带电粒子在电场中的直线运动
- 格式:doc
- 大小:301.50 KB
- 文档页数:7
第15课时 带电粒子在电场中的运动:偏转问题一、知识内容:1、受力:不计重力,只受电场力。
2、运动性质:(类平抛运动)水平方向:不受力-----匀速直线运动;竖直方向:受电场力(恒力)----初速为0的匀加速;3、规律:(记住推导过程)电场中运动时间:0v l t =; 加速度:md qU m qE m F a ===; 侧向位移:dmv qUl v l md qU at y 2022022)(2121===; 侧向速度:dmv qUl v l md qU at v y 00=⨯==; 出电场速度:220y v v v +=; 速度偏向角θ:dmv qUl v v y200tan ==θ;从进电场到出电场:y qE W ⨯=电; 4、推论:(1)粒子出电场时v 方向的反向延长线过水平线的中点: xy v v y==0tan θ; 2l x =∴; (2)不论何种粒子,经同一加速电场和同一偏转电场后偏转情况相同(θ,y 相同),打 在屏上同一点。
d U l U d mv l qU at y 122202224221===; d U l U d mv l qU 1220222tan ==θ; 二、例题分析:【例1】如图所示,有三个质量相等,分别带正电、带负电和不带电的小球,从平行板电场的中点以相同的初速度垂直于电场方向进入电场,它们分别落在A 、B 、C 三点,可以判断( )A .落在A 点的小球带正电,落在B 点的小球不带电B .三个小球在电场中运动的时间相等C .三个小球到达极板时的动能关系为E kA >E kB >E kCD .三个小球在电场中运动时的加速度关系为a A >a B >a C【例2】如图,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行金属板间的电场中,射入方向与极板平行,整个装置处于真空中,重力不计,在满足电子射出的条件下,一定能使电子的偏转角θ变大的是:( )A 、U 1变大,U 2变大;B 、U 1变小,U 2变大;C 、U 1变大,U 2变小;D 、U 1变小,U 2变小【例3】两平行金属板水平放置,相距为d ,离板右端相距板长处放一挡板,高度等于d ,与板等高,与挡板相距板长处有一竖直长屏,一群正负粒子以不同初速沿极板中线水平射入,求:屏上发光的长度?三、课堂练习:1、如图所示,一电子枪发射出的电子(初速度很小,可视为零)进入加速电场加速后,垂直射入偏转电场,射出后偏转位移为y ,要使偏转位移增大,下列哪些措施是可行的( )A .增大偏转电压UB .减小加速电压U 0C .增大极板间距离D .将发射电子改成发射负离子2、一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a 和b ,从电容器边缘的P点(如图所示)以相同的水平速度射入两平行板之间.测得a 和b 与电容器极板的撞击点到入射点之间的水平距离之比为1∶2.若不计重力,则a 和b 的比荷之比是( )A .1∶2B .1∶8C .2∶1D .4∶13、真空中的某装置如图所示,其中平行金属板A 、B 之间有加速电场,C 、D 之间有偏转 电场,M 为荧光屏.今有质子、氘核和α粒子均由A 板从静止开始被加速电场加速后垂 直于电场方向进入偏转电场,最后打在荧光屏上.已知质子、氘核和α粒子的质量之比 为1∶2∶4,电荷量之比为1∶1∶2,则下列判断中正确的是( )A .三种粒子从B 板运动到荧光屏经历的时间相同B .三种粒子打到荧光屏上的位置相同C .偏转电场的电场力对三种粒子做功之比为1∶2∶2D .偏转电场的电场力对三种粒子做功之比为1∶2∶44、如图所示,质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A .它们运动的时间t Q >t PB .它们运动的加速度a Q <a PC .它们所带的电荷量之比q P ∶q Q =1∶2D .它们的动能增加量之比ΔE kP ∶ΔE kQ =1∶25、如图所示,带电的粒子以一定的初速度v 0沿两板的中线进入水平放置的平行金属板内, 恰好沿下板的边缘飞出,已知板长为L ,板间距离为d ,板间电压为U ,带电粒子的电 荷量为q ,粒子通过平行金属板的时间为t(不计粒子的重力),则( )A .在前t 2时间内,电场力对粒子做的功为Uq 4B .在后t 2时间内,电场力对粒子做的功为38Uq C .在粒子下落前d 4和后d 4的过程中,电场力做功之比为1∶2 D .在粒子下落前d 4和后d 4的过程中,电场力做功之比为2∶16、如图所示,A 板发出的电子经加速后,水平射入水平放置的两平行金属板间,金属板间所加的电压为U ,电子最终打在光屏P 上,关于电子的运动,则下列说法中正确的是:( )A .滑动触头向右移动时,其他不变,则电子打在荧光屏上的位置上升B .滑动触头向左移动时,其他不变,则电子打在荧光屏上的位置上升C .电压U 增大时,其他不变,则电子打在荧光屏上的速度大小不变D .电压U 增大时,其他不变,则电子从发出到打在荧光屏上的时间不变第15课时带电粒子在电场中的运动:偏转问题参考答案【例1】:A【例2】:B5;【例3】:上下发光长度相等:d3课堂练习:题号 1 2 3 4 5 6答案AB D B C B BD。
专题24 带电粒子在电场中的运动重点知识讲解 一、带电粒子在匀强电场中的加速1.带电粒子在电场中运动时,重力一般远小于静电力,因此重力可以忽略。
2.如图所示,匀强电场中有一带正电q 的粒子(不计重力),在电场力作用下从A 点加速运动到B 点,速度由v 0增加到v.,A 、B 间距为d ,电势差为U AB.(1)用动力学观点分析:Eq a m =, U E d=,2202v v ad -= (2)用能量的观点(动能定理)分析:2201122AB qU mv mv =- 能量观点既适用于匀强电场,也适用于非匀强电场,对匀强电场又有AB W qU qEd ==。
二、带电粒子在匀强电场中的偏转(1)带电粒子以垂直于电场线方向的初速度v 0进入匀强电场时,粒子做类平抛运动。
垂直于场强方向的匀速直线运动,沿场强方向的匀加速直线运动。
(2)偏转问题的处理方法,类似于平抛运动的研究方法,粒子沿初速度方向做匀速直线运动,可以确定通过电场的时间0lt v =。
粒子沿电场线方向做初速度为零的匀加速直线运动,加速度F qE qU a m m md===; 穿过电场的位移侧移量:221at y =222001().22Uq l ql U md v mv d=⋅=; 穿过电场的速度偏转角: 20tan y v qlU v mv dθ==。
两个结论:(1)不同的带电粒子从静止开始,经过同一电场加速后再进入同一偏转电场,射出时的偏转角度总是相同的。
(2)粒子经过电场偏转后,速度的反向延长线与初速度延长线的交点为粒子水平位移的中点。
(与平抛运动的规律一样) 三、示波管的构造原理(1)示波管的构造:示波器的核心部件是示波管,示波管的构造简图如图所示,也可将示波管的结构大致分为三部分,即电子枪、偏转电极和荧光屏。
(2)示波管的原理a 、偏转电极不加电压时,从电子枪射出的电子将沿直线运动,射到荧光屏的中心点形成一个亮斑。
b 、在XX '(或YY ')加电压时,则电子被加速,偏转后射到XX '(或YY ')所在直线上某一点,形成一个亮斑(不在中心),如图所示。
带电粒子在三种典型电场中的运动问题解析张路生淮安贝思特实验学校 江苏 淮安 邮编:211600淮安市经济开发区红豆路8号 tel:带电粒子在电场中的运动是每年高考的热点和重点问题,带电粒子在电场中的运动主要有直线运动、往复运动、类平抛运动等。
考查的类型主要有:带电粒子在点电荷电场中的运动、带电粒子在匀强电场中的运动和带电粒子在交变电场中的运动。
这类试题可以拟定不同的题设条件,从不同角度提出问题,涉及力学、电学的很多关键知识点,要求学生具有较强的综合分析能力。
下面笔者针对三种情况分别归纳总结。
