北师大版八年级数学下册知识点总结
- 格式:doc
- 大小:148.95 KB
- 文档页数:10
北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。
6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。
)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习等腰三角形(提高)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到以下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
初二数学北师大版知识点总结学习从来无捷径,循序渐进登高峰。
如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。
学习需要勤奋,做任何事情都需要勤奋。
下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
初二下学期数学知识点分式一.概念:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。
二.基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
三计算法则:乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
四.分式乘方要把分子、分母分别乘方。
a^-n=1/a^n(a≠0)这就是说,a^-n(a≠0)是a^n的倒数。
五.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
第十七章反比例函数一.概念形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverseproportionalfunction)。
二.性质:反比例函数的图像属于双曲线(hyperbola)。
当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
第十八章勾股定理一.概念勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
二.命题:经过证明被确认正确的命题叫做定理(theorem)。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)第十九章四边形一.平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形。
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。
北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。
判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。
等腰三角形的性质是两个底角相等,即等边对等角。
判定等腰三角形有一个角等于另一个角,即等角对等边。
等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。
等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。
判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。
直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。
直角三角形斜边上的中线等于斜边的一半。
线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。
判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。
三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。
角平分线的性质是角平分线上的点到角的两边距离相等。
判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。
二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。
一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。
第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。
定理2 全等三角形的对应角相等。
推论1 全等三角形的面积相等。
推论2 全等三角形的周长相等。
2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS )公理2 两角及其夹边对应相等的两个三角形全等(ASA )公理3 三边对应相等的两个三角形全等(SSS )定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS )定理2 斜边和一条直角边分别相等的两个直角三角形全等。
(HL )二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。
(等边对等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。
(三线合一) 推论2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。
【说明】①等腰直角三角形的两个底角相等且等于45°。
②等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,周长为C ,则2b <a <2C ④等腰三角形的三角关系:设顶角为∠C ,底角为∠A 、∠B ,则∠C =180°—2∠A=180°—2∠B ,∠A =∠B =2180A ∠-︒ 2、等腰三角形的判定定义:有两条边相等的三角形叫做等腰三角形。
定理:有两个角相等的三角形是等腰三角形。
(等角对等边)三、等边三角形的性质与判定1、等边三角形的性质定理1 等边三角形的三条边都相等。
定理2 等边三角形的三个角都相等,并且每个角都等于60°。
推论:在直角三角形中,如果有一个锐角等于30°,那么它所对直角边等于斜边一半。
2、等边三角形的判定定义:三条边都相等的三角形叫做等边三角形。
定理:三个角都相等的三角形是等边三角形。
北师大版数学八下知识点总结一、三角形的证明。
1. 等腰三角形。
- 性质:等腰三角形的两腰相等,两底角相等(等边对等角);等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
