高中物理电磁感应专题复习
- 格式:doc
- 大小:4.29 MB
- 文档页数:17
电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。
(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。
如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。
④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。
高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
电磁感应专题(4)1.轻质细线吊着一质量为m =0.32kg 、边长为L =0.8m 、匝数n =10的正方形线圈,总电阻为r =1Ω.边长为L2的正方形磁场区域对称分布在线圈下边的两侧,如图12甲所示,磁场方向垂直纸面向里,大小随时间变化如图12乙所示,从t =0开始经t 0时间细线开始松弛,取g =10m/s 2.求:(1)在前t 0时间内线圈中产生的电动势;(2)在前t 0时间内线圈的电功率;(3)t 0的值.解析(1)由法拉第电磁感应定律得E =nΔΦΔt =n ×12×(L 2)2ΔB Δt =10×12×(0.82)2×0.5V =0.4V.(2)I =Er=0.4A ,P =I 2r =0.16W.(3)分析线圈受力可知,当细线松弛时有:F 安=nBt 0I L 2=mg ,I =E r ,Bt 0=2mgrnEL =2T由图象知:Bt 0=1+0.5t 0(T),解得t 0=2s.答案(1)0.4V(2)0.16W(3)2s2.小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右盘挂有矩形线圈,两臂平衡.线圈的水平连长L =0.1m,竖直连长H =0.3m,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0T,方向垂直线圈平面抽里.线圈中通有可在0-2.0A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10m/s 2)(1)为使电磁天平的是量程达到0.5kg,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10Ω,不接外电流,两臂平衡.如图2所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1m.当挂盘中放质量为0.01kg 的物体时,天平平衡,求此时磁感应强度的变化率tB∆∆.3.如图所示,足够长的U 形导体框架的宽度L=0.5m ,电阻可忽略不计,其所在平面与水平面成θ=37°角.有一磁感应强度B=0.8T 的匀强磁场,方向垂直于导体框平面.一根质量m=0.2kg 、电阻为R=2Ω的导体棒MN 垂直跨放在U 形框架上,某时刻起将导体棒由静止释放.已知导体棒与框架间的动摩擦因数μ=0.5.(已知sin37°=0.6,cos37°=0.8,g=10m/s 2),求:(1)导体棒运动过程中的最大速度;(2)从导体棒开始下滑到速度刚达到最大的过程中,通过导体棒横截面的电量Q=2C ,导体棒在此过程中消耗的电能.B 0I 图1图24.如图所示,两根竖直放置在绝缘地面上的金属导轨的上端,接有一个电容为C 的电容器,框架上有一质量为m、长为L 的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感强度为B 的匀强磁场与框架平面垂直.开始时,电容器不带电.将金属棒由静止释放,问:棒落地时的速度为多大?(整个电路电阻不计)2,因为Q=CUc,所以△Q=C△Uc 电源路端电压U==B l v,而U=Uc,所以△Uc=B l △v.I Qt C U tC Bl v t CBla====∆∆∆∆∆∆①mg-B·I·l=ma②从③式知a=恒量,所以金属棒做匀加速运动.v ah mghm CB l 12222==+5.如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。
电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。
电磁感应是电磁学的重要基础,具有广泛的应用。
2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。
它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。
3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。
磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。
4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。
根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。
楞次圈定律是描述电磁感应中感应电动势的方向的定律。