初速度与场强方向的关系 运动形式 υ0∥E 做变速直线运动 υ0⊥E 可能做匀速圆周运动 υ0与E 有夹角 做曲线运动【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是A 将质子从a 点由静止释放,质子向b 点做匀加速运动B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b 点的速率为2/2υC 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υD 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2/2υ 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得2/qU m υ=,由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有22Qq k m r r υ=成立,可得/kQq mr υ=,据此判断C 错D 对。
答案:BD2、根据带电粒子在电场的运动判断点电荷的电性【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。
带电粒子在电场运动规律透析一、带电粒子在电场中的加速1运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动。
2用功能观点分析:电场力对带电粒子动能的增量。
2022121mv mv qU -= 说明:①此法不仅适用于匀强电场,也适用于非匀强电场。
②对匀强电场,也可直接应用运动学公式和牛顿第二定律典型例题例1:1:如图所示,两平行金属板竖直放置,如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。
右极板电势随时间变化的规律如图所示。
电子原来静止在左极板小孔处。
(不计重力作用)下列说法中正确的是法中正确的是A.A.从从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.B.从从t=0时刻释放电子,电子可能在两板间振动C.C.从从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.D.从从t=3T /8时刻释放电子,电子必将打到左极板上解析:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /2,接着匀减速T /2,速度减小到零后,又开始向右匀加速T /2,接着匀减速T /2直到打在右极板上。
……直到打在右极板上。
电子不可能向左运动;电子不可能向左运动;电子不可能向左运动;如果两板间距离不够大,电子如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。
从t=T /4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /4,接着匀减速T /4,速度减小到零后,改为向左先匀加速T /4,接着匀减速T /4。
即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。
子在第一次向右运动过程中就有可能打在右极板上。
从从t=3T /8时刻释放电子,时刻释放电子,如如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。
高中物理必修三专题强化训练—带电粒子在交变电场中的运动一、带电粒子在交变电场中的直线运动1.此类问题中,带电粒子进入电场时初速度为零,或初速度方向与电场方向平行,带电粒子在交变静电力的作用下,做加速、减速交替的直线运动.2.该问题通常用动力学知识分析求解.重点分析各段时间内的加速度、运动性质、每段时间与交变电场的周期T间的关系等.常用v-t图像法来处理此类问题,通过画出粒子的v-t图像,可将粒子复杂的运动过程形象、直观地反映出来,便于求解.在如图1所示的平行板电容器的两板间分别加如图2甲、乙所示的两种电压,开始B板的电势比A板高.在静电力作用下原来静止在两板中间的电子开始运动.若两板间距足够大,且不计重力,试分析电子在两种交变电压作用下的运动情况,并定性画出相应的v-t图像.图1图2答案见解析解析t=0时,B板电势比A板高,在静电力作用下,电子向B板(设为正向)做初速度为零的匀加速直线运动.对于题图甲所示电压,在0~12T内电子做初速度为零的正向匀加速直线运动,12T~T内电子做末速度为零的正向匀减速直线运动,然后周期性地重复前面的运动,其速度—时间图像如图(a)所示.对于题图乙所示电压,在0~T2内做类似题图甲0~T的运动,T2~T内电子做反向先匀加速、后匀减速、末速度为零的直线运动.然后周期性地重复前面的运动,其速度—时间图像如图(b)所示.针对训练1(多选)如图3(a)所示,A、B是一对平行的金属板,在两板间加上一周期为T的交变电压U,A板的电势φA=0,B板的电势φB随时间的变化规律如图(b)所示.现有一电子从A板上的小孔进入两板间的电场区域,设电子的初速度和重力可忽略.则()图3A.若电子是在t=0时刻进入的,它将一直向B板运动B.若电子是在t=T8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上C.若电子是在t=38T时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B 板上D .若电子是在t =T 2时刻进入的,它可能时而向B 板运动,时而向A 板运动答案AB 解析根据电子进入电场后的受力情况和运动情况,作出如图所示的图像.由图丁可知,当电子在t =0时刻进入电场时,电子一直向B 板运动,A 正确.若电子在T 8时刻进入电场,则由图丁知,电子向B 板运动的位移大于向A 板运动的位移,因此最后仍能打在B 板上,B 正确.若电子在3T 8时刻进入电场,则由图丁知,在第一个周期电子即返回至A 板,C 错误.若电子在T 2时刻进入电场,则它一靠近小孔便受到排斥力,根本不能进入电场,即D 错误.二、带电粒子在交变电场中的曲线运动带电粒子以一定的初速度垂直于电场方向进入交变电场,粒子做曲线运动.(1)若带电粒子的初速度很大,粒子通过交变电场时所用时间极短,故可认为粒子所受静电力为恒力,粒子在电场中做类平抛运动.(2)若粒子运动时间较长,在初速度方向做匀速直线运动,在垂直初速度方向利用v y -t 图像进行分析:①v y =0时,速度方向沿v 0方向.②y 方向位移可用v y -t 图像的面积进行求解.如图4甲所示,极板A 、B 间的电压为U 0,极板C 、D 间的间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速度地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过C 、D 板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 板间飞出,不计粒子的重力及粒子间的相互作用.求:图4(1)C 、D 板的长度L ;(2)粒子从C 、D 两极板间飞出时垂直于极板方向偏移的最大距离;(3)粒子打在荧光屏上区域的长度.答案(1)t 02qU 0m (2)qU 1t 022md (3)3qU 1t 022md解析(1)粒子在A 、B 板间,有qU 0=12mv 02,在C 、D 板间有L =v 0t 0,解得L =t 02qU 0m .(2)粒子从nt 0(n =0,2,4…)时刻进入C 、D 间,偏移距离最大,粒子做类平抛运动,偏移距离y =12at 02,加速度a=qU1 md,解得y=qU1t02 2md.(3)粒子在C、D间偏转距离最大时打在荧光屏上的位置距中心线最远,从C、D板飞出的偏转角tanθ=v y v0,v y=at0,打在荧光屏上的位置距中心线的最远距离s=y+L tanθ,粒子打在荧光屏上的区域长度Δs=s=3qU1t02 2md.针对训练2(多选)如图5甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线且垂直于电场方向源源不断地射入电场,粒子射入电场时的初动能均为E k0,已知t=0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场,不计粒子间的相互作用,则()图5A.所有粒子都不会打到两极板上B.所有粒子最终都垂直电场方向射出电场C.