.下列四组对象,能组成集合的是( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高一数学集合知识点全总结一、集合的概念集合是具有某种特定性质的事物的总体或类别。
集合中具体的元素称为集合的成员。
集合的表示方法有三种:列举法、描述法和集合的图示法。
1. 列举法:集合A = {a, b, c, d, e}2. 描述法:集合A = {x|x具有某种特定的性质}3. 图示法:通常用Venn图来表示,也可以用数轴、区间等形式表示。
二、集合的基本运算1. 并集设A和B是两个集合,A和B的并集,记作A∪B,是一个集合C,C中的元素是A和B 中所有元素的集合,即C={x | x∈A或x∈B}。
2. 交集设A和B是两个集合,A和B的交集,记作A∩B,是一个集合C,C中的元素是A和B 中共有元素的集合,即C={x | x∈A且x∈B}。
3. 差集设A和B是两个集合,A和B的差集,记作A-B,是一个集合C,C中的元素是属于A 但不属于B的所有元素的集合,即C={x | x∈A,x∉B}。
4. 补集A的补集,记作Ā,是一个集合C,C中的元素是不属于A的所有元素的集合,即C={x | x∈U,x∉A},其中U为全集。
5. 交叉并集设A和B是两个集合,A和B的交叉并集,记作A⊕B,是一个集合C,C中的元素是A 和B中所有元素的集合减去A和B的交集,即C={x | x∈A或x∈B,但x∉A∩B}。
6. 笛卡尔积对于两个集合A和B,在数学上,A和B的笛卡尔积,记作AxB,是一个集合C,C中的元素是由A和B中的每个元素按一定次序组成的。
写作C={(a,b)|a∈A,b∈B}以上的集合运算规则和公式需要通过具体的例题来进行练习和理解。
三、集合的关系1. 包含关系若集合A的每个元素都是集合B的元素,则A是B的子集,记作A⊆B或B⊇A。
特别地,空集是每个集合的子集。
2. 相等关系若集合A和B有相同的元素,则A等于B,记作A=B。
3. 差集和补集的关系若A⊆B,则A-B=BĀ。
四、集合论的重要定理1. 德摩根定理对于任意两个集合A和B,有以下两个等式成立:A∪B = AĀ∩BĀA∩B = AĀ∪BĀ2. 韦恩图定理对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)3. 分配率对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)以上定理是在集合论中非常重要的定理,需要通过具体的例题来进行理解和应用。
集合的知识点与常考题 【知识点分析】: 一、一元二次不等式及其解法1.形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式.如:x 2﹣8x +7≧0。
2.如果单纯的解一个一元二次不等式的话,可以按照一下步骤处理:(1) 化二次项系数为正;(2) 若二次三项式能分解成两个一次因式的积,则求出两根12,x x .那么“0>”型的解为12x x x x <>或(俗称两根之外);“0<”型的解为12x x x <<(俗称两根之间);(3) 否则,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a -++=++,结合完全平方式为非负数的性质求解.二、分式不等式的解法类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解.0>ab 等价于:0b >•a 0<ab 等价于:0b <•a 如:解011x ≥-+x 等价于:解011x ≥-•+)()(x 三、绝对值不等式的解法利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
对于含绝对值的双向不等式应化为不等式组求解,也可利用结论:“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解。
如:|1﹣3x |<3,得到﹣3<1﹣3x <3两个绝对值不等式的解法:法一:利用分界点分类讨论,例:解不等式 2|x ﹣3|+|x ﹣4|<2,①若x ≥4,则3x ﹣10<2,x <4,∴舍去.②若3<x <4,则x ﹣2<2,∴3<x <4.③若x ≤3,则10﹣3x <2,∴<x ≤3.综上,不等式的解集为.法二:利用数形结合去掉绝对值符号利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。
高一数学集合知识点归纳及典型例题一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn 图。
本 章 知 识 结 构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N 、N*、N +、Z 、Q 、R 要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如 {1,2,3,…,n ,…}●注意a 与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)AA A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集AC U{|,}x x U x A ∈∉且)()()()()()(B C A C B A C B C A C B A C UA C A A C A U U U U U U U U ===∅=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅例题讲解1.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )答案 B解析 由{}2|0N x x x =+=,得{1,0}N =-,则N M ⊂,选B.2.设U =R ,{|0}A x x =>,{|1}B x x =>,则UAB =( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x > 答案 B解析 对于{}1U C B x x =≤,因此UA B ={|01}x x <≤3.(北京文)设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<答案 A解析 本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运 算的考查∵1{|2},2A x x =-<<{}2{1}|11B x x x x =≤=-≤≤, ∴{12}AB x x =-≤<,故选A.4.(山东卷理)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为 ( )A.0B.1C.2D.4 答案 D解析 ∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴2164a a ⎧=⎨=⎩∴4a =,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题. 5.(全国卷Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N )=( ) A.{5,7} B.{2,4} C. {2.4.8} D. {1,3,5,6,7} 答案 C6.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 ( )A. 3个B. 2个C. 1个D. 无穷多个 答案 B解析 由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 7.设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -= ( ) A .1 B .1- C .2 D .2-答案 C8.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}答案 D解析 {}{}2log 12N x x x x =>=>,用数轴表示可得答案D 。
