八年级数学下册 1.4.2 一元一次不等式(二)教案 北师大版
- 格式:doc
- 大小:97.50 KB
- 文档页数:5
【学练优】⼋年级数学下册2.4⼀元⼀次不等式的应⽤(第2课时)教案(新版)北师⼤版⼀元⼀次不等式的应⽤1.会在实际问题中寻找数量关系列⼀元⼀次不等式并求解;2.能够列⼀元⼀次不等式解决实际问题.(重点,难点)⼀、情境导⼊如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?⼆、合作探究探究点:⼀元⼀次不等式的应⽤【类型⼀】商品销售问题某商品的进价是120元,标价为180元,但销量较⼩.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打⼏折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x折该商品获得的利润=该商品的标价×x10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x的值即可.解:设可以打x折出售此商品,由题意得:180×x10-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.⽅法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型⼆】竞赛积分问题某次知识竞赛共有25道题,答对⼀道得4分,答错或不答都扣2分.⼩明得分要超过80分,他⾄少要答对多少道题?解析:设⼩明答对x道题,则答错或不答的题⽬为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设⼩明答对x道题,则他答错或不答的题⽬为(25-x)道.根据他的得分要超过80分,得:4x-2(25-x)>80,解得x>2123.因为x应是整数⽽且不能超过25,所以⼩明⾄少要答对22道题.答:⼩明⾄少要答对22道题.⽅法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“⾄多”“⾄少”等.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】安全问题采⽯场爆破时,点燃导⽕线后⼯⼈要在爆破前转移到400⽶外的安全区域.导⽕线燃烧速度是每秒1厘⽶,⼯⼈转移的速度是每秒5⽶,导⽕线⾄少要多少⽶?解析:根据时间列不等式,导⽕线燃烧时间>⼯⼈要在爆破前转移到400⽶外的安全区域时间.解:设导⽕线的长度需要x⽶,1厘⽶/秒=0.01⽶/秒,由题意得x0.01>4005,解得x>0.8.答:导⽕线⾄少要0.8⽶.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】分段计费问题⼩明家每⽉⽔费都不少于15元,⾃来⽔公司的收费标准如下:若每户每⽉⽤⽔不超过5⽴⽅⽶,则每⽴⽅⽶收费1.8元;若每户每⽉⽤⽔超过5⽴⽅⽶,则超出部分每⽴⽅⽶收费2元,⼩明家每⽉⽤⽔量⾄少是多少?解析:当每⽉⽤⽔5⽴⽅⽶时,花费5×1.8=9元,则可知⼩明家每⽉⽤⽔超过5⽴⽅⽶.设每⽉⽤⽔x⽴⽅⽶,则超出(x-5)⽴⽅⽶,根据题意超出部分每⽴⽅⽶收费2元,列⼀元⼀次不等式求解即可.解:设⼩明家每⽉⽤⽔x⽴⽅⽶.∵5×1.8=9<15,∴⼩明家每⽉⽤⽔超过5⽴⽅⽶.则超出(x-5)⽴⽅⽶,按每⽴⽅⽶2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:⼩明家每⽉⽤⽔量⾄少是8⽴⽅⽶.⽅法总结:分段计费问题中的费⽤⼀般包括两个部分:基本部分的费⽤和超出部分的费⽤.根据费⽤之间的关系建⽴不等式求解即可.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型五】调配问题有10名菜农,每⼈可种甲种蔬菜3亩或⼄种蔬菜2亩,已知甲种蔬菜每亩可收⼊0.5万元,⼄种蔬菜每亩可收⼊0.8万元,要使总收⼊不低于15.6万元,则最多只能安排多少⼈种甲种蔬菜?解析:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.甲种蔬菜有3x亩,⼄种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4⼈种甲种蔬菜.⽅法总结:调配问题中,各项⼯作的⼈数之和等于总⼈数.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型六】⽅案决策问题为了保护环境,某企业决定购买10台污⽔处理设备.现有A、B两种型号的设备,其中每台的价格、⽉处理污⽔量及年消耗费如下表.经预算,该企业购买设备的资⾦不⾼于105万元.(1)请你设计该企业有⼏种购买⽅案;(2)若企业每⽉产⽣的污⽔量为2040吨,为了节约资⾦,应选择哪种购买⽅案.解析:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳⽅案.解:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x 取⾮负整数,∴x可取0,1,2,有三种购买⽅案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资⾦为12×1+10×9=102(万元);当x=2时,购买资⾦为12×2+10×8=104(万元).答:为了节约资⾦,应选购A型1台,B型9台.⽅法总结:此题将现实⽣活中的事件与数学思想联系起来,属于最优化问题,在确定最优⽅案时,应把⼏种情况进⾏⽐较.变式训练:见《学练优》本课时练习“课后列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引⼊,激发学⽣的学习兴趣,让学⽣积极参与,讲练结合,引导学⽣找不等关系列不等式.在教学过程中,可通过类⽐列⼀元⼀次⽅程解决实际问题的⽅法来学习,让学⽣认识到列⽅程与列不等式的区别与联系.。
34D 第一章三角形的证明【学习目标】1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等。
2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生用规范的数学语言表达论证过程的能力。
【学习重难点】重点:通过例题的讲解和课堂练习对所学知识进行复习巩固难点:本章知识的综合性应用。
【学习过程】1、等腰三角形的性质:(边);(角);“三线合一”的内容。
2、等边三角形的性质:(边);(角)。
3、判定等腰三角形的方法有:(边);(角)。
4、判定等边三角形的方法有:(边);(角)。
5、线段垂直平分线的性质定理:。
逆定理:。
三角形的垂直平分线性质:。
6、角的性质定理:。
逆定理:。
三角形的角平分线性质:。
7、三角形全等的判定方法有:。
8、30°锐角的直角三角形的性质:。
9、方法总结:(1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;)等角对等边;)等腰三角形三线合一的性质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。
(2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。
(3)证明垂直的方法:1)证邻补角相等;2)证和已知直角三角形全等;3)利用等腰三角形的三线合一性质;4)勾股定理的逆定理。
(4)等腰三角形的证明:主要用等腰三角形的两腰相等,两底角相等和三线合一性质解题。
1、填空:(1)△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4cm ,最长边AB=。
(2)直角三角形两直角边分别是5cm 、12cm ,其斜边上的高是。
(3)若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是三角形。
(4)三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是________2、已知:如图,是△ABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且DE=DF 。
《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。
第二章一元一次不等式和一元一次不等式组单元教学目标:1、知识与技能:理解不等式(组)的解及解集的含义,会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会用数轴确定其解集。
2、过程与方法:经历将一些简单的实际问题抽象为不等式的过程,进一步体会模型思想,建立符号意识。
3、情感、态度与价值观:进一步感受数学与生活的紧密联系,体会数学的价值。
单元教学重点:1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
2、解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会用数轴确定其解集。
3、能够根据具体问题中的数量关系列出一元一次不等式或一元一次不等式组,解决简单的实际问题。
单元教学难点:1、求不等式的解集和不等式组的解集,以及正确运用不等式的基本性质。
2、列一元一次不等式组解决实际问题。