运动过程中所有粒子的最大动能不可能超过2E k0D.只有t=n T2(n=0,1,2,…)时刻射入电场的粒子才能垂直电场方向射出电场答案ABC解析带电粒子在垂直于电场方向上做匀速直线运动,在沿电场方向上,做加速度大小不变、方向周期性变化的变速直线运动.由t=0时刻进入电场的粒子运动情况可知,粒子在平行金属板间运动的时间为周期性变化的电场的周期的整数倍.在0~T2时间内带电粒子运动的加速度a=E0qm,由匀变速直线运动规律得v y=at=E0qmt,同理可分析T2~T时间内的运动情况,所以带电粒子在沿电场方向的速度v y与E-t图线所围面积成正比(时间轴下方的面积取负值).而经过整数个周期,E-t图像与坐标轴所围面积始终为零,故带电粒子离开电场时沿电场方向的速度总为零,B正确,D错误;在t=0时刻入射的带电粒子,侧向位移最大,故其他粒子均不可能打到极板上,A正确;当粒子在t=0时刻入射且经过时间T离开电场时,粒子在t=T2时达到最大速度,此时竖直方向的位移与水平方向的位移之比为1∶2,即v0t=2×12at2,可得v y=v0,故粒子的最大速度为v=2v0,因此最大动能为初动能的2倍,C正确.1.在如图1甲所示的平行板电容器A、B两板上加上如图乙所示的交变电压,开始时B板的电势比A板的高,这时两板中间原来静止的电子(图甲中黑点所示)在静电力作用下开始运动,则下列说法正确的是(不计电子重力)()图1A.电子先向A板运动,然后向B板运动,再返回A板做周期性往返运动B.电子一直向A板运动C.电子一直向B板运动D.电子先向B板运动,然后向A板运动,再返回B板做周期性往返运动答案C2.(多选)带正电的微粒放在电场中,场强的大小和方向随时间变化的规律如图2所示.带电微粒只在静电力的作用下由静止开始运动,则下列说法中正确的是()图2A.微粒在0~1s内的加速度与1~2s内的加速度相同B.微粒将沿着一条直线运动C.微粒将做往复运动D.微粒在第1s内的位移与第3s内的位移相同答案BD解析设微粒的速度方向、位移方向向右为正,作出微粒的v-t图像如图所示.由图可知B、D选项正确.3.在空间中有正方向水平向右、大小按如图3所示图线变化的电场,位于电场中A 点的电子在t=0时速度为零,在t=1s时,电子离开A点的距离为l.那么在t=2s时,电子将处在()图3A.A点B.A点左方l处C.A点右方2l处D.A点左方2l处答案D解析第1s内电场方向向右,电子受到的静电力方向向左,电子向左做匀加速直线运动,位移大小为l,第2s内电子受到的静电力方向向右,由于电子此时有向左的速度,因而电子继续向左做匀减速直线运动,根据运动的对称性,位移大小也是l,t=2s时电子的总位移大小为2l,方向向左,故选D.4.(多选)如图4甲所示,平行金属板中央有一个静止的电子(不计重力),两板间距离足够大.当两板间加上如图乙所示的交变电压后,下列四个选项中的图像,反映电子速度v、位移x和加速度a三个物理量随时间t的变化规律可能正确的是()图4答案AD解析由平行金属板间所加电压的周期性可推知粒子加速度的周期性,D项正确;由v=at可知,A项正确,C项错误;由x=12at2知x-t图像应为曲线,B项错误.5.(多选)如图5甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示,电子原来静止在左极板小孔处,不计电子的重力,下列说法正确的是()图5A.若t=0时刻释放电子,电子始终向右运动,直到打到右极板上B.若t=0时刻释放电子,电子可能在两板间往返运动C.若t=T4时刻释放电子,电子可能在两板间往返运动,也可能打到右极板上D.若t=3T8时刻释放电子,电子必然回到左极板答案AC解析若t=0时刻释放电子,电子将重复先匀加速后匀减速的运动,直到打到右极板,不会在两极板间做往返运动,所以选项A 正确,B 错误;若t =T 4时刻释放电子,电子先做匀加速运动后做匀减速运动,分析易知前T 2内电子可能到达右极板,若前T 2时间内电子未到达右极板,则电子将在两极板间做往返运动,所以选项C 正确;同理,若t =3T 8时刻释放电子,电子有可能到达右极板,也有可能回到左极板,这取决于两板间的距离,所以选项D 错误.6.如图6(a)所示,两平行正对的金属板A 、B 间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处,若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上,则t 0可能属于的时间段是()图6A.0<t 0<T 4B.T 2<t 0<3T 4C.3T 4<t 0<T D .T <t 0<9T 8答案B 解析两板间加的是方波电压,刚释放粒子时,粒子向A 板运动,说明释放粒子时U AB 为负,所以选项A 、D 错误;若T 2<t 0<34T ,带正电粒子先加速向A 板运动、再减速运动至零;然后再反方向加速运动、减速运动至零;如此反复运动,每次向左运动的距离大于向右运动的距离,最终打在A 板上,所以选项B 正确;若34T <t 0<T ,带正电粒子先加速向A 板运动、再减速运动至零、然后再反方向加速运动、减速运动至零;如此反复运动,每次向左运动的距离小于向右运动的距离,最终打在B 板上,所以选项C 错误.7.(多选)如图7(a)所示,A 、B 表示真空中水平放置的相距为d 的平行金属板,板长为L ,两板间加电压后板间的电场可视为匀强电场.现在A 、B 两板间加上如图(b)所示的周期性的交变电压,在t =0时恰有一质量为m 、电荷量为+q 的粒子在左侧板间中央沿水平方向以速度v 0射入电场,忽略粒子的重力,则下列关于粒子运动状态的表述中正确的是()图7A.粒子在垂直于板的方向上的分运动可能是往复运动B.粒子在垂直于板的方向上的分运动是单向运动C.只要周期T 和电压U 0的值满足一定条件,粒子就可沿与板平行的方向飞出D.粒子不可能沿与板平行的方向飞出答案BC8.(多选)如图8甲所示,在A 、B 两极板间加上如图乙所示的交变电压,A 板接地,一质量为m 、电荷量为q 的电子在t =T 4时刻进入两极板,仅在静电力作用下,由静止开始运动,恰好能到达B 板,则()图8A.A、B两板间的距离为qU0T216mB.电子在两板间的最大速度为qU0mC.电子在两板间做匀加速直线运动D.若电子在t=T8时刻进入两极板,它将时而向B板运动,时而向A板运动,最终打在B板上答案AB解析电子在静电力作用下,加速度大小不变,方向变化,选项C错误;电子在t=T4时刻进入两极板,先加速后减速,在t=3T4时刻到达B板,设A、B两板的间距为d,则12·qU0mdT4=d2,解得d=qU0T216m,选项A正确;在t=T2时电子的速度最大,则v m=qU0md·T4=qU0m,选项B正确;若电子在t=T8时刻进入两极板,在T8~T2内电子做匀加速运动,位移x=12·qU0md3T82=9d8>d,说明电子会一直向B板运动并打在B板上,不会向A板运动,选项D错误.9.如图9甲所示,在xOy坐标系中,两平行金属板AB、OD水平放置,OD与x 轴重合,板的左端与原点O重合,板长L=2m,板间距离d=1m,紧靠极板右侧有一荧光屏.两金属板间电压U AO随时间的变化规律如图乙所示,变化周期为T=2×10-3s ,U 0=1×103V ,一带正电的粒子从左上角A 点,以平行于AB 边v 0=1000m/s 的速度射入板间,粒子电荷量为q =1×10-5C ,质量m =1×10-7kg.不计粒子所受重力.求:图9(1)粒子在板间运动的时间;(2)粒子打到荧光屏上的纵坐标的范围;(3)粒子打到荧光屏上的动能.答案(1)2×10-3s (2)范围在0.85m ~0.95m 之间(3)5.05×10-2J解析(1)板间粒子在水平方向上做沿x 轴方向的匀速直线运动,设运动时间为t ,则L =v 0t ,t =L v 0=2×10-3s.(2)t =0时刻射入的粒子在板间偏转量最大,设为y 1,y 1=12a U 0q d=ma ,解得y 1=0.15m.纵坐标y =d -y 1=0.85m ,t =1×10-3s 时刻射入的粒子在板间偏转量最小,设为y 2,y2=12a,解得y2=0.05m,纵坐标y′=d-y2=0.95m,所以打到荧光屏上的纵坐标的范围在0.85m~0.95m之间.(3)分析可知粒子打到荧光屏上的动能相同,设为E k,由动能定理得:U0dqy2=E k-12mv02,解得E k=5.05×10-2J.。