高一数学集合知识点及练习题由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的研究对象。
这次小编给大家整理了高一数学集合知识点及练习题,供大家阅读参考。
(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合” 。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合 A={a,b,c}。
a、b、c 就是集合 A 中的元素,记作a∈A,相反,d 不属于集合 A,记作 d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N 正整数集 N_或 N+整数集 Z 有理数集 Q 实数集 R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2}, {x|x-3>2}, {(x,y) |y=x2+1}③语言描述法:例: {不是直角三角形的三角形}例:不等式 x-3>2 的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y) |y=x2+3x+2}与 B={y|y=x2+3x+2}不同。
集合 A 中是数组元素(x,y),集合 B 中只有元素 y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合 A={1,2},集合 B={2,1},则集合A=B。
例题:集合 A= {1,2},B= {a,b},若 A=B,求 a、b 的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇()A C B UA A U U U ==∅=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)例题讲解1.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )答案 B解析 由{}2|0N x x x =+=,得{1,0}N =-,则N M ⊂,选B.2.设U =R ,{|0}A x x =>,{|1}B x x =>,则U AB =ð( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x > 答案 B解析 对于{}1U C B x x =≤,因此U A B =ð{|01}x x <≤3.(北京文)设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<答案 A解析 本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运 算的考查∵1{|2},2A x x =-<<{}2{1}|11B x x x x =≤=-≤≤, ∴{12}AB x x =-≤<,故选A.4.(山东卷理)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为 ( )A.0B.1C.2D.4 答案 D解析 ∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴2164a a ⎧=⎨=⎩∴4a =,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题. 5.(全国卷Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N )=( ) A.{5,7} B.{2,4} C. {2.4.8} D. {1,3,5,6,7} 答案 C6.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 ( )A. 3个B. 2个C. 1个D. 无穷多个 答案 B解析 由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 7.设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -= ( ) A .1 B .1- C .2 D .2-答案 C8.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}答案 D解析 {}{}2log 12N x x x x =>=>,用数轴表示可得答案D 。
高一数学集合知识点归纳及典型例题一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.集合的基本运算(8)交集、并集、补集例题讲解1、已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )2、设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B = ð( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >3、设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<4、集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B = ,则a 的值为 ( )A.0B.1C.2D.45、已知全集U={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N)= ( ) A.{5,7} B.{2,4} C. {2.4.8} D. {1,3,5,6,7}6、设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -=( ) A .1B .1-C .2D .2-7、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3} 8、设集合S ={x |5<x },T ={x |0)3)(7(<-+x x }.则T S ⋂ =( ) A.{x |-7<x <-5 } B.{x | 3<x <5 } C.{x | -5 <x <3} D.{x | -7<x <5 9、设集合{}1|3,|04x A x x B x x -⎧⎫=>=<⎨⎬-⎩⎭,则A B =( )A. ∅B. ()3,4C.()2,1-D. ()4.+∞10、已知全集U=R ,集合2{|20}A x x x =->,则U A ð等于A.{ x ∣0≤x ≤2}B.{ x ∣0<x<2}C.{ x ∣x<0或x>2}D.{ x ∣x ≤0或x ≤2}11、已知集合M =﹛x|-3<x ≤5﹜,N =﹛x|x <-5或x >5﹜,则M N = ( )A.﹛x|x <-5或x >-3﹜B.﹛x|-5<x <5﹜C.﹛x|-3<x <5﹜D.﹛x|x <-3或x >5﹜ 12、已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B =I ( ) A.}{1,5,7 B.}{3,5,7C.}{1,3,9 D.}{1,2,313、设集合{}{}2|5,|4210,S x x T x x x =<=+-<则S T =A.{}|75x x -<<- B.{}|35x x << C.{}|53x x -<< D.{}|75x x -<<14、若集合{}{}|0.|3A x x B x x =>=<,则A B 等于A .{|0}x x <B {|03}x x <<C {|4}x x >D R二、填空题15、已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ .16、若{}3A x R x =∈<,{}21xB x R =∈>,则A B = .17、 已知集体A={x|x ≤1},B={x |≥a},且A ∪B=R ,则实数a 的取值范围是__________________.18、某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_ ___19、集合∈=<--∈=x B x x R x A {},06|{2R| }2|2|<-x ,则B A = . 