- 判定:有两边相等的三角形是等腰三角形;有两个角相等的三角形是等腰三角形(等角对等边)。
2. 等边三角形。
- 性质:等边三角形的三条边都相等,三个角都相等,且每个角都等于60°。
- 判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
3. 直角三角形。
- 性质:直角三角形两直角边的平方和等于斜边的平方(勾股定理,即a^2+b^2=c^2,其中a、b为直角边,c为斜边);直角三角形斜边上的中线等于斜边的一半;在直角三角形中,30°角所对的直角边等于斜边的一半。
- 判定:如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理逆定理);有一个角是直角的三角形是直角三角形;如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
4. 线段的垂直平分线。
- 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
- 判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5. 角平分线。
- 性质:角平分线上的点到这个角的两边的距离相等。
- 判定:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
二、不等式(组)1. 不等式的基本性质。
- 不等式两边加(或减)同一个数(或式子),不等号的方向不变,即如果a > b,那么a± c>b± c。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变,即如果a > b,c>0,那么ac > bc(或(a)/(c)>(b)/(c))。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变,即如果a > b,c < 0,那么ac < bc(或(a)/(c)<(b)/(c))。
八年级数学等腰三角形知识点整理及重点题型梳理一、等腰三角形含义:有两条边相等的三角形。
常见题:已知两边长和第三边,求周长。
例题:两条边长分别为3和4,求周长,注意:两边之和大于第三边,两边之差小于第三边。
二、 等腰三角形的性质:1.等边对等角,例如:已知AB=AC ,∠B=∠C 等腰三角形的性质:2等腰△的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)。
注意:只有等腰三角形才有三线合一。
[例1]如图,在△ABC 中,AB=AC ,点D 在BC 上,且BD=DC=AD ,求:△ABC 各角的度数.D CAB3. 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角 所对的边也相等(简写成“等角对等边”).4. [例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么 这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图). 求证:AB=AC . 证明:∵AD ∥BC ,∴∠1=∠B (两直线平行,同位角相等), ∠2=∠C (两直线平行,内错角相等).又∵∠1=∠2, ∴∠B=∠C , ∴AB=AC (等角对等边). 练习:已知:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .证明:∵AD ∥BC ,∴∠ADB=∠DBC (两直线平行,内错角相等). 又∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABD=∠ADB , ∴AB=AD (等角对等边).[例3]如图(1),标杆AB 的高为5米,为了将它固定,需要由它的中点C•向地面上与点B 距离相等21EDABDCAB的D 、E 两点拉两条绳子,使得D 、B 、E 在一条直线上,量得DE=4米,•绳子CD 和CE 要多长?(1)EDCA B (2)分析:这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题. 一、复习知识要点1.有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.2.三角形按边分类:三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形 3.等腰三角形是轴对称图形,其性质是:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.4.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 二、例题例:如图,五边形ABCDE 中AB=AE ,BC=DE ,∠ABC=∠AED ,点F 是CD 的中点.•求证:AF ⊥CD.分析:要证明AF ⊥CD ,而点F 是CD 的中点,联想到这是等腰三角形特有的性质,•于是连接AC 、AD ,证明AC=AD ,利用等腰三角形“三线合一”的性质得到结论.证明:连接AC 、AD 在△ABC 和△AED 中()()()AB AE ABC AED BC ED =⎧⎪∠=∠⎨⎪=⎩已知已知已知 ∴△ABC ≌△AED (SAD )∴AC=AD (全等三角形的对应边相等) 又∵△ACD 中AF 是CD 边的中线(已知)EDCABF ∴AF ⊥CD (等腰三角形底边上的高和底边上的中线互相重合) 三、练习 (一)、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线2.等腰三角形有两条边长为4cm 和7cm ,则该三角形的周长是( ) A .17cm B .22cm C .18cm 或15cm D .18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .30° B .50° C .60° D .40° 4.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80°5.如图1,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°E DCABHFG如图1答案:1.D 2.C 3.D 4.C 5.B 如图2 (二)、填空题6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________.9.如图2,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______.11.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.12.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 13.