电场中带电粒子的运动轨迹电场是由电荷产生的一种物理现象,而带电粒子则是电场中最基本的存在形式。
在电场中,带电粒子的运动轨迹受到电场力的影响,从而呈现出各种有趣的运动形式。
本文将探讨电场中带电粒子的运动轨迹及其相关特性。
一、静电场中的带电粒子运动轨迹静电场是指电场随时间不变的情况,即没有电荷的运动或改变。
在静电场中,带电粒子受到的力就是电场力,其大小与带电粒子电荷量以及电场强度有关。
根据静电场中带电粒子的运动特点,轨迹可分为以下几种情况:1. 电荷为正的带电粒子在均匀电场中的运动轨迹当电荷为正的带电粒子置于均匀电场中时,受到的电场力的方向与电场强度方向相同。
由于正电荷受到的电场力的方向与位移方向相反,因此电荷会受到一个向相反方向的加速度。
根据运动学原理,带电粒子的运动轨迹将是一个向相反方向的抛物线。
2. 电荷为负的带电粒子在均匀电场中的运动轨迹当电荷为负的带电粒子置于均匀电场中时,受到的电场力的方向与电场强度方向相反。
由于负电荷受到的电场力的方向与位移方向相同,因此电荷会受到一个向正方向的加速度。
同样根据运动学原理,带电粒子的运动轨迹将是一个向正方向的抛物线。
3. 电荷在非均匀电场中的运动轨迹在非均匀电场中,电场强度在空间中存在差异。
当带电粒子置于非均匀电场中时,受到的电场力的大小和方向将随着粒子位置的变化而改变。
因此,带电粒子的运动轨迹将不再是简单的抛物线,而是受到电场强度变化的影响而呈现出复杂的形态。
二、运动轨迹的特性除了在不同类型的电场中呈现不同的运动轨迹外,带电粒子的运动轨迹还具备一些特性,对于分析电场中的粒子运动非常重要。
1. 对称性在均匀电场中,带电粒子的运动轨迹是对称的,即垂直于电场强度方向的轨迹形状相同。
这表明带电粒子在均匀电场中的运动是相互独立的,并且与具体位置无关。
2. 粒子速度带电粒子在电场中具有初速度时,其运动轨迹将发生变化。
初速度的大小及方向将决定粒子在电场中的路径。
例如,初速度的大小过大可能导致粒子脱离电场,而初速度的方向则会影响运动轨迹的弯曲程度。
带电粒子在匀强电场中运动的规律总结1.带电粒子在匀强电场中平衡带电粒子在电场中处于静止状态或匀速直线运动状态。
设匀强电场两极电压为U ,板减距离为d ,则:mg=qE ,Umgd E mg q ==2.带电粒子在匀强电场中的加速 带电粒子沿电场线平行的方向进入匀强电场,受到电场俩的方向与运动方向在同一条直线上,做匀加速直线运动,粒子的动能的变化量等于电势能的变化量。
即:2022121mv mv qU -=。
3.带电粒子在匀强电场中的偏转 带电粒子以速度v 0垂直于电场线方向飞入匀强电场时,受到的恒的与初速度方向成900角的电场力作用做匀变速曲线运动,可用类似平抛运动的方法处理。
即: md qU m qE a ==,0v L t =(L 为平行板的板长)。
偏转距离:2022221mdv qUL at y ==; 偏转角:200mdv qUL v at tg ==θ; 横向速度:0mdv qUL ai v ==⊥ 拓展讨论:如图3所示,质量为m ,带电量为q 的带正电的粒子,以初速度v 0垂直于电场的方向,从两个极板中间射入匀强电场。
已知极板间的电压为U ,且上极板带正电,极板的长度为L ,两极板间的距离为d 。
则带电粒子在匀强电场中运动的时间为:(1)带电粒子打不出电场时,带电粒子在电场中运动的时间是由电场中的加速时间决定的,其值为:mqU Uqd t =1。
(2)带电粒子打出电场时,带电粒子在电场中运动的时间是由垂直电场方向上的匀速运动时间决定的,其值为:2v L t =。
(3)带电粒子恰打出电场时,带电粒子在电场中运动的时间是由垂直电场方向上的匀速运动时间决定的,也可以说是由沿电场方向上的加速运动决定。
即有:图3t 1=t 2。
4.带同种电荷的不同粒子经过同一个加速电场进入同一个偏转电场,它们的运动轨迹相同。
即偏转位移、横向速度、偏转角皆相同,如果在偏转电场一侧沿电场方向放一个荧光屏,则荧光屏上只有一个亮点。
带电粒子在电场和磁场中的运动要点归纳一、不计重力的带电粒子在电场中的运动1.带电粒子在电场中加速当电荷量为q 、质量为m 、初速度为v 0的带电粒子经电压U 加速后,速度变为v t ,由动能定理得:qU =12m v t 2-12m v 02.若v 0=0,则有v t =2qU m,这个关系式对任意静电场都是适用的. 对于带电粒子在电场中的加速问题,应突出动能定理的应用.2.带电粒子在匀强电场中的偏转电荷量为q 、质量为m 的带电粒子由静止开始经电压U 1加速后,以速度v 1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图4-1所示).图4-1 qU 1=12m v 12 设两平行金属板间的电压为U 2,板间距离为d ,板长为L .(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x =v 1,L =v 1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y =at ,y =12at 2,a =qE m =qU 2md. (2)带电粒子离开极板时侧移距离y =12at 2=qU 2L 22md v 12=U 2L 24dU 1轨迹方程为:y =U 2x 24dU 1(与m 、q 无关) 偏转角度φ的正切值tan φ=at v 1=qU 2L md v 12=U 2L 2dU 1若在偏转极板右侧D 距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离y ′=(D +L 2)tan φ. 以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系.二、不计重力的带电粒子在磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m 、电荷量为q 的带电粒子以初速度v 垂直进入匀强磁场B 中做匀速圆周运动,其角速度为ω,轨道半径为R ,运动的周期为T ,则有:q v B =m v 2R =mRω2=m v ω=mR (2πT)2=mR (2πf )2 R =m v qBT =2πm qB (与v 、R 无关),f =1T =qB 2πm. 3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定①若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R ,可在该位置上作速度的垂线,垂线上距该位置R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2 图4-3 图4-4(2)粒子圆轨迹的半径的确定①可直接运用公式R =m v qB来确定. ②画出几何图形,利用半径R 与题中已知长度的几何关系来确定.在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图4-5所示.图4-5 (3)粒子做圆周运动的周期的确定①可直接运用公式T =2πm qB来确定. ②利用周期T 与题中已知时间t 的关系来确定.若粒子在时间t 内通过的圆弧所对应的圆心角为α,则有:t =α360°·T (或t =α2π·T ). (4)圆周运动中有关对称的规律①从磁场的直边界射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图4-6所示. ②在圆形磁场区域内,沿径向射入的粒子必沿径向射出,如图4-7所示.图4-6 图4-7(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切.三、带电粒子在复合场中的运动1.高中阶段所涉及的复合场有四种组合形式,即:①电场与磁场的复合场;②磁场与重力场的复合场;③电场与重力场的复合场;④电场、磁场与重力场的复合场.2.带电粒子在复合场中的运动性质取决于带电粒子所受的合外力及初速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析.