单元课时安排:1、不等关系 1课时2、不等式的基本性质 1课时3、不等式的解集 1课时4、一元一次不等式 2课时5、一元一次不等式与一次函数 2课时6、一元一次不等式组 2课时7、一元一次不等式组应用 1课时回顾与思考 1课时§2.1 不等关系知识与技能目标理解不等式的意义;能根据条件列出不等式.过程与方法目标通过列不等式,训练学生的分析判断能力和逻辑推理能力.情感态度与价值观目标通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.教学重点用不等关系解决实际问题.教学难点正确理解题意列出不等式.教法与学法讨论探索法教具准备多媒体课件教学过程一、创设问题情境,引入新课我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.二、新课讲授既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?那么,如何用式子表示不等关系呢?请看例题.(课件)例1:用两根长度均为l cm的绳子,分别围成一个正方形和圆.(1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)你能得到什么猜想?改变l的取值,再试一试.本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.下面请大家互相讨论,按照题中的要求进行解答.猜想:用长度均为l cm 的两根绳子分别围成一个正方形和圆,无论l 取何值,圆 的面积总大于正方形的面积,即 42l >162l . 做一做:课件通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m 的地方作为测量部位,某树栽种时的树围为5 cm ,以后树围每年增加约为 3 cm.这棵树至少生长多少年其树围才能超过2.4 m ?(只列关系式).[师]请大家互相讨论后列出关系式.议一议:观察由上述问题得到的关系式,它们有什么共同特点?一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.[例]用不等式表示(1)a 是正数;(2)a 是负数;(3)a 与6的和小于5;(4)x 与2的差小于-1;(5)x 的4倍大于7;(6)y 的一半小于3.三、随堂练习当x =2时,不等式x +3>4成立吗?当x =1.5时,成立吗?当x =-1呢?四、课时小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.通过不等关系的式子归纳出不等式的概念.五、课后作业习题2.1 第1、2、3、4题.六、板书设计2.1 不等关系不等式:用来表示不等关系的式子叫不等式。
八年级数学北师大版下册名师说课稿:第二章课题一元一次不等式组及其解集一. 教材分析本次说课的教材是北师大版八年级数学下册第二章课题《一元一次不等式组及其解集》。
本节课的内容是在学生已经掌握了不等式的概念、性质和一元一次不等式的解法的基础上进行学习的。
通过本节课的学习,使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次不等式的相关知识,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于不等式组的解法和解集的表示方法,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生,激发学生的学习兴趣,帮助学生理解和掌握不等式组的知识。
三. 说教学目标1.知识与技能目标:使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:不等式组的解法和不等式组的解集的表示方法。
2.教学难点:不等式组的解集的图像表示方法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在解决问题的过程中,掌握不等式组的知识。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。
六. 说教学过程1.导入新课:通过复习一元一次不等式的知识,引出不等式组的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究不等式组的解法,引导学生发现解法的规律。
3.合作交流:学生分组讨论,分享解法经验,互相学习,共同提高。
4.教师讲解:教师讲解不等式组的解集的表示方法,特别是图像法的含义和画法。
5.练习巩固:让学生通过练习题,巩固所学知识,提高解题能力。
6.总结提升:教师引导学生总结不等式组的知识,使学生形成系统化的知识结构。
2.4 一元一次不等式(二)●教学目标(一)教学知识点能利用一元一次不等式解决一些简单的实际问题.(二)能力训练要求通过学生独立思考,培养学生用数学知识解决实际问题的能力.(三)情感与价值观要求通过学生自主探索,培养学生学数学的好奇心与求知欲,使他们能积极参与数学学习活动,锻炼克服困难的意志,增强自信心.●教学重点1.用数学知识去解决简单的实际问题.●教学难点能结合具体问题发现并提出数学问题.●教学方法在教师的引导下,学生探索的方法.●教学过程Ⅰ.提出问题,引入新课[师]上节课,我们学习了什么叫一元一次不等式,以及如何解一些简单的一元一次不等式,下面大家先回忆一下.[生]不等式的两边都是整式,只含有一个未知数,且未知数的最高次数是一次,这样的不等式叫一元一次不等式.解一元一次不等式的一般步骤和解一元一次方程的一般步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.[师]很好.