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 答案:6.60 7.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+12n )° 9.70° 10.略 11.1 12.AB=AC 13.2cm 14.30海里 (三)、解答题15.如图,CD 是△ABC 的中线,且CD=12AB ,你知道∠ACB 的度数是多少吗?由 此你能得到一个什么结论?请叙述出来与你的同伴交流.DCAB16.如图,在四边形ABCD 中,AB=AD ,CB=CD ,求证:∠ABC=∠ADC.DCAB17.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF答案:15.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形16.连接BD ,∵AB=AD ,∴∠ABD=∠ADB .∵CB=CD ,∴∠CBD=∠CDB . ∴∠ABC=∠ADC 17.证明∠D=∠BED等边三角形定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=12AB . ABDC AB分析:从三角尺的摆拼过程中得到启发,延长BC 至D ,使CD=BC ,连接AD .[例5]右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BD 、DE 要多长?分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=12AD ,BC=12AB ,又由D 是AB 的中点,所以DE=14AB . [例]等腰三角形的底角为15°,腰长为2a ,求腰上的高. 已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高. 求:CD 的长.分析:观察图形可以发现,在Rt △ADC 中,AC=2a ,而∠DAC 是△ABC的一个外角,则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,可求出CD .等边三角形一、复习知识要点1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.2.等边三角形的性质:•等边三角形的三个内角都相等,•并且每一个内角都等于60°3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.D C AEBDCA二、练习(一)、选择题1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF•的形状是()A.等边三角形B.腰和底边不相等的等腰三角形C.直角三角形D.不等边三角形DA B F21EDCAB4.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()A.2cm B.4cm C.8cm D.16cm5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准备的判断是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状答案:1.C 2.D 3.A 4.C 5.B(二)、填空题6.△ABC中,AB=AC,∠A=∠C,则∠B=_______.7.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,•则CD•的长度是_______.答案:6.60° 7.60°8.三;三边的垂直平分线 9.1cm (三)、解答题10.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是多少度? 11.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D , •求证:•BC=3AD.D CAB12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ; ②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDABHF13.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.(提示:连接CE )EDCA答案:10.60°或120°11.∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,∴在Rt △ADC 中CD=•2AD ,•∵∠BAC=120°,∴∠BAD=120°-90°=30°, ∴∠B=∠BAD ,∴AD=BD ,∴BC=3AD 12.①∵∠ACB=∠DCE=60°,∴∠BCE=∠ACD . 又∵BC=AC ,CE=CD , ∴△BCE ≌△ACD ; ②证明△BCF ≌△ACH ; ③△CFH 是等边三角形.13.连接CE ,先证明△BCE ≌△ACE 得到∠BCE=∠ACE=30°,再证明△BDE•≌△BCE 得到∠BDE=∠BCE=30° Ⅲ、随堂练习,变式训练练习1:请同学们做课本51页的练习第一题,同时教师在黑板上补充一下题目: 求等腰三角形个角度数:(1)在等腰三角形中,有一个角的度数为36°. (2)在等腰三角形中,有一个角的度数为110°.学生思考,练习,教师指导,并给出答案,之后引导学生对以上这种类型的题目存在的规律进行归纳总结。
初二数学下册总结第一章三角形的证明一、全等三角形的判定定理:三边分别相等的两个三角形全等.(SSS)定理:两边及其夹角分别相等的两个三角形全等.(SAS)定理:两角及其夹边分别相等的两个三角形全等.(ASA)定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.(AAS)定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)二、全等三角形的性质全等三角形对应边相等、对应角相等.三、等腰(边)三角形的性质定理:等腰三角形的两底角相等.(等边对等角)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.定理:等边三角形的三个内角都相等,并且每个角都等于60°. 四、等腰(边)三角形的判定定理:有两个角相等的三角形是等腰三角形.(等角对等边)定理:三个角都相等的三角形是等边三角形.定理:有一个角等于60°的等腰三角形是等边三角形.五、反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.六、直角三角形的性质定理:直角三角形的两个锐角互余.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.勾股定理:直角三角形两条直角边的平方和等于斜边的平方.七、直角三角形的判定定理:有两个角互余的三角形是直角三角形.