当带电粒子在复合场中所受的合外力为零时,带电粒子做匀速直线运动(如速度选择器);当带电粒子所受的重力与电场力等值、反向,由洛伦兹力提供向心力时,带电粒子在垂直磁场的平面内做匀速圆周运动;当带电粒子所受的合外力是变力,且与初速度的方向不在一条直线上时,粒子做非匀变速曲线运动,运动轨迹也随之不规范地变化.因此,要确定粒子的运动情况,必须明确有几种场,粒子受几种力,重力是否可以忽略.3.带电粒子所受三种场力的特征(1)洛伦兹力的大小跟速度方向与磁场方向的夹角有关.当带电粒子的速度方向与磁场方向平行时,f 洛=0;当带电粒子的速度方向与磁场方向垂直时,f 洛=q v B .当洛伦兹力的方向垂直于速度v 和磁感应强度B 所决定的平面时,无论带电粒子做什么运动,洛伦兹力都不做功.(2)电场力的大小为qE ,方向与电场强度E 的方向及带电粒子所带电荷的性质有关.电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关.(3)重力的大小为mg ,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与其始末位置的高度差有关.注意:①微观粒子(如电子、质子、离子)一般都不计重力;②对带电小球、液滴、金属块等实际的物体没有特殊交代时,应当考虑其重力;③对未知名的、题中又未明确交代的带电粒子,是否考虑其重力,则应根据题给的物理过程及隐含条件具体分析后作出符合实际的决定.4.带电粒子在复合场中的运动的分析方法(1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解.(3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解.注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解. 由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解.热点、重点、难点一、根据带电粒子的运动轨迹进行分析推理图4-8●例1 如图4-8所示,MN 是一正点电荷产生的电场中的一条电场线.一个带负电的粒子(不计重力)从a 到b 穿越这条电场线的轨迹如图中虚线所示.下列结论正确的是( )A .带电粒子从a 到b 的过程中动能逐渐减小B .正点电荷一定位于M 点的左侧C .带电粒子在a 点时具有的电势能大于在b 点时具有的电势能D .带电粒子在a 点的加速度大于在b 点的加速度【解析】由做曲线运动的物体的受力特点知带负电的粒子受到的电场力指向曲线的内侧,故电场线MN 的方向为N →M ,正点电荷位于N 的右侧,选项B 错误;由a 、b 两点的位置关系知b 点更靠近场源电荷,故带电粒子在a 点受到的库仑力小于在b 点受到的库仑力,粒子在b 点的加速度大,选项D 错误;由上述电场力的方向知带电粒子由a 运动到b 的过程中电场力做正功,动能增大,电势能减小,故选项A 错误、C 正确.[答案] C【点评】本专题内容除了在高考中以常见的计算题形式出现外,有时候也以选择题形式出现,通过带电粒子在非匀强电场中(只受电场力)的运动轨迹来分析电场力和能的特性是一种重要题型,解析这类问题时要注意以下三点:①电场力一定沿电场线曲线的切线方向且一定指向轨迹曲线的内侧;②W 电=qU a b =E k b -E k a ;③当电场线为曲线时,电荷的运动轨迹不会与之重合.二、带电粒子在电场中的加速与偏转图4-9●例2 喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5 m ,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转板长1.6 cm ,两板间的距离为0.50 cm ,偏转板的右端距纸3.2 cm .若墨汁微滴的质量为1.6×10-10 kg ,以20 m/s 的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103 V ,其打到纸上的点距原射入方向的距离是2.0 mm .求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法.【解析】设墨汁微滴所带的电荷量为q ,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距原入射方向的距离为:y =12at 2+L tan φ又a =qU md ,t =l v 0,tan φ=at v 0解得:y =qUl md v 02(l 2+L ) 代入数据得:q =1.25×10-13 C要将字体放大10%,只要使y 增大为原来的 1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm .[答案] 1.25×10-13 C 将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm【点评】①本题也可直接根据推论公式y =(l 2+L )tan φ=(l 2+L )qUl md v 02进行计算. ②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tan θ=2tan α(α为射出点的位移方向与入射方向的夹角)的特点.★同类拓展1 如图4-10甲所示,在真空中,有一半径为R 的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M 和N ,两板间距为R ,板长为2R ,板间的中心线O 1O 2与磁场的圆心O 在同一直线上.有一电荷量为q 、质量为m 的带正电的粒子以速度v 0从圆周上的a 点沿垂直于半径OO 1并指向圆心O 的方向进入磁场,当从圆周上的O 1点水平飞出磁场时,给M 、N 两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N 板的速度从N 板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图4-10 (1)求磁场的磁感应强度B .(2)求交变电压的周期T 和电压U 0的值.(3)当t =T 2时,该粒子从M 、N 板右侧沿板的中心线仍以速度v 0射入M 、N 之间,求粒子从磁场中射出的点到a 点的距离.【解析】(1)粒子自a 点进入磁场,从O 1点水平飞出磁场,则其运动的轨道半径为R .由q v 0B =m v 02R ,解得:B =m v 0qR. (2)粒子自O 1点进入电场后恰好从N 板的边缘平行极板飞出,设运动时间为t ,根据类平抛运动规律有:2R=v 0tR 2=2n ·qU 02mR (T 2)2 又t =nT (n =1,2,3…)解得:T =2R n v 0(n =1,2,3…) U 0=nm v 022q(n =1,2,3…).图4-10丙(3)当t =T 2时,粒子以速度v 0沿O 2O 1射入电场,该粒子恰好从M 板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v 0,运动的轨迹半径为R .设进入磁场时的点为b ,离开磁场时的点为c ,圆心为O 3,如图4-10丙所示,四边形ObO 3c 是菱形,所以Oc ∥O 3b ,故c 、O 、a 三点共线,ca 即为圆的直径,则c 、a 间的距离d =2R .[答案] (1)m v 0qR(2)2R n v 0 (n =1,2,3…) nm v 022q(n =1,2,3…) (3)2R 【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”.三、带电粒子在有界磁场中(只受洛伦兹力)的运动1.带电粒子在磁场中的运动大体包含五种常见情境,即:无边界磁场、单边界磁场、双边界磁场、矩形边界磁场、圆形边界磁场.带电粒子在磁场中的运动问题综合性较强,解这类问题往往要用到圆周运动的知识、洛伦兹力,还要牵涉到数学中的平面几何、解析几何等知识.因此,解此类试题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”等)之外,更应侧重于运用数学知识进行分析.2.带电粒子在有界匀强磁场中运动时,其轨迹为不完整的圆周,解决这类问题的关键有以下三点. ①确定圆周的圆心.