在解不等式的过程中,有需要注意的问题吗?[生]有.在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.[师]非常棒.下面我们做一个练习检查一下,看大家的动手能力如何.1.解不等式:51(x+15)≥21-31(x -7) [生]解:去分母,得6(x+15)≥15-10(x -7),去括号,得6x +90≥15-10x+70,移项、合并同类项,得16x ≥-15,两边同除以16,得x ≥-1615. [师]做得很好.请看第2题.2.判断下面解法的对错. 解不等式:312+x -615-x <2 解:去分母,得2(2x+1)-5x -1<2,去括号,得4x+2-5x -1<2移项、合并同类项,得-x <1两边都乘以-1,得x >-1.[师]请大家先独立思考、再互相讨论,指出上面的解法有无错误,若有请指出来.[生]第一,在去分母时,分子应作为一个整体,应加括号,是(5x -1),而非-5x -1,第二,整数2也应乘以公分母.[师]这位同学的分析很精彩.请大家改正.[生]解:去分母,得2(2x+1)-(5x -1)<12去括号,得4x+2-5x+1<12,移项、合并同类项,得-x <9,两边都乘以-1,得x >-9.[师]刚才这位同学提出的改正方案也正是解此类不等式需要注意的问题,本节课我们要加以巩固.Ⅱ.新课讲授[做一做][师]这类题型我们掌握得已很好了,下面我们来学习有关不等式的应用题. 某种商品进价为200元,标价为300元出售,商场规定可以打折销售,但其利润不能少于5%.请你帮助售货员计算一下,这种商品做多可以按几折销售?[师]解不等式应用题也和解方程应用题类似,我们先回忆一下列方程解应用题应如何进行.[生]先审题,弄清题中的等量关系;设未知数,用未知数表示有关的代数式;列出方程,解方程;最后写出答案.[师]好,同学们回答的非常棒!我们设这种商品最多可以x折销售,那么有3002005%200x-≥,得x≥0.7,故这种商品做多可以打7折.你们做对了吗?投影片(§2.4.2 B)在85分或85分以上,所以关系式应为:4×答对题数-1×答错题数≥85请大家自己写步骤.[生]解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22,23,24,25道题.[师]大家依据列方程解应用题的过程,对照上面解不等式应用题的步骤,总结一下两者的不同,并给出解一元一次不等式应用题的一般步骤,请互相交流.[生]第一步:审题,找不等关系;第二步:设未知数,用未知数表示有关代数式;第三步:列不等式;第四步:解不等式;第五步:根据实际情况写出答案.[师]非常好.请大家按照刚才的步骤解答例4.[生]解:设她还可以买n支笔,根据题意得3n+2.2×2≤21解这个不等式,得n ≤36.16 因为在这一问题中n 只能取正整数,所以,小颖还可以买1支,2支,3支,4支或5支笔.Ⅲ.课堂练习1.解:设至多可以打x 折,根据题意,得50040010%4000.88x x -≥∴≥ 所以至多可以打8.8折.2.解:设他还可以买x 根火腿肠,根据题意,得2x +3×5≤26解这个不等式,得x ≤5.5所以小明还可以买1根,2根,3根,4根或5根火腿肠.Ⅳ.课时小结根据前面我们做的练习和例题,我们来总结一下解一元一次不等式应用题的一般步骤.(1)审题,找不等关系;(2)设未知数;(3)列不等关系;(4)解不等式;(5)根据实际情况,写出全部答案.Ⅴ.课后作业教材 习题2.5Ⅵ.活动与探究x 取什么值时,代数式2x -5的值:(1)大于0?(2)不大于0?解:(1)根据题意,得2x -5>0解得x >25所以当x >25时,2x -5的值大于0. (2)根据题意,得2x -5≤0解得x ≤25. 所以当x ≤25时,2x -5的值不大于0. ●板书设计。
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
北师大版八年级下册数学教案北师大版八班级下册数学教案1一、指导思想在教学中努力推动九年义务教育,落实新课改,表达新理念,培育创新精神。
通过数学课的教学,使同学切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本学问和基本技能;努力培育同学的运算力量、规律思维力量,以及分析问题和解决问题的力量。
二、学情分析八班级是学校学习过程中的关键时期,同学基础的好坏,直接影响到将来是否能升学。
优生不多,思想不够活跃,有少数同学不上进,思维跟不上。
要在本期获得抱负成果,老师和同学都要付出努力,充分发挥同学是学习的主体,老师是教的主体作用,注意方法,培育力量。
三、本学期教学内容分析本学期教学内容共计六章。
第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将讨论直角三角形全等的判定,进一步体会证明的必要性。
其次章《一元一次不等式和一元一次不等式组》本章通过详细实例建立不等式,探究不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过详细实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最终讨论一元一次不等式组的解集和应。