定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.八、线段垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.九、角平分线定理:角平分线上的点到这个角的两边的距离相等.定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上.三角形三内角的平分线性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.十、互逆命题和互逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.备注:一个命题一定有逆命题,但一个定理不一定有逆定理.十一、尺规作图的应用已知等腰三角形的底边及底边上的高作等腰三角形.第二章一元一次不等式与一元一次不等式组一、不等关系定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.与方程的区别:方程表示的是相等的关系;不等式表示的是不相等的关系.备注:准确“翻译”不等式,正确理解“非负数”“不小于”“不大于”“至多”“至少”等数学术语.二、不等式的基本性质●不等式的两边都加(或减)同一个整式,不等号的方向不变,即如果a >b ,那么c a ±>c b ±;●不等式的两边都乘(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或c a >c b );●不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或c a <cb ).三、不等式的解集1、能使不等式成立的未知数的值,叫做不等式的解.一个含有未知数的不等式的所有解,组成这个不等式的解集.求不等式解集的过程叫做解不等式.2、不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:(1)边界:有等号的实心圆点,无等号的空心圆圈;(2)方向:大于向右,小于向左.四、一元一次不等式定义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次是1,像这样的不等式叫做一元一次不等式.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.列不等式解应用题的基本步骤:①审,②设,③列,④解,⑤答.备注:解一元一次不等式特别要注意,当不等式两边都乘一个负数时,不等号要改变方向.五、一元一次不等式与函数设一次函数b=,则有一次函数的图像在x轴的上方⇔bkxy+kx+>0;一次函数的图像在x轴的下方⇔bkx+<0.六、一元一次不等式组解一元一次不等式组的方法:“分开解,集中判”备注:几个不等式解集的公共部分,通常是利用数轴来确定.第三章图形的平移与旋转一、平移定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移的两个要素:平移方向、平移距离.二、平移的性质1、平移不改变图形的形状和大小.2、一个图形和它经过平移所得到的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.3、一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.4、平移前后的图形全等.三、旋转定义:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转的三个要素:旋转中心、旋转方向、旋转角.四、旋转的性质1、旋转不改变图形的大小和形状.2、一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3、旋转前后的图形全等.五、两图成中心对称定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.备注:成中心对称的图形是两个图形.六、两个图形成中心对称的性质1、成中心对称的两个图形是全等图形;2、成中心对称的两个图形,对应点所连线段都经过对称中心,且被对称中心平分;3、成中心对称的两个图形,对应线段平行(或在同一直线上)且相等.七、中心对称图形定义:把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.例如:圆,平行四边形,长方形,正方形及边数是偶数的正多边形都是中心对称图形.八、中心对称图形的性质中心对称图形上的每一对对应点连成的线段都被对称中心平分.九、图案设计步骤1、确定设计图案的表达意图;2、分析设计图案所给定的基本图形;3、对基本图形综合运用平移、旋转、轴对称设计图案第四章因式分解一、因式分解定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解与整式乘法的区别与联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个整式的积的形式.备注:因式分解与整式乘法是互逆关系二、提公因式法如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.如:)(c b a ac ab +=+.依据:)(c b a m cm bm am ++=++步骤:①找公因式:系数的最大公约数与相同字母的最低次幂的积; ②提公因式:提取公因式后的多项式,合并同类项前与原多项式的项数相同.(多项式中的某一项恰为公因式,提出后,括号中这一项为1,而不是0)三、公式法1、平方差公式:))((22b a b a b a -+=-;2、完全平方公式:222)(2b a b ab a -=+-,222)(2b a b ab a +=++.●因式分解的一般步骤:首项有“负”必先提,各项有“公”先提“公”,每项都提莫漏“1”,括号里面分到底.第五章 分式与分式方程一、分式1、定义:一般地,用A ,B 表示两个整式,A ÷B 可以表示成B A 的形式,如果B 中含有字母,那么称BA 为分式.对于任意一个分式,分母都不能为零.2、分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.3、公因式:一个分式的分子与分母都含有的因式,叫这个分式的公因式.4、约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分的方法:可以运用分式的基本性质,把这个分式的分子、分母同除以它们的公因式,也就是把分子、分母的公因式约去.5、最简公分母:(1)把各分式分母系数的最小公倍数作为最简公分母的系数;(2)把相同字母(或因式分解后得到的相同因式)的最高次幂作为最简公分母的一个因式;(3)把只在一个分式的分母中出现的字母连同它的指数作为最简公分母的一个因式.6、通分:把异分母的分式化为同分母的分式,这一过程称为分式的通分.7、最简分式:一个分式的分子与分母除了1以外没有其他的公因式时,叫做最简分式.