若已知入射点、出射点及入射方向、出射方向,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两直线的交点即为圆周的圆心;若已知入射点、出射点及入射方向,可通过入射点作入射线的垂线,连接入射点和出射点,作此连线的垂直平分线,两垂线的交点即为圆周的圆心.②确定圆的半径.一般在圆上作图,由几何关系求出圆的半径.③求运动时间.找到运动的圆弧所对应的圆心角θ,由公式t =θ2πT 求出运动时间. 3.解析带电粒子穿过圆形区域磁场问题常可用到以下推论:①沿半径方向入射的粒子一定沿另一半径方向射出.②同种带电粒子以相同的速率从同一点垂直射入圆形区域的匀强磁场时,若射出方向与射入方向在同一直径上,则轨迹的弧长最长,偏转角有最大值且为α=2arcsin R r =2arcsin RBq m v. ③在圆形区域边缘的某点向各方向以相同速率射出的某种带电粒子,如果粒子的轨迹半径与区域圆的半径相同,则穿过磁场后粒子的射出方向均平行(反之,平行入射的粒子也将汇聚于边缘一点).●例3 如图4-11甲所示,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (0,h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点,不计重力,求:图4-11甲(1)粒子到达x =R 0平面时的速度方向与x 轴的夹角以及粒子到x 轴的距离.(2)M 点的横坐标x M .【解析】(1)粒子做直线运动时,有:qE =qB v 0做圆周运动时,有:qB v 0=m v 02R 0只有电场时,粒子做类平抛运动,则有:qE =maR 0=v 0tv y =at解得:v y =v 0粒子的速度大小为:v =v 02+v y 2=2v 0速度方向与x 轴的夹角为:θ=π4粒子与x 轴的距离为:H =h +12at 2=h +R 02. (2)撤去电场加上磁场后,有:qB v =m v 2R解得:R =2R 0此时粒子的运动轨迹如图4-11乙所示.圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y轴的夹角均为π4.由几何关系可得C 点的坐标为:图4-11乙x C =2R 0y C =H -R 0=h -R 02 过C 点作x 轴的垂线,在△CDM 中,有:l CM =R =2R 0,l CD =y C =h -R 02解得:l DM =l CM 2-l CD 2=74R 02+R 0h -h 2 M 点的横坐标为:x M =2R 0+74R 02+R 0h -h 2. [答案] (1)π2 h +R 02 (2)2R 0+74R 02+R 0h -h 2 【点评】无论带电粒子在匀强电场中的偏转还是在匀强磁场中的偏转,偏转角往往是个较关键的量. ●例4 如图4-12甲所示,质量为m 、电荷量为e 的电子从坐标原点O 处沿xOy 平面射入第一象限内,射入时的速度方向不同,但大小均为v 0.现在某一区域内加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度大小为B ,若这些电子穿过磁场后都能垂直地射到与y 轴平行的荧光屏MN 上,求:图4-12甲 (1)荧光屏上光斑的长度.(2)所加磁场范围的最小面积.【解析】(1)如图4-12乙所示,要求光斑的长度,只要找到两个边界点即可.初速度沿x 轴正方向的电子沿弧OA 运动到荧光屏MN 上的P 点;初速度沿y 轴正方向的电子沿弧OC 运动到荧光屏MN 上的Q 点.图4-12乙设粒子在磁场中运动的半径为R ,由牛顿第二定律得:e v 0B =m v 02R ,即R =m v 0Be由几何知识可得:PQ =R =m v 0Be. (2)取与x 轴正方向成θ角的方向射入的电子为研究对象,其射出磁场的点为E (x ,y ),因其射出后能垂直打到屏MN 上,故有:x =-R sin θy =R +R cos θ即x 2+(y -R )2=R 2又因为电子沿x 轴正方向射入时,射出的边界点为A 点;沿y 轴正方向射入时,射出的边界点为C 点,故所加最小面积的磁场的边界是以(0,R )为圆心、R 为半径的圆的一部分,如图乙中实线圆弧所围区域,所以磁场范围的最小面积为:S =34πR 2+R 2-14πR 2=(π2+1)(m v 0Be)2. [答案] (1)m v 0Be (2)(π2+1)(m v 0Be)2 【点评】带电粒子在匀强磁场中偏转的试题基本上是年年考,大概为了求新求变,在2009年高考中海南物理卷(第16题)、浙江理综卷(第25题)中都出现了应用这一推论的题型.★同类拓展2 如图4-13甲所示,ABCD 是边长为a 的正方形.质量为m 、电荷量为e 的电子以大小为v 0的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:图4-13甲(1)此匀强磁场区域中磁感应强度的方向和大小.(2)此匀强磁场区域的最小面积.[2009年高考·海南物理卷]【解析】(1)若要使由C 点入射的电子从A 点射出,则在C 处必须有磁场,设匀强磁场的磁感应强度的大小为B ,令圆弧AEC 是自C 点垂直于BC 入射的电子在磁场中的运行轨道,电子所受到的磁场的作用力f =e v 0B ,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a .按照牛顿定律有: f =m v 02a联立解得:B =m v 0ea. (2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于BC 入射的电子在A 点沿DA 方向射出,且自BC 边上其他点垂直于入射的电子的运动轨道只能在BAEC 区域中,因而,圆弧AEC 是所求的最小磁场区域的一个边界.为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设0≤θ<π2)的情形.该电子的运动轨迹QP A 如图4-13乙所示.图中,圆弧AP 的圆心为O ,PQ 垂直于BC 边,由上式知,圆弧AP 的半径仍为a .过P 点作DC 的垂线交DC 于G ,由几何关系可知∠DPG =θ,在以D 为原点、DC 为x 轴、DA 为y 轴的坐标系中,P 点的坐标(x ,y )为:x =a sin θ,y =a cos θ图4-13乙 这意味着,在范围0≤θ≤π2内,P 点形成以D 为圆心、a 为半径的四分之一圆周AFC ,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域是分别以B 和D 为圆心、a 为半径的两个四分之一圆周 AEC 和 AFC 所围成的,其面积为:S =2(14πa 2-12a 2)=π-22a 2. [答案] (1)m v 0ea 方向垂直于纸面向外 (2)π-22a 2 四、带电粒子在复合场、组合场中的运动问题●例5 在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图4-14甲所示.磁场的磁感应强度B 随时间t 的变化情况如图4-14乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求:图4-14(1)电场强度E 的大小.(2)小球从M 点开始运动到第二次经过D 点所用的时间.(3)小球运动的周期,并画出运动轨迹(只画一个周期).【解析】(1)小球从M 点运动到N 点时,有:qE =mg解得:E =mg q. (2)小球从M 点到达N 点所用时间t 1=t 0小球从N 点经过34个圆周,到达P 点,所以t 2=t 0小球从P 点运动到D 点的位移x =R =m v 0B 0q小球从P 点运动到D 点的时间t 3=R v 0=m B 0q所以时间t =t 1+t 2+t 3=2t 0+m B 0q[或t =m qB 0(3π+1),t =2t 0(13π+1)]. (3)小球运动一个周期的轨迹如图4-14丙所示.图4-14丙 小球的运动周期为:T =8t 0(或T =12πm qB 0). [答案] (1)mg q (2)2t 0+m B 0q(3)T =8t 0 运动轨迹如图4-14丙所示【点评】带电粒子在复合场或组合场中运动的轨迹形成一闭合的对称图形的试题在高考中屡有出现.