根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。
5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。
根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。
6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。
涡流会在导体内部产生能量损耗,称为涡流损耗。
涡流损耗的大小与导体特性、磁场强度、频率等因素有关。
7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。
互感的大小与线圈的匝数、磁场强度等因素有关。
自感是指线圈中自身磁场变化所产生的感应电动势。
自感的大小与线圈的匝数、磁场强度等因素有关。
8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。
它们的原理都是利用电磁感应现象。
以上是电磁感应的高中物理知识点的简要介绍。
电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。
希望这份文档能对你有所帮助!。
第11讲 电磁感应 命题规律 1.命题角度:(1)楞次定律与法拉第电磁感应定律的应用;(2)电磁感应中的图象问题;(3)电磁感应中的动力学与能量问题.2.常用方法:排除法、函数法.3.常考题型:选择题、计算题.考点一 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:线圈面积不变,磁感应强度发生变化的情形,往往用楞次定律.(2)右手定则:导体棒切割磁感线的情形往往用右手定则.2.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍物体间的相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”;(4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”.3.求感应电动势的方法(1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧ S 不变时,E =nS ΔB Δt B 不变时,E =nB ΔS Δt(2)导体棒垂直切割磁感线:E =Bl v .(3)导体棒以一端为圆心在垂直匀强磁场的平面内匀速转动:E =12Bl 2ω. (4)线圈绕与磁场垂直的轴匀速转动(从线圈位于中性面开始计时):e =nBSωsin ωt .4.通过回路截面的电荷量q =I Δt =n ΔΦR 总Δt Δt =n ΔΦR 总.q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关,与Φ是否均匀变化无关.例1 (多选)(2022·广东卷·10)如图所示,水平地面(Oxy 平面)下有一根平行于y 轴且通有恒定电流I 的长直导线.P 、M 和N 为地面上的三点,P 点位于导线正上方,MN 平行于y 轴,PN 平行于x 轴.一闭合的圆形金属线圈,圆心在P 点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行.下列说法正确的有( )A .N 点与M 点的磁感应强度大小相等,方向相同B .线圈沿PN 方向运动时,穿过线圈的磁通量不变C .线圈从P 点开始竖直向上运动时,线圈中无感应电流D .线圈从P 到M 过程的感应电动势与从P 到N 过程的感应电动势相等答案 AC解析 依题意,M 、N 两点连线与长直导线平行,两点与长直导线的距离相等,根据右手螺旋定则可知,通电长直导线在M 、N 两点产生的磁感应强度大小相等、方向相同,故A 正确;根据右手螺旋定则,线圈在P 点时,穿进线圈中的磁感线与穿出线圈中的磁感线相等,磁通量为零,在向N 点平移过程中,穿进线圈中的磁感线与穿出线圈中的磁感线不再相等,穿过线圈的磁通量发生变化,故B 错误;根据右手螺旋定则,线圈从P 点竖直向上运动过程中,穿进线圈中的磁感线与穿出线圈中的磁感线始终相等,穿过线圈的磁通量始终为零,没有发生变化,线圈中无感应电流,故C 正确;线圈从P 点到M 点与从P 点到N 点,穿过线圈的磁通量变化量相同,依题意从P 点到M 点所用时间较从P 点到N 点的时间长,根据法拉第电磁感应定律,可知两次的感应电动势不相等,故D 错误.例2 (多选)(2021·辽宁卷·9)如图(a)所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t =0时磁场方向垂直纸面向里.在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒.整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在t =t 02时,金属棒受到安培力的大小为B 02L 3t 0RB .在t =t 0时,金属棒中电流的大小为B 0L 2t 0RC .在t =3t 02时,金属棒受到安培力的方向竖直向上 D .