二、分式的乘除法1、两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2、两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.三、分式的加减法1、同分母的分式相加减,分母不变,把分子相加减.式子表示是:CB AC B C A ±=± 2、异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.式子表示是:BDBC AD BD BC BD AD D C B A ±=±=± 备注:先对多项式进行因式分解,再确定最简公分母.四、分式方程1、定义:分母中含有未知数的方程叫做分式方程.2、解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程进行检验,也可以代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3、分式方程的增根:解分式方程的过程中所求出的使原分式方程的分母等于零的根,是原方程的增根.4、列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案.备注:解分式方程可能产生增根,所以解分式方程必须检验!第六章 平行四边形一、平行四边形的性质定理:平行四边形的对边相等.定理:平行四边形的对角相等.定理:平行四边形的对角线互相平分.第 11 页 平行四边形是中心对称图形,两条对角线的交点是它的对称中心.二、平行四边形的判定定义:两组对边分别平行的四边形是平行四边形.定理:两组对边分别相等的四边形是平行四边形.定理:一组对边平行且相等的四边形是平行四边形.定理:对角线互相平分的四边形是平行四边形.三、三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于第三边的一半. ●由三角形的三条中位线,可以得出以下结论:(1)三条中位线组成一个三角形,其周长为原三角形周长的一半;(2)三条中位线将原三角形分割成四个全等的三角形;(3)三条中位线将三角形划分出三个面积相等的平行四边形.四、多边形的内角和与外角和定理:n 边形的内角和等于)2-n (·180°.定理:多边形的外角和都等于360°.备注:n 边形共有)3(21-n n 条对角线.。
北师大版初二数学下册知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!北师大版初二数学下册知识点归纳学会整合知识点。
一、代数表达式与简单方程式1.代数表达式的定义和基本性质2.多项式的定义和运算3.一元一次方程式的解法及应用4.解一元一次方程组的常用方法5.实际问题中的一元一次方程式与方程式解法的应用6.一元一次方程式的应用和拓展二、数与式1.实数与有理数2.无理数3.幅数与科学计数法4.根与幂5.相反数与绝对值6.指数与对数三、二元一次方程组1.二元一次方程组与解法2.解三元一次方程组的常用方法3.实际问题中的二元一次方程组及解法的应用4.一次不等式组与解法5.二元不等式组与解法四、比例与类比1.比与比例的概念2.比例的变化、比例等式及其应用3.列比例方程与解法4.各种图形的成比例与相似5.平行线分线段五、多角形1.多边形的定义和性质2.角的度量与作图3.三角形的定义和性质4.三角形的分类与判定5.三角形的面积6.梯形、平行四边形和菱形的性质与面积六、三角形的相似1.直角三角形的性质和应用2.三角形的相似及其判定3.三角形的相似定理与应用4.三角形的黄金分割点与黄金三角5.分数比例与比例的复调和七、平移与轴对称1.平移的定义和性质2.轴对称的定义和性质3.平移与轴对称的关系及应用4.以点为旋转中心的旋转八、投影与视图1.平面的投影与剖视图2.空间的投影与展开图3.空间的视图及应用九、统计常用图形1.条形统计图的绘制和应用2.饼形统计图的绘制和应用3.折线统计图的绘制和应用4.瞬时图和比率图的绘制和应用5.统计实际问题的分析和解答十、集合与cd-ua映射1.集合的概念和运算2.集合的关系与运算律3.点的坐标与集合的关系4. cd-ua映射与映射公式5.映射特例与应用。
八年级下册数学各章节知识点总结第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, cb c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc,c b c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为ab x >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为a b x <; 5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如:ab+=ac+)a(cb2. 概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: mbma-+=-+mmc(c)ab3. 易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=-(2)完全平方公式: 222)(2b a b ab a +=++ 222)(2b a b ab a -=+-3. 因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.4. 运用公式法:(1)平方差公式: ①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方; ③还有一项可正可负,且它是前两项幂的底数乘积的2倍.5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法.如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.3. 注意: 分组时要注意符号的变化.五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅= ,21c c c ⋅=, 且满足1221c a c a b +=,往往写成c 2a 2c 1a 1 的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++ab q b a p =+=q px x ++2分解因式时,如果常数项q 3. 规律内涵:(1)理解:把是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.4. 易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.第三章 分式一. 分式1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称B A 为分式,对于任意一个分式,分母都不能为零.2. 