五、常见的、在科学技术中的应用带电粒子在电场、磁场中的运动规律在科学技术中有广泛的应用,高中物理中常碰到的有:示波器(显像管)、速度选择器、质谱仪、回旋加速器、霍耳效应传感器、电磁流量计等.●例6 一导体材料的样品的体积为a ×b ×c ,A ′、C 、A 、C ′为其四个侧面,如图4-15所示.已知导体样品中载流子是自由电子,且单位体积中的自由电子数为n ,电阻率为ρ,电子的电荷量为e ,沿x 方向通有电流I .图4-15(1)导体样品A ′、A 两个侧面之间的电压是________,导体样品中自由电子定向移动的速率是________.(2)将该导体样品放在匀强磁场中,磁场方向沿z 轴正方向,则导体侧面C 的电势________(填“高于”、“低于”或“等于”)侧面C ′的电势.(3)在(2)中,达到稳定状态时,沿x 方向的电流仍为I ,若测得C 、C ′两侧面的电势差为U ,试计算匀强磁场的磁感应强度B 的大小.【解析】(1)由题意知,样品的电阻R =ρ·c ab根据欧姆定律:U 0=I ·R =ρcI ab分析t 时间定向移动通过端面的自由电子,由电流的定义式I =n ·ab ·v ·t ·e t可得v =I nabe.(2)由左手定则知,定向移动的自由电子向C ′侧面偏转,故C 侧的电势高于C ′侧面.(3)达到稳定状态时,自由电子受到电场力与洛伦兹力的作用而平衡,则有:q Ub=q v B解得:B =neaUI .[答案] (1)ρcI ab I nabe (2)高于 (3)neaUI【点评】本例实际上为利用霍耳效应测磁感应强度的方法,而电磁流量计、磁流体发电机的原理及相关问题的解析都与此例相似.★同类拓展3 如图4-16甲所示,离子源A 产生的初速度为零、带电荷量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO =d ,HS =2d ,∠MNQ =90°.(忽略离子所受重力)图4-16甲(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ. (2)求质量为m 的离子在磁场中做圆周运动的半径.(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围.[2009年高考·重庆理综卷]【解析】(1)设正离子经电压为U 0的电场加速后速度为v 1,应用动能定理有:图4-16乙eU 0=12m v 12-0正离子垂直射入匀强偏转电场,受到的电场力F =eE 0产生的加速度a =F m ,即a =eE 0m垂直电场方向做匀速运动,有:2d =v 1t沿电场方向,有:d =12at 2联立解得:E 0=U 0d又tan φ=v 1at解得:φ=45°.(2)正离子进入磁场时的速度大小为: v =v 12+v ⊥2=v 12+(at )2正离子在匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力,则有:e v B =m v 2R联立解得:正离子在磁场中做圆周运动的半径R =2mU 0eB 2.(3)将4m 和16m 代入R ,得R 1=24mU 0eB 2、R 2=216mU 0eB 2图4-16丙由几何关系可知S 1和S 2之间的距离Δs =R 22-(R 2-R 1)2-R 1联立解得:Δs =4(3-1)mU 0eB 2由R ′2=(2R 1)2+(R ′-R 1)2得:R ′=52R 1由12R 1<R <52R 1 得:m <m 正<25m .[答案] (1)45° (2)2mU 0eB 2(3)m <m 正<25m经典考题带电粒子在电场、磁场以及复合场、组合场中的运动问题是每年各地高考的必考内容,留下大量的经典题型,认真地总结归纳这些试题会发现以下特点:①重这些理论在科学技术上的应用; ②需要较强的空间想象能力. 1.图示是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里,云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子[2009年高考·安徽理综卷]( )。
《带电粒子在电场中的运动》讲义一、电场的基本概念要理解带电粒子在电场中的运动,首先得搞清楚电场是啥。
电场是存在于电荷周围的一种特殊物质,它能对处在其中的带电粒子施加力的作用。
想象一下,电荷就像一个源头,会源源不断地向周围空间“散发”出电场这种“东西”。
电场的强度用 E 表示,它的大小和方向取决于产生电场的电荷分布情况。
二、带电粒子在电场中受到的力带电粒子在电场中会受到电场力的作用,这个力的大小可以用公式F = qE 来计算,其中 q 是粒子所带的电荷量,E 是电场强度。
力的方向呢,如果粒子带正电,那力的方向就和电场强度的方向相同;要是粒子带负电,力的方向就和电场强度的方向相反。
比如说,一个带正电的粒子处在一个向右的电场中,那它受到的电场力就向右;要是带负电,受到的电场力就向左。
三、带电粒子在电场中的加速运动当带电粒子在电场中受到电场力的作用,并且电场力对粒子做功时,粒子的速度就会发生变化,可能会加速。
假设一个带电荷量为 q 的粒子,从电场中的 A 点运动到 B 点,A、B 两点的电势分别为φA 和φB 。
那么电场力对粒子做的功 W 就等于 q (φAφB)。
根据动能定理,电场力做的功等于粒子动能的变化。
如果粒子原来是静止的,经过电场加速后获得的速度 v 可以通过这个公式算出:q(φA φB)= 1/2 mv²,从而求出 v 。
四、带电粒子在匀强电场中的直线运动匀强电场是电场强度大小和方向都不变的电场。
如果带电粒子在匀强电场中沿着电场线的方向做直线运动,那情况就比较简单了。
因为电场力是恒定的,粒子就像在一个恒力作用下做匀加速直线运动。
如果粒子初速度为零,那它的位移和时间的关系就可以用 x = 1/2at²来表示,其中 a 是加速度,a = F/m = qE/m 。
要是粒子有初速度 v0,那它的位移和时间的关系就是 x = v0t +1/2 at²。
五、带电粒子在匀强电场中的偏转当带电粒子以一定的初速度垂直进入匀强电场时,它会发生偏转。
带电粒子在电场中的直线运动 例1:如图所示:在一对带电平行金属板所形成的匀强电场中,两板间距为d,两板间的电势差为U,带电量为+q,质量为m的粒子由A板静止释放。忽略带电粒子所受重力的影响,试分析带电粒子运动情况,有几种方法可以计算粒子到B板的速度。 拓展1:在上述装置中加上如图所的电压,其U-t图象如图。设A、B板的距离足够的大。试分析该粒子的运动情况。
例2. 如图示,水平放置的A、B两平行金属板相距为d,带有等量异种电荷,有一质量为m,带电量为+q的小球在B板之下h处以初速度为V0,竖直向上从小孔中射入电场,欲使小球不能射到A板,UAB应取何值?
d
h V0 ·+q 例3、如图9-4-11所示,为平行金属板,A.B两极相距为d, 分别与电源两极相连,两板的中央各有一小孔M和N。今有一带 电质点,自A板上方相距为d的P点由静止自由下落(P、M、N 在同一竖直线上)空气阻力忽略不计,到达N孔时的速度恰好为零, 然后沿原路返回。若保持两极板间的电压不变,则 ( ) A.把A板向上平移一小段距离,质点自P点自由下落后仍然返回 图9-4-11 B.把A板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落 C.把B板向上平移一小段距离,质点自P点自由下落后仍然返回 D.把B板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落 例4、N个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图9—3—3所示(图中画出了六个圆筒,作为示意).各筒和靶相间地连接到频率为ν,最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中,圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间及靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打在靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶子上的离子的能量.