第三章《图形的平移与旋转》本章将在学校学习的基础上进一步熟悉平面图形的平移与旋转,探究平移,旋转的性质,熟悉并观赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》本章通过详细实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最终学习分解因式的几种基本方法。
第五章《分式与分式方程》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简洁的实际应用问题。
第六章《平行四边形》本章将讨论平行四边形的性质与判定,以及三角形中位线的性质,还将探究多边形的内角和,外角和的规律;经受操作,试验等几何发觉之旅,享受证明之美。
1.4 一元一次不等式(二)[目标导航]1.学习目标:根据具体问题中的数量关系列出一元一次不等式;能利用一元一次不等式解决实际问题2.学习重点:利用一元一次不等式解决实际问题3.学习难点:不等式应用题的解法[课前导学]1、课前复习(1)解一元一次不等式的步骤是怎样的?(2)解不等式:2352x x,并把解集表示在数轴上。
(3)列一元一次方程解应用题的步骤又是怎样的?2、课前预习:请认真阅读课本P17—P19,并完成下列各题,相信你一定会有很大的收获。
(1)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或者不答扣1分。
在这次竞赛中小明得到85分。
问小明答对了几道题?(试用一元一次方程求解)(2)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或者不答扣1分。
在这次竞赛中小明得到优秀(即85分或85分以上)。
问小明至少答对了几道题?分析:若设小明答对了x道题,你能列出关于x的不等式吗?试一试![课堂研讨]小颖准备用21元钱去买笔和笔记本。
已知每支笔3元,每个笔记本2.2元。
现在她已经买了2个笔记本,剩下的钱用了买笔,她还可以买几只笔?[课外拓展]1、解下列不等式,并将解集在数轴上表示出来:(1)213x (2)21x(3)2(1)3x x (4)233232x x --≥2、解应用题(1)某容器装了一些水,先用去了4升,然后又用了剩下的一半。
最后剩下的水不少于5升,问容器最初所装的水至少是多少升?(2)小明骑自行车去姥姥家,每小时走12千米。
一小时后,小明的爸爸发现小明忘记带钥匙了。
立即骑摩托车去送,问要在20分钟内追上,爸爸至少以多少的速度追赶?(3)一组同学在校门口拍照合影,已知冲洗一张底片需要0.6元,洗一张照片需要0.4元,若每人都得到一张照片且每人平均分摊不超过0.5元,那么参加合影的人至少有多少人?。
《一元一次不等式》教学设计第2课时【教学方案】一、教学目标1.能根据实际问题中的数量关系,列一元一次不等式求解.2.初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验.3.结合具体问题,了解不等式的意义,初步体会一元一次不等式的应用价值.4.发展学生分析问题、解决问题的能力;体会数学建模思想,提升应用数学知识解答实际问题的兴趣与能力.二、教学重难点重点:能根据实际问题中的数量关系,列一元一次不等式求解.难点:找不等关系,列不等式.能从所得到的不等式的解集中确定符合题意的解.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计⑤132362x x -+-<⑥ x +xy ≥y 2⑦ x >0A.5个B.4个C.6个D.3个 预设答案:A问题3:一元一次不等式的解法: 解一元一次不等式,要根据不等式的性质,将不等式逐步化为x >a (x ≥a )或x <a (x ≤a )的形式.其一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1(注意不等号方向是否改变).问题4:应用一元一次方程解实际问题的步骤:【探究】竞赛中,小明的得分为优秀(85分或85分以上),小明至少答对了几道题?提问:此实际问题中的不等关系是什么? 预设答案:不等关系是:小明的得分≥85 追问:设小明答对了 x 道题,则他答错和不答的共有多少道题?预设答案:答错和不答的共有(25-x )道题. 解:设小明答对了 x 道题,则他答错和不答的共有(25-x )道题.根据题意,得 4x -1×(25-x )≥85. 解这个不等式,得 x ≥ 22. 所以,小明至少答对了22道题. 【归纳】利用不等式来解决实际问题的步骤:【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1 一辆客车从甲地开往乙地,出发 10min 后,一辆轿车也从甲地开往乙地,轿车的速度是 120 km/h ,轿车出发 30 min 内就超过了客车,则客车的速度小于多少?分析:客车速度×103060+<轿车速度×3060. 解:设客车的速度是x km/h ,根据题意,得 103030120.6060x +<⨯思维导图的形式呈现本节课的主要内容:。