在t =3t 0时,金属棒中电流的方向向右答案 BC解析 由题图(b)可知在0~t 0时间段内闭合回路产生的感应电动势为E =ΔΦΔt =B 0L 2t 0,根据闭合电路欧姆定律有,此时间段内的电流为I =E R =B 0L 2Rt 0,在t 02时磁感应强度大小为B 02,此时安培力大小为F =B 02IL =B 02L 32Rt 0,故A 错误,B 正确;由题图(b)可知,在t =3t 02时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;由题图(b)可知,在t =3t 0时,磁场方向垂直纸面向外,金属棒向下掉的过程中穿过回路的磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误.考点二 电磁感应中的图象问题1.电磁感应中常见的图象常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图象.2.解答此类问题的两个常用方法(1)排除法:定性分析电磁感应过程中某个物理量的变化情况,把握三个关注,快速排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.(2)函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图象作出判断,这种方法得到的结果准确、详细,但不够简捷.例3 (多选)(2022·河北卷·8)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,一根导轨位于x 轴上,另一根由ab 、bc 、cd 三段直导轨组成,其中bc 段与x 轴平行,导轨左端接入一电阻R .导轨上一金属棒MN 沿x 轴正向以速度v 0保持匀速运动,t =0时刻通过坐标原点O ,金属棒始终与x 轴垂直.设运动过程中通过电阻的电流强度为i ,金属棒受到安培力的大小为F ,金属棒克服安培力做功的功率为P ,电阻两端的电压为U ,导轨与金属棒接触良好,忽略导轨与金属棒的电阻.下列图象可能正确的是( )答案 AC解析 在0~L v 0时间内,在某时刻金属棒切割磁感线的长度L =l 0+v 0t tan θ(θ为ab 与ad 的夹角),则根据E =BL v 0,可得I =BL v 0R =B v 0R(l 0+v 0t tan θ),可知回路电流均匀增加;安培力F =B 2L 2v 0R =B 2v 0R (l 0+v 0t tan θ)2,则F -t 关系为二次函数关系,但是不过原点;安培力做功的功率P =F v 0=B 2L 2v 02R =B 2v 02R (l 0+v 0t tan θ)2,则P -t 关系为二次函数关系,但是不过原点;电阻两端的电压等于金属棒产生的感应电动势,即U =E =BL v 0=B v 0(l 0+v 0t tan θ),即U -t 图象是不过原点的直线;根据以上分析,可排除B 、D 选项;在L v 0~2L v 0时间内,金属棒切割磁感线的长度不变,感应电动势E 不变,感应电流I 不变,安培力F 大小不变,安培力的功率P 不变,电阻两端电压U 保持不变;同理可判断,在2L v 0~3L v 0时间内,金属棒切割磁感线长度逐渐减小,金属棒切割磁感线的感应电动势E 均匀减小,感应电流I 均匀减小,安培力F 大小按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,安培力的功率P 按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,电阻两端电压U 按线性均匀减小,综上所述选项A 、C 可能正确,B 、D 错误.例4 (多选)(2022·安徽省六校第二次联考)如图所示,水平面内有一足够长平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.开关S由1掷到2时开始计时,q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象可能正确的是()答案ACD解析开关S由1掷到2,电容器放电后会在电路中产生电流且此刻电流最大,导体棒通有电流后会受到安培力的作用产生加速度而加速运动,导体棒切割磁感线产生感应电动势,导体棒速度增大,则感应电动势E=Bl v增大,则实际电流减小,安培力F=BIL减小,加速度a=Fm即减小,因导轨光滑,所以在有电流通过棒的过程中,棒是一直做加速度减小的加速运动(变加速),故a-t图象即选项D是正确的;导体棒运动产生感应电动势会给电容器充电,当充电和放电达到一种平衡时,导体棒做匀速运动,因此最终电容器两端的电压能稳定在某个不为0的数值,即电容器的电荷量应稳定在某个不为0的数值(不会减少到0),电路中无电流,故B错误,A、C正确.考点三电磁感应中的动力学与能量问题1.电磁感应综合问题的解题思路2.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流恒定的情况;(2)功能关系:Q=W克安(W克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量).