UAB t T 2T U0
-U0 只有当离子在各圆筒内穿过的时间都为t=T/2=1/(2ν)时,离子才有可能每次通过筒间缝
隙都被加速.这样第一个圆筒的长度l1=v1t=v1/2ν.当离子通过第一、二个圆筒间的缝隙时,两筒间电压为U,离子进入第二个圆筒时的动能就增加了qU,所以
E2=mv22/2=mv12/2+qU,v2=mqUv/221.
第二个圆筒的长度l2=v2t=(mqUv/221)/2ν. 如此可知离子进入第三个圆筒时的动能E3=mv22/2+qU=mv12/2+2qU, 速度v3=mqUv/)4(21.
第三个圆筒的长度l3=(mqUv/)4(21)/2ν 离子进入第N个圆筒时的动能EN=mv12/2+(N-1)qU, 速度vN=mqUNv/)1(221, 第N个圆筒的长度 lN=(mqUNv/)1(221)/2ν 此时打到靶上离子的动能Ek=EN+qU=mv12/2+NqU. 本题可进一步思考:上面算出的筒长条件,实际上是离子在最短时间内获得最大能量的条件,当离子穿过每个圆筒的时间只要等于半周期的奇数倍,都能使离子获得最大能量.因此,第N个筒长lN的更一般表达式应为
lN=(2k-1)vN·2T=(2k-1)vvN2,
故lN=(2k-1)21)1(221vmqUNv 例5.静止在太空的飞行器上有一种装置,它利用电场加速带电粒子,形成向外发射的粒子流,从而对飞行器产生反冲力,使其获得加速度。已知飞行器的质量为M,发射的是2价氧离子,发射功率为P,加速电压为U,每个氧离子的质量为m,单位电荷的电量为e,不计发射氧离子后飞行器质量的变化,求: (1)射出的氧离子速度 (2)每秒钟射出的氧离子数 (3)射出氧离子后飞行器开始运动的加速度
〖解析〗(1).以氧离子为研究对象,由动能定理:△eUqUmvEk22120
所以,氧离子的速度为:meUv2 (2).设每秒钟射出的氧离子数为,则发射功率可表示为:P=N·△Ek=2NeU 所以,氧离子数为:N=P/2eU (3).以氧离子和飞行器为系统,设飞行器的反冲速度为,由动量受恒定律: N△tmv-MV=0 ,即:N△tmv=MV
所以,飞行器的加速度为eUmMPMNmvtVa
例6.在图9-6-2(a)中,A和B表示在真空中相 距为d的两平行金属板。加上电压后,它们之间的电场可视 为匀强电场,图9-6-2(b)表示一周期性交变电压的波形, 横坐标代表时间t,纵坐标代表电压u。从t=0开始,电压为 一给定值U0,经过半个周期,突然变为-U0;再经过半个周 期,由突然变为U0……如此周期性地交替变化。
在t=0时,将上述交变电压u加在A、B两板上,使开始时A板电势比B板高,这时在紧靠B板处有一初速度为零的电子(质量为m,电量为e),在电场作用下开始运动,要想使这电子到达A时具有最大的动能,问所加交变电压的频率最大不能超过多少? 〖解析〗由题意,电子开始做匀加速直线运动,其动能不断增大。若频率很高,即周期很短,在电子尚未到达A板之前,交变电压已过了半个周期而开始加反向电压,故电子将沿原方向做匀减速直线运动;再过半个周期后,其动能又减小到零。接着又变为匀加速运动,半个周期后又做匀减速运动,这样交替进行下去,最后电子到达B板。 在匀减速直线运动过程中,电子动能减少,因此,要想使电子到达A板时具有最大的动能,必须使电子从B到A的过程中始终做加速运动,就是说,要使交变电压的半周期不小于电子从B极处于一直加速到A板处所需的时间,即频率不能大于某一值。
设电子的电量和质量分别为e和m,在电场力的作用下,电子的加速度a为:。mdeUa0
设t为电子从B一直加速到A所需的时间,则221atd→adt2 令T表示交变电压周期,f表示其频率,依题意,应满足以下要求:t≤T/2, 即 f≤1/2t
由上面各式可得208mdeUf , .A
.BE
.E.B
Amg
v0Eq
即交变电压的频率不能超过208mdeU 。 〖点评〗若作出对应的v-t图,电子从到运动的图 运动,则到达板时动能最大,通过三角形“面积”求出相应的周期和频率。
反馈练习: 1.下列粒子从初速度为零经相同的电场加速后,速度最大的是:( ) A、质子 B、氘核 C、氚核 D、粒子 3.匀强电场方向水平向右,一带电微粒沿图中虚线做直线运动,带电微粒从A到B的过程中,关于其能量变化及带电情况的说法正确的是( ) A、颗粒一定带负电 B、颗粒可能带正电 C、颗粒的机械能减小,电势能增大 D、颗粒的电势能减小,动能增大 2.如图所示,质量为m、带+q电量的滑块,沿绝缘斜面匀速下滑,当滑块滑至竖直向下的匀强电场区时,滑块运动的状态为( ) A.继续匀速下滑 B.将加速下滑 C.将减速下滑 D.上述三种情况都可能发生 3.在静电场中,一个负电荷在外力作用下由A点运动到B点的过程中,下列说法正确的是( ) A.外力所做的功等于电势能的增量与动能增量之和 B.外力和电场力做功之和等于电荷电势能增量与动能增量之和 C. 外力和电场力做功之和等于电荷动能增量 D.电荷克服电场力做功等于电荷电势能的增量 4.如图9-6-12所示,在固定的等量异种电荷的连线上, 靠近负电荷的P点释放一个初速度为零的质点,则带电质点在 运动过程中 ( ) 图9-6-12 A.加速度越来越大 B.动能越来越大 C.电势逐渐增大 D.所通过各点的电势越来越高
5.如图所示,匀强电场水平向左,带正电物体沿绝缘水平板向右运动,经A点时动能为100J,到B点时,动能减少了原来的54,减少的动能中53转化为电势能,则它再经过B点时动能大小是( ) A.4J B.20J C.52J D.80J d6、如图所示,匀强电场方向与水平线间夹角θ=30°,斜向右上方,电场强度为E,质量为m的小球带负电,以初速度v0开始运动,初速度方向与电场方向一致。 (1)若小球的带电量为q=mg/E,为使小球能做匀速直线运动,应对小球施加的恒力F1的大小和方向各如何? (2)若小球的带电量为q=2mg/E,为使小球能做直线运动,应对小球施加的最小恒力F2的大小和方向各如何?
7、图为密立根油滴实验示意图,设两平行板间距d=0.5cm,板间电压U=150V,电键S断开时,从上板小孔飘入的带电油滴能以速度V0匀速下降。合上S,油滴由下降转为上升,当速度大小V0时能匀速上升,假设油滴在运动中所受阻力与速度大小成正比,(即f=Kv)测得油滴的直径D=1.10×10-6m油的密度ρ=1.05×103Kg/m3,试计算油滴的带电量并说明电性。
反馈练习: 5.图9-5-6中从A极释放的一个无初速度的电子向 B板方向运动,指出下列说法中哪些是正确的 ( ) A.电子到达B时动能为1eV B.电子从B到C,动能变化为零 C.电子达到D点时动能为1eV D.电子将在A、D间往复运动 9.密立根油滴实验进一步证实了电子的存在,揭示了电荷的非连续性.如图1—26—8所示是密立根实验的原理示意图,设小油滴质量为m,调节两板间电势差为U,当小油滴悬浮不动时,测出两板间距离为d.可求出小油滴的电荷量q=_______.
图1—26—8