整式和分式统称为有理式,即有:⎩⎨⎧分式整式有理式 3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.)0(,≠÷÷=⨯⨯=M M B M A B A M B M A B A4. 一个分式的分子分母有公因式时,可以运用分式的基本性质,把这个分式的分子分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.二. 分式的乘除1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即: BD AC D C B A =⋅, CB D ACD B A D C B A ⋅⋅=⋅=÷ 2. 分式乘方,把分子、分母分别乘方. 即: )(为正整数n B A B A n n n =⎪⎭⎫ ⎝⎛b a 11逆向运用n n n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n n B A B A =⎪⎭⎫ ⎝⎛成立. 3. 分子与分母没有公因式的分式,叫做最简分式.三. 分式的加减法1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.2. 分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.(1)同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是:CB AC B C A ±=± (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减; 上述法则用式子表示是:BD BC AD BD BC BD AD D C B A ±=±=± 3. 概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解.四. 分式方程1. 解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.2. 列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案.第四章 相似图形一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. 2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.3. 注意点: ①a:b=k,说明a 是b 的k 倍;②由于线段a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b 之外,a:b ≠b:a,b a 与a b 互为倒数;⑤比例的基本性质:若dc b a =, 则ad=bc; 若ad=bc, 则dc b a = 二. 黄金分割1. 如图1,点C 把线段AB 分成两条线段AC 和BC,如果AC BC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC2.黄金分割点是最优美、最令人赏心悦目的点.四. 相似多边形1. 一般地,形状相同的图形称为相似图形.2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形1. 在相似多边形中,最为简单的就是相似三角形.2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.3. 全等三角形是相似三角形的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.5. 相似三角形周长的比等于相似比.6. 相似三角形面积的比等于相似比的平方.六.探索三角形相似的条件1. 相似三角形的判定方法:基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似._ 图1 _ B _ C _ A2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l 1 // l 2 // l 3,则EF BC DE AB .3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质相似多边形的周长等于相似比;面积比等于相似比的平方.九. 图形的放大与缩小1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.3. 位似变换: ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小.第五章 数据的收集与处理一. 每周干家务活的时间1. 所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本.2. 为一特定目的而对所有考察对象作的全面调查叫做普查;为一特定目的而对部分考察对象作的调查叫做抽样调查._ 图2_ F _ E _ D _ C _ B _ A _ l _3 _ l _2_ l _1二. 数据的收集1. 抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.而估计值是否接近实际情况还取决于样本选得是否有代表性.第六章证明(一)一. 定义与命题1. 一般地,能明确指出概念含义或特征的句子,称为定义.定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现.2. 可以判断它是正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.3. 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.4. 有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.5. 根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.二. 为什么它们平行1. 平行判定公理: 同位角相等,两直线平行.(并由此得到平行的判定定理)2. 平行判定定理: 同旁内互补,两直线平行.3. 平行判定定理: 同错角相等,两直线平行.三. 如果两条直线平行1. 两条直线平行的性质公理: 两直线平行,同位角相等;2. 两条直线平行的性质定理: 两直线平行,内错角相等;3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.四. 三角形和定理的证明1. 三角形内角和定理: 三角形三个内角的和等于180°2. 一个三角形中至多只有一个直角3. 一个三角形中至多只有一个钝角4. 一个三角形中至少有两个锐角五. 关注三角形的外角1. 三角形内角和定理的两个推论:推论1: 三角形的一个外角等于和它不相邻的两个内角的和;推论2: 三角形的一个外角大于任何一个和它不相邻的内角.。