例5 (多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C 的电容器和阻值为R 的电阻.质量为m 、阻值也为R 的导体棒MN 静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q ,合上开关S 后( )A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR ,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.例6 (2022·山东济南市一模)如图所示,在水平虚线下方存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B .磁场上方某高度处有一个正方形金属线框,线框质量为m ,电阻为R ,边长为L .某时刻将线框以初速度v 0水平抛出,线框进入磁场过程中速度不变,运动过程中线框始终竖直且底边保持水平.磁场区域足够大,忽略空气阻力,重力加速度为g ,求:(1)线框进入磁场时的速度v ;(2)线框进入磁场过程中产生的热量Q .答案 (1)v 02+m 2g 2R 2B 4L 4,速度方向与水平方向夹角的正切值为mgRB 2L 2v 0(2)mgL 解析 (1)当线框下边界刚进入磁场时,由于线框速度不变,对线框进行受力分析有BIL=mg由欧姆定律可得I=ER线框切割磁感线,由法拉第电磁感应定律可得E=BL v y由速度的合成与分解可得v=v02+v y2联立求解可得v=v02+m2g2R2B4L4设此时速度方向与水平面的夹角为θ,则tan θ=v yv0=mgR B2L2v0即此时速度方向与水平方向夹角的正切值为mgRB2L2v0.(2)线框进入磁场过程中速度不变,则从进入磁场开始到完全进入磁场,由能量守恒定律得Q=mgL.例7(2022·河南洛阳市模拟)如图甲所示,金属导轨MN和PQ平行,间距L=1 m,与水平面之间的夹角α=37°,匀强磁场磁感应强度大小B=2.0 T,方向垂直于导轨平面向上,MP 间接有阻值R=1.5 Ω的电阻,质量m=0.5 kg,接入电路中电阻r=0.5 Ω的金属杆ab垂直导轨放置,金属杆与导轨间的动摩擦因数为μ=0.2.现用恒力F沿导轨平面向上拉金属杆ab,使其由静止开始运动,当金属杆上滑的位移x=3.8 m时达到稳定状态,金属杆始终与导轨接触良好,对应过程的v-t图象如图乙所示.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,导轨足够长且电阻不计.求:(1)恒力F的大小及金属杆的速度为0.4 m/s时的加速度大小;(2)从金属杆开始运动到刚达到稳定状态,通过电阻R的电荷量;(3)从金属杆开始运动到刚达到稳定状态,金属杆上产生的焦耳热.答案(1)5.8 N 2.4 m/s2(2)3.8 C(3)1.837 5 J解析(1)当金属杆匀速运动时,由平衡条件得F=μmg cos 37°+mg sin 37°+F安由题图乙知v =1 m/s ,则F 安=BIL =B 2L 2v R +r =2 N 解得F =5.8 N当金属杆的速度为0.4 m/s 时F 安1=BI 1L =B 2L 2v 1R +r=0.8 N 由牛顿第二定律有F -μmg cos 37°-mg sin 37°-F 安1=ma解得a =2.4 m/s 2.(2)由q =I ·ΔtI =E R +rE =ΔΦΔt 得q =ΔΦR +r =BLx R +r=3.8 C. (3)从金属杆开始运动到刚到达稳定状态,由动能定理得(F -μmg cos 37°-mg sin 37°)x +W 安=12m v 2-0 又Q =|W 安|=7.35 J ,所以解得Q r =r R +rQ =1.837 5 J.1.(多选)(2022·河南郑州市二模)在甲、乙、丙图中,MN 、PQ 是固定在同一水平面内足够长的平行金属导轨.导体棒ab 垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中,导体棒和导轨间的摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C 原来不带电.现给导体棒ab 一个向右的初速度v 0,对甲、乙、丙图中导体棒ab 在磁场中的运动状态描述正确的是( )A .甲图中,棒ab 最终做匀速运动B .乙图中,棒ab 做匀减速运动直到最终静止C .丙图中,棒ab 最终做匀速运动D .甲、乙、丙中,棒ab 最终都静止答案 AC解析 题图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C 极板间电压与导体棒产生的感应电动势相等时,电路中没有电流,此时ab 棒不受安培力作用,向右做匀速运动,故A 正确;题图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R 转化为内能,ab 棒速度减小,当ab 棒的动能全部转化为内能时,ab 棒静止,又由I =BL v R,F =BIL ,由于速度减小,则产生的感应电流减小,导体棒所受安培力减小,根据牛顿第二定律可知导体棒的加速度减小,所以题图乙中,棒ab 做加速度减小的减速运动直到最终静止,故B 错误;题图丙中,导体棒先受到向左的安培力作用向右做减速运动,速度减为零后在安培力作用下向左做加速运动,当导体棒产生的感应电动势与电源的电动势相等时,电路中没有电流,此时ab 棒向左做匀速运动,故C 正确;由以上分析可知,甲、乙、丙中,只有题图乙中棒ab 最终静止,故D 错误.2.