第一章一元一次不等式和一元一次不等式组课时课题:第5节一元一次不等式与一次函数第二课时课型:新授课教学目标:☆知识技能:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.☆能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型.☆情感目标:在积极参与数学学习活动的过程中,形成独立思考的习惯并学会在解决问题时,与其他同学交流,培养互相合作精神.教学重点:一元一次不等式在实际问题中的应用.教学难点:在实际问题中建立一元一次不等式的数量关系.教法及学法指导:1、教法:“问题情境—建立模型—应用与拓展”本节课是在学生已经掌握了一元一次不等式的解法及不等式与函数的关系的基础上,对有关知识进行应用和拓展.在教学过程中,通过创设丰富的问题情境,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力.另外,还可以引导学生结合图像来理解不等式与函数的实际意义.2、学法:通过实际问题的设置,培养学生分析题意的能力,分析题目中相关条件,找出问题中隐含的不等量关系,让学生充分进行交流讨论在活动中体会不等式在实际生活中的应用,同时体会到分类考虑问题的思考方式.课前准备:教师准备:教材、制作教学课件.学生准备:铅笔、直尺、练习本和预习课本内容,总结自学到的知识.教学过程:一引入新课【视频链接】在当今信息化社会里,计算机已成为任何人必须掌握的工具,它可以帮助我们从浩瀚的知识海洋里找寻到我们所需要的东西,可以让我们提高工作效率,但是,所有的事物都有两面性,据有关部门对在校七、八年级上网学生的调查发现,约有86%的人喜欢上网玩游戏,5%的人上网聊天,4%的人上网关注影视偶像动态或其它娱乐,5%的人上网查找学习资料,所以说电脑能给我们带来乐趣、方便我们的生活同时也会危害我们.如何正确引导学生健康、高效地使用电脑网络成为我们信息技术教育的重要环节.【师】这是一篇倡议书,呼吁青少年一定要把握好自己,要学会正确合理地使用电脑.大家想不想正确使用电脑提高学习效率呢? 【生】(齐声):想!【师】学校为了大家更快的进入状态,计划购进一批电脑,这节课我们就先帮助学校选择购买哪种电脑,计算一下到哪家商场购买更合算. 【板书课题】1.5一元一次不等式与一次函数⑵【设计意图】由学生喜爱的电脑为画面情境,伴以富有号召力的文字解说,激起学生的兴趣.学生知道自己将要帮助学校选电脑,选商场,能够正确合理地使用电脑,这样就自然的激发了学生的学习热情,同时引入课题.二 合作探究【师】(课件展示):我们学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲的商场优惠条件是:第一台按原价收费,其余每台优惠25%.乙的商场优惠条件是:每台优惠20%(1)分别写出两家商场的收费与所买电脑台数之间的关系式. (2)我们该选择到哪家商场购买更优惠呢?【师】请大家先根据优惠条件计划一下选哪家商场购买?【生】我选择甲的商场,因为它每台优惠25%,比乙的商场每台优惠20%要便宜. 【生】我选择乙的商场,因为乙的商场都优惠,而甲的商场有一台按原价收费的. 【生】我不能肯定,一定要计算一下才能决定. 【师】大家同意这三位同学中的哪一位呢? 【生】同意第三位同学的意见.【师】分析:首先我们要根据题意,分别表示出两家商场关于电脑的费用,然后才能比较.而且比较情况只能有三种,即大于,等于或小于.下面哪位同学毛遂自荐到黑板前演示呢? 【学生板书】【解】设学校购买电脑是x 台.购买甲的商场电脑所需费用1y 元,购买乙的商场电脑所需费用2y 元,则有()()160006000125%1y x =+-- 即: 145001500y x =+()26000120%y x =- 即: 24800y x =当12y y =时,450015004800x x +=,解得5x =; 当12y y >时,450015004800x x +>,解得5x < 当12y y <时,450015004800x x +<,解得5x >∴ 购买5台电脑以上时,到甲的商场买更优惠,购买5台电脑以下时,到乙的商场买更优惠。
北师大版数学八(下)各章节教学目标第一篇:北师大版数学八(下)各章节教学目标八(下)数学北师大版 2004年11月第3版第一章一元一次不等式和一元一次不等式组1.经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型,进一步发展符号感。
2.能够根据具体问题中的大小关系了解不等式的意义。
3.经历通过类比、猜测、验证发现不等式基本性质的探索过程,掌握不等式的基本性质。
4.理解不等式(组)的解及解集的含义;会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会在数轴上确定其解集;初步体会数形结合的思想。