三、解答题:20.已知{}4||<-=a x x A ,{}3|2|>-=x x B . (I )若1=a ,求B A ;(II )若=B A R ,求实数a 的取值范围.集合测试题一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( )A 7B 8C 9D 103、若{1,2}⊆A ⊆{1,2,3,4,5}则满足条件的集合A 的个数是 ( )A. 6B. 7C. 8D. 94、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( )A . {1,2,3} B. {2} C. {1,3,4} D. {4}5、方程组 11x y x y +=-=- 的解集是 ( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}6、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,{}2|20,x x x Z -=∈是空集中,错误的个数是 ( )A 4B 3C 2D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集8、设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 410、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a Pb Q ∈∈,则有 ( )A a b P +∈B a b Q +∈C a b R +∈D a b +不属于P 、Q 、R 中的任意一个 二、填空题11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。
高一数学集合知识点归纳及典型例题
Revised on November 25, 2020
集合
一、知识点:
1、元素:
(1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;
(2)集合中对象元素的性质:确定性、互异性、无序性;
(3)集合表示方法:列举法、描述法、图示法;
(4)常用数集:R Q Z N N N ;;;;;*+
2、集合的关系:
子集
相等
3、全集
交集
并集
补集
4、集合的性质:
(1);,,A B B A A A A A ⋂=⋂=⋂=⋂φφ
(2) ;,A B B A A A ⋃=⋃=⋃φ
(3) );()(B A B A ⋃⊆⋂
(4);B B A A B A B A =⋃⇔=⋂⇔⊆
(5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ⋂=⋃⋃=⋂
二、典型例题
例1. 已知集合
}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。
例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。
例3. 已知集合
},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。
\
例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A
={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。
例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,
(1)若Φ=B A , 求m 的范围;
(2)若A B A = , 求m 的范围。
例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。
三、练习题
1. 设集合M =,24},17|{=≤a x x 则( )
A. M a ∈
B. M a ∉
C. a = M
D. a > M
2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合
}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正
确命题的个数是( )
A. 0
B. 1
C. 2
D. 3
3. 下列集合中,表示同一集合的是( )
A. M ={(3,2)} , N ={(2,3)}
B. M ={3,2} , N ={(2,3)}
C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}
={1,2}, N ={2,1}
4. 设集合
}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是( )
A. }21,2,3{-
B. {-3}
C. }21,3{-
D. {-3,
2}
5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a 的范围是( )
A. 2≥a
B. 2>a
C. 1≤a
D. 1>a
6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x y y x , 则集合A ,B 的
关系是( )
A. A B
B. B A
C. A =B
D. A ⊆B
7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( )
A. Φ
B. M
C. N
D. R
8. 已知A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________
9. 若
A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____
10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________
11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值
12. 已知集合
B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。
13. 已知
}065|{},019|{222=+-==-+-=x x x B a ax x x A ,且A ,B 满足下列三个条件:① B A ≠ ② B B A = ③ ΦB A ,求实数a 的值。
四、练习题答案
1. B
2. A
3. D
4. C
5. A
6. B
7. C
8. {0,1,2}
9. 2,或3
10. {1,2,3}或{1,2,3,4}或{1,2,3,5}或{1,2,3,4,5}
11. 解:依题意,得:⎩⎨⎧==22b b a a 或⎩⎨⎧==a b b a 22,解得:⎩⎨⎧==00b a ,或⎩⎨⎧==10b a ,或
⎪⎩⎪⎨⎧==
2141b a
结合集合元素的互异性,得⎩⎨⎧==10b a 或⎪⎩
⎪⎨⎧==2141b a 。
12. 解:B ={x|x<-1, 或x>2}
① 若A = Φ,即 0416≤-=∆p ,满足A ⊆B ,此时4≥p
② 若Φ≠A ,要使A ⊆B ,须使大根142-≤-+-p 或小根242≥---p (舍),解得:43≤≤p
所以 3≥p
13. 解:由已知条件求得B ={2,3},由B B A = ,知A ⊆B 。
而由 ①知B A ≠,所以A B 。
又因为ΦB A ,故A≠Φ,从而A ={2}或{3}。
当A ={2}时,将x =2代入01922=-+-a ax x ,得
019242=-+-a a 53或-=∴a 经检验,当a = -3时,A ={2, - 5}; 当a =5时,A ={2,3}。
都与A ={2}矛盾。
当A = {3}时,将x =3代入01922=-+-a ax x ,得
经检验,当a = -2时,A ={3, - 5}; 当a =5时,A ={2,3}。
都与A ={2}矛盾。
综上所述,不存在实数a 使集合A , B 满足已知条件。