(2022·山东泰安市高三期末)如图所示,间距为L 的平行光滑足够长的金属导轨固定倾斜放置,倾角θ=30°,虚线ab 、cd 垂直于导轨,在ab 、cd 间有垂直于导轨平面向上、磁感应强度大小为B 的匀强磁场.质量均为m 、阻值均为R 的金属棒PQ 、MN 并靠在一起垂直导轨放在导轨上.释放金属棒PQ ,当PQ 到达ab 瞬间,再释放金属棒MN ;PQ 进入磁场后做匀速运动,当PQ 到达cd 时,MN 刚好到达ab .不计导轨电阻,两金属棒与导轨始终接触良好,重力加速度为g .则MN 通过磁场过程中,PQ 上产生的焦耳热为( )A.2m 3g 2R 2B 4L4 B.m 3g 2R 2B 4L 4 C.m 3g 2R 24B 4L4 D.m 3g 2R 22B 4L4 答案 D解析 由题意知PQ 进入磁场后做匀速运动,则由平衡条件得安培力为F =mg sin θ,又因为F =BIL =B 2L 2v 2R ,解得金属棒速度为v =mgR B 2L 2,电流为I =mg 2BL ,因为金属棒从释放到刚进入磁场时做匀加速直线运动,由牛顿第二定律知mg sin θ=ma,所以加速时间为t=va,由题意知当PQ到达cd时,MN刚好到达ab,即金属棒穿过磁场的时间等于进入磁场前的加速时间,且MN在磁场中的运动情况和PQ一致,故MN通过磁场过程中,PQ上产生的焦耳热为Q焦耳=I2Rt,解得Q焦耳=m3g2R22B4L4,故选D.专题强化练[保分基础练]1.(2022·上海市二模)如图,某教室墙上有一朝南的钢窗,将钢窗右侧向外打开,以推窗人的视角来看,窗框中产生()A.顺时针电流,且有收缩趋势B.顺时针电流,且有扩张趋势C.逆时针电流,且有收缩趋势D.逆时针电流,且有扩张趋势答案 D解析磁场方向由南指向北,将钢窗右侧向外打开,则向北穿过窗户的磁通量减少,根据楞次定律,以推窗人的视角来看,感应电流为逆时针电流,同时根据“增缩减扩”可知,窗框有扩张趋势,故选D.2.(2022·广东肇庆市二模)如图所示,开口极小的金属环P、Q用不计电阻的导线相连组成闭合回路,金属环P内存在垂直圆环平面向里的匀强磁场,匀强磁场的磁感应强度随时间的变化率为k,若使金属环Q中产生逆时针方向逐渐增大的感应电流,则()A.k>0且k值保持恒定B.k>0且k值逐渐增大C.k<0且k值逐渐增大D.k<0且k值逐渐减小答案 B解析若使金属环Q中产生逆时针方向逐渐增大的感应电流,则金属环P中也有逆时针方向逐渐增大的感应电流,根据楞次定律和安培定则可知,金属环P中向里的磁感应强度增加,且增加得越来越快,即k>0且k值逐渐增大,故选B.3.(2022·陕西宝鸡市模拟)如图所示,两根电阻不计的平行光滑长直金属导轨水平放置,导体棒a和b垂直跨在导轨上且与导轨接触良好,导体棒a的电阻大于b的电阻,匀强磁场方向竖直向下.当导体棒b在大小为F2的水平拉力作用下匀速向右运动时,导体棒a在大小为F1的水平拉力作用下保持静止状态.若U1、U2分别表示导体棒a和b与导轨两个接触点间的电压,那么它们的大小关系为()A.F1=F2,U1> U2B.F1< F2,U1< U2C.F1 > F2,U1< U2D.F1=F2,U1=U2答案 D解析导体棒a、b与导轨构成了闭合回路,流过a、b的电流是相等的;a静止不动,b匀速运动,都处于平衡状态,即拉力等于安培力,所以F1=F2=BIL,导体棒b相当于电源,导体棒a相当于用电器,由于电路是闭合的,所以导体棒a两端的电压U1=IR a,导体棒b切割磁感线产生的电动势E=BL v b=I(R a+R b),所以其输出的路端电压U2=E-IR b=IR a=U1,故选D.4.(2022·广东省模拟)如图所示,水平面内光滑的平行长直金属导轨间距为L,左端接电阻R,导轨上静止放有一导体棒.正方形虚线框内有方向竖直向下、磁感应强度大小为B的匀强磁场,该磁场正以速度v匀速向右移动,则()A.电阻R两端的电压恒为BL vB .电阻R 中有从a 到b 的电流C .导体棒以速度v 向左运动D .导体棒也向右运动,只是速度比v 小 答案 D解析 根据楞次定律,磁场正以速度v 匀速向右移动,磁通量减小,则导体棒也向右运动,阻碍磁通量的减小,但由于要产生感应电流,棒的速度比v 小,C 错误,D 正确;由此可认为磁场不动,棒向左切割,感应电流方向从b 到a 流过R ,B 错误;产生感应电动势的大小看棒与磁场的相对速度,故电阻R 两端的电压不恒定且小于或等于BL v ,A 错误. 5.(2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2,同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρL S 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6,根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR ,可得电流之比为I 1∶I 2∶I 3=2∶2∶3,即I 1=I 2>I 3,故选C.6.