5.能根据具体问题中的数量关系,列出一元一次不等式(组),解决简单的实际问题,并能根据具体问题的实际意义,检验结果是否合理。
6.初步体会不等式、方程、函数之间的内在联系与区别。
§1 不等关系1.感受生活中存在着大量的不等关系,了解不等式的意义,初步体会不等式是研究量与量之间关系的重要模型之一。
2.经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
§2 不等式的基本性质1.经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2.掌握不等式的基本性质。
§3 不等式的解集1.理解不等式的解与解集的意义。
2.了解不等式解集的数轴表示。
§4 一元一次不等式1.经历一元一次不等式概念的形成过程。
2.会解简单的一元一次不等式,并能在数轴上表示其解集。
3.初步认识一元一次不等式的应用价值,发展学生分析问题、解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验。
§5 一元一次不等式与一次函数1.通过作函数图象、观察函数图象,进一步理解函数概念,并从中初步体会一元一次不等式与一次函数的内在联系。
2.通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。
北师大八年级数学下册教案在初中数学教学中,我们如何进行初中数学教学,这就需要初中数学老师制定好教案。
下面是本人为大家带来的北师大八年级数学下册教案,相信对你会有帮助的。
北师大八年级数学下册教案一一、指导思想:以建文中学办学理念为指导,以小组合作、学案式教学为教学导向,全面采用“20+20”高效课堂教学模式,按照《新课标》的要求,完成八年级下册及部分九年级上册的数学教学任务,力争实现人人有进步,个个有提高的共同愿景。
二、学情分析:从上学期期末考试来看,大部分学生的成绩还算可以,但还是有少数学生成绩相当糟糕。
在学生所学知识的掌握程度上,大部分学生能够透彻理解知识,知识间的内在联系也较为清楚,但个别学生连简单的基础知识还不能有效的掌握,成绩较差。
在学习能力上,重点班的学生能基本完成两本课外辅导资料上的习题,但平行班的一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩。
三、教材内容:本学期教学内容,共计七章,包括八年级下册的第一章《三角形的证明》,第二章《一元一次不等式和一元一次不等式组》,第三章《图形的平移和旋转》,第四章《分解因式》,第五章《分式》,第六章《平行四边形》和九年级上册的《一元二次方程》。
四、教材重点和难点:教材重点:1、掌握特殊三角形的性质及反证法的证明过程2、掌握不等式的基本性质,一元一次不等式(组)的解法及应用.3、掌握图形在平移和旋转过程中的坐标变化,会判断轴对称和中心对称图形。
4、掌握分解因式的两种基本方法(提公因式法与公式法).5、掌握分式的基本性质、四则运算、分式方程的解法及列分式方程解应用题.6、平行四边形的性质及判定,能进行推理论证。
7、一元二次方程的三种解法(配方法、公式法、因式分解法),并能简单应用。
教材难点:1、对不等式的基本性质的理解和熟练运用,一元一次不等式(组)的应用。
1.4.2 一元一次不等式(二)教案教案
教学任务分析
(一)教学目标:
(1)知识与技能目标:
①进一步熟练掌握解一元一次不等式
②利用一元一次不等式解决简单的实际问题
(2)过程与方法目标:
通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学生的分析和建立数学模型的能力。
(3)情感与态度目标:
通过利用一元一次不等式解决实际问题,使学生认识数学与人类生活的密切联系,以激发学生学习数学的兴趣与信心。
(二)教学重点:一元一次不等式的应用
(三)教学难点:将实际问题抽象成数学问题的思维过程。
教学过程分析
本节课设计了六个教学环节:第一环节:复习旧知,方法归纳;第二环节:合作探究,解决问题;第三环节:范例解析,方法归纳;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节 复习旧知,方法归纳
活动内容1:
解下列不等式,并把它们的解集分别表示在数轴上
(1)132<-x x (2)2
235-+≥x x 活动目的:通过对这两个一元一次不等式的求解,让学生回顾解一元一次不等 式的基本步骤以及在数轴上表示解集的方法。
活动效果:绝大多数学生都能独立地、正确地解决,但有一部分学生在用数轴 表示解集时还是把端点值的实心点画成空心圆圈,有的学生甚至把方向也画反了。
老师在此应再次强调。
活动内容2:
归纳解一元一次不等式的一般步骤:
(1)去分母———不等式性质2或3
注意:
①勿漏乘不含分母的项;
②分子是两项或两项以上的代数式时要加括号;
③若两边同时乘以一个负数,须注意不等号的方向要改变.
(2)去括号——去括号法则和分配律
注意:
①勿漏乘括号内每一项;
②括号前面是“-”号,括号内各项要变号.
(3)移项——移项法则(不等式性质1)
注意:移项要变号.