(2022·黑龙江哈师大附中高三期末)如图,一线圈匝数为n ,横截面积为S ,总电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k (k >0且为常量),磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值分别为r 和2r .下列说法正确的是( )A .电容器下极板带正电B .此线圈的热功率为(nkS )2rC .电容器所带电荷量为3nSkC5D .电容器所带电荷量为nSkC2答案 D解析 根据楞次定律可以判断通过电阻r 的电流方向为从左往右,所以电容器上极板带正电,故A 错误;根据法拉第电磁感应定律可得线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =nkS ,根据焦耳定律可得此线圈的热功率为P =(E 2r )2r =(nkS )24r ,故B 错误;电容器两端电压等于r两端电压,电容器所带电荷量为Q =CU =C ·rE 2r =nSkC2,故C 错误,D 正确.7.(2022·江苏盐城市二模)如图所示,三条平行虚线L 1、L 2、L 3之间有宽度为L 的两个匀强磁场区域Ⅰ、Ⅱ,两区域内的磁感应强度大小相等、方向相反,正方形金属线框MNPQ 的质量为m 、边长为L ,开始时MN 边与边界L 1重合,对线框施加拉力F 使其以加速度a 匀加速通过磁场区,以顺时针方向电流为正方向,下列关于感应电流i 和拉力F 随时间变化的图象可能正确的是( )答案 B解析 当MN 边向右运动0~L 的过程中,用时t 1=2L a ,则E 1=BLat ,电流I 1=E 1R =BLa Rt ,方向为正方向;拉力F 1=ma +F 安1=ma +B 2L 2aR t ;当MN 边向右运动L ~2L 的过程中,用时t 2=4L a-2La=(2-1)2L a =(2-1)t 1,E 2=2BLat ,电流I 2=E 2R =2BLa Rt ,方向为负方向,拉力F 2=ma +F 安2=ma +4B 2L 2aR t ;当MN 边向右运动2L ~3L 的过程中,用时t 3=6La-4La=(3-2)2L a =(3-2)t 1,E 3=BLat ,电流I 3=E 3R =BLa Rt ,方向为正方向,拉力F 3=ma +F 安3=ma +B 2L 2aRt ,对比四个选项可知,只有B 正确.[争分提能练]8.(多选)(2021·广东卷·10)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小 答案 AD解析 杆OP 匀速转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 转动过程中产生的感应电流由M 到N 通过杆MN ,由左手定则可知,杆MN 会向左运动,杆MN 运动会切割磁感线,产生电动势,感应电流方向与原来电流方向相反,使回路电流减小,杆MN 所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.9.(多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )A .甲和乙都加速运动B .甲和乙都减速运动C .甲加速运动,乙减速运动D .甲减速运动,乙加速运动 答案 AB解析 设线圈下边到磁场上边界的高度为h ,线圈的边长为l ,则线圈下边刚进入磁场时,有v =2gh ,感应电动势为E =nBl v ,两线圈材料相同(设密度为ρ0),质量相等(设为m ), 则m =ρ0·4nl ·S ,设材料的电阻率为ρ,则线圈电阻 R =ρ4nl S =16n 2l 2ρρ0m感应电流为I =E R =mB v 16nlρρ0所受安培力为F =nBIl =mB 2v16ρρ0由牛顿第二定律有mg -F =ma 联立解得a =g -Fm =g -B 2v 16ρρ0加速度与线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度. 当g >B 2v16ρρ0时,甲和乙都加速运动,当g <B 2v 16ρρ0时,甲和乙都减速运动,当g =B 2v16ρρ0时,甲和乙都匀速运动,故选A 、B.10.(2022·山东省第二次模拟)如图所示,“凹”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一平面内,ab 、bc 边长均为2l ,gf 边长为l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,bc 边离磁场上边界的距离为l ,线框由静止释放,从bc 边进入磁场直到gf 边进入磁场前,线框做匀速运动.在gf 边离开磁场后,ah 、ed 边离开磁场之前,线框又做匀速运动.线框在下落过程中始终处于竖直平面内,且bc 、gf 边保持水平,重力加速度为g .(1)线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的几倍? (2)若磁场上下边界间的距离为H ,则线框完全穿过磁场过程中产生的热量为多少? 答案 (1)4 (2)mg (H -13l )解析 (1)设bc 边刚入磁场时速度为v 1,bc 边刚进入时, 有E 1=2Bl v 1,I 1=E 1R ,F 1=2BI 1l线框匀速运动,有F 1=mg 联立可得v 1=mgR4B 2l2设ah 、ed 边将离开磁场时速度为v 2,ah 、ed 边将离开磁场时,有E 2=Bl v 2,I 2=E 2R ,F 2=BI 2l ,线框匀速运动,有F 2=mg 联立可得v 2=mgRB 2l 2,综上所述v 2v 1=4即线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的4倍. (2)bc 边进入磁场前,根据动能定理, 有mgl =12m v 12穿过磁场过程中能量守恒,。
高中物理重点——电磁感应知识点及练习一、电磁感应基本概念1. 电磁感应的基本原理2. 法拉第电磁感应定律3. 洛伦兹力的概念练习题:1. 一根长度为20 cm 的导线以10 m/s 的速度进入一个磁感应强度为0.5 T 的匀强磁场中,导线的两端产生的感应电动势为多少?答案:1 V2. 一个载流导体绕着垂直于磁场方向的轴旋转,导体两端产生的感应电动势的大小为导体长度乘以什么?答案:磁感应强度3. 当磁通量密度变化率为200 T/s 时,一个线圈内部产生的感应电动势为20 V,此时线圈中的匝数为多少?答案:100二、法拉第电磁感应定律应用1. 电动势的方向和大小2. 电磁感应的应用:感应电流和感应电磁铁3. 磁场中的动生电现象:电磁感应现象和劳埃德力练习题:1. 一个长度为25 cm 的导体被放置在一个磁感应强度为0.2 T 的匀强磁场中,且在导体的两端施加一共 2 A 的电流,求该导体受到的安培力大小为多少?答案:0.25 N2. 在一个长度为10 cm 的导体内部施加一个0.5 T 的磁场,导体稳定地保持在匀强磁场中,当导体的长度与磁场的夹角为30 度时,导体内部的自感系数为多少?答案:0.00125 H3. 一个宽度为10 cm,长度为20 cm,大约0.5 毫米厚的铜片在磁感应强度为0.1 T 的恒定磁场中以 5 m/s 的速度向下运动,求铜片两端感应的电动势大小为多少?答案:1 V三、电磁感应现象与电磁波1. 电磁波的基本特征和传播方式2. 波长和频率的关系及其应用3. 电磁波的反射、折射和衍射现象练习题:1. 某广播电台的发射频率为100 MHz,求其波长的大小为多少?答案:3 m2. 一台微波炉的工作频率为2.45 GHz,求其波长的大小为多少?答案:0.12 m3. 一个频率为500 MHz 的电磁波垂直入射到一种材质中,该材质的折射率为 1.5,求折射后的电磁波的频率为多少?答案:333.3 MHz总结:电磁感应是高中物理中的重要知识点,包括电磁感应的基本概念、法拉第电磁感应定律应用以及电磁感应现象与电磁波等内容。
高考综合复习——电磁感应专题复习一电磁感应基础知识、自感和互感编稿:郁章富审稿:李井军责编:郭金娟总体感知知识网络考纲要求内容要求电磁感应现象磁通量法拉第电磁感应定律楞次定律自感、涡流I I II II I命题规律1.从近五年的高考试题可以看出,本专题内容是高考的重点,每年必考,命题频率较高的知识点有:感应电流的产生条件、方向判断和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题,在高考中时常出现。
2.本专题在高考试卷中涉及的试题题型全面,有选择题、填空题和计算题,选择题和填空题多为较简单的题目,计算题试题难度大,区分度高,能很好地考查学生的能力,备受命题专家的青睐。
今后高考对本专题内容的考查可能有如下倾向:①判断感应电流的有无、方向及感应电动势的大小计算仍是高考的重点,但题目可能会变得更加灵活。
②力学和电学知识相结合且涉及能量转化与守恒的电磁感应类考题将继续扮演具有选拔性功能的压轴题。
复习策略1.左手定则与右手定则在使用时易相混,可采用“字形记忆法”:(1)通电导线在磁场中受安培力的作用,“力”字的最后一撇向左,用左手定则;(2)导体切割磁感线产生感应电流,“电”字最后一钩向右,用右手定则;总之,可简记为力“左”电“右”。
2.矩形线框穿越有界匀强磁场问题,涉及楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。
3.电磁感应图象问题也是高考常见的题型之一;滑轨类问题是电磁感应中的典型综合性问题,涉及的知识多,与力学、静电场、电路、磁场及能量等知识综合,能很好的考察考生的综合分析能力。
本章知识在实际中应用广泛,如日光灯原理、磁悬浮原理、电磁阻尼、超导技术应用等,有些问题涉及多学科知识,不可轻视。
第一部分电磁感应现象、楞次定律知识要点梳理知识点一——磁通量▲知识梳理1.定义磁感应强度B与垂直场方向的面积S的乘积叫做穿过这个面积的磁通量,。