(4)合并同类项——合并同类项法则.
(5)系数化成1——不等式基本性质2或性质3.
注意:两边同时除以未知数的系数时,要分清不等号的方向是否改变
活动目的:让学生进一步明确解一元一次不等式的步骤与注意事项
活动效果:丛后面的练习效果来看,归纳方法是有效且必需的。
活动内容3:
求不等式4(x+1)≤20的正整数解。
活动目的:使学生体会题目的条件与要求对不等式解集的影响,也为后面解决实际问题时要考虑实际意义作铺垫。
活动效果:一部分学生能顺利解答,一部分学生因思维定势与审题不严而做错。
第二环节合作探究,解决问题
活动内容:利用一元一次不等式解决简单的实际问题
一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
解:设小明答对了x道题,则得4x分,另有(25-x)道要扣分,而小明评为优秀,即小
明的得分应大于或等于85分,则
4x-(25-x) ≥85
解得: x≥22
所以,小明至少答对了22道题,他可能答对22,23,24或25道题。
活动目的:通过学生之间的合作、交流,让学生体会不等式在解决实际问题时的作用,并且发展了学生的合作、交流与数学语言的表达能力。
活动效果:学生发言踊跃,思维活跃,有算术计算的方法,有方程的方法,也有不等式的方法。
第三环节例题解析,方法归纳
活动内容1:
[例3]小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可能买几支笔?
解:设她还可能买x枝笔,根据题意,得
3x+2.2×2≤21
解这个不等式,得
x≤
36.
16
因为在这一问题中x只能取正整数,所以还可能买1枝、2枝、3枝、4枝
或5枝笔.
活动目的:进一步让学生体会不等式在解决实际问题时的作用,并且要结合实际问题的意义作出最后的解答,同时也为学生的解题步骤起了一个示范的作用。
活动效果:有助于提高学生解题的规范性,同时为后面的方法归纳作了铺垫。
活动内容2:方法归纳
解一元一次不等式应用题的步骤:
(1)审题,找不等关系;
(2)设未知数;
(3)列不等关系;
(4)解不等式;
(5)根据实际情况,写出全部答案
活动目的:通过例2、例3的解答,让学生通过讨论与交流,归纳出利用一元一次不等式解决实际问题的一般步骤,培养学生的数学建模的能力。
活动效果:通过类比列方程解应用题的步骤,学生基本上归纳得比较完整,只是最后求出了不等式的解集后,还要根据实际意义来得到最后答案,有些同学容易忽略。
第四环节 练习提高
活动内容:1、解下列不等式,并把它们的解集分别表示在数轴上:
;1322)3(;15)
1(-≤+<+x x x x ;43)1(6)4(;573)2(x x x x +≥-->+ 2、小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,
一盒方便面3元钱,他买了5盒方便面,他还可能买多少根火腿 肠?
活动目的:通过学生独立对随堂练习的解答,及时发现问题、解决问题,让学生熟练解一元一次不等式,并能利用不等式解决一些实际问题。
活动效果:随机抽取学生上台演示,学生掌握情况良好。
第五环节 课堂小结
活动内容:通过本节课的学习,你学到了哪些知识?
(1)解一元一次不等式的一般步骤及注意事项
(2)利用一元一次不等式可以解决一些实际问题
活动目的:培养学生知识归纳与整理的习惯与能力,通过师生共同总结,增强学生认识,加深学生印象,强化学生记忆。
活动效果:学生各抒己见,畅所欲言,一般都能概括出上述两条来。
第六环节 布置作业
习题1.5 1.2.3
四、教学反思
1、本节课通过复习解一元一次不等式以及在数轴上表示解集开始引入新的问题,学生通过对新问题的讨论、交流与研究,明确了方法与注意事项,并为利用一元一次不等式解决实际问题作了铺垫。
这样的程序符合学生的认知规律,教学取得了不错的效果。
适时地由学生自己合作、交流,归纳出一般性的方法,对于学生从整体上把握知识以及养成总结的习惯是大有帮助的。
2、本节课的重点是利用一元一次不等式解决实际问题,让学生体会数学与生活的紧密联系。
如果能再多涉及到生活中的其他类型的实际问题,学生的体会可能会更好,比如打折问题、销售问题、方案问题等。