电磁感应磁生电第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.1磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.2磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.3磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流;2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化;理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场Φ原方向及ΔΦ情况确定感应磁场B 感方向判断感应电流I 感方向.重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场; 2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值,即ΔΦ=|Φ2-Φ1|.例面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中磁场区域足够大,磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ=.解析设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsin θ减小到零,再由零增大到负向BScos θ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BScos θ+sin θ答案-BScos θ+sin θ点拨磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量. 二、感应电流方向的判定:方法一:右手定则部分导体切割磁感线;方法二:楞次定律例某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是D →→bB.先a →→b,后b →→a C.先b →→aD.先b →→a,后a →→b第二部分法拉第电磁感应定律一、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,感应电动势的方向就是电源内部电流的方向,由电源的负极指向电源的正极; 二、感应电动势的大小1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:nt∆ΦE =∆图9-1-3图9-1-1公式理解:①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算. ④由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤n 表示线圈的匝数,可以看成n 个单匝线圈串联而成; 2.导体切割磁感线产生的感应电动势公式:θsin Blv E =,对公式的理解如下:①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直实际应用中一般只涉及此种情况.②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+=,所以ω221Bl v Bl E==-3.反电动势:反电动势对电路中的电流起削弱作用.三、几个总结:重点难点解析一、公式nt∆ΦE =∆和sin Lv θE =B 的比较=n t∆∆Φ求的是回路中Δt 时间内的平均电动势.=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.1E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.2122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.3E=nBS ωsin ωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt 3.公式nt∆ΦE =∆和E=BL v sin θ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方 便.二、Ф、ΔФ、ΔФ/Δt 三者的比较例一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成300角,若磁感应强度在内由增加到,则始末通过线圈的磁通量分别为Wb 和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为Wb/s;线圈中的感应电动势的大小为V.解析始、末的磁通量分别为:Φ1=B 1Ssin θ=×20×10-4×1/2Wb=10-4Wb Φ2=B 2Ssin θ=×20X10-4×1/2Wb=5×10-4Wb 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4Wb磁通量变化率05.01044-=∆∆Φx t Wb/s=8×10-3Wb/s感应电动势大小nt∆ΦE =∆=200×8×10-3V=点拨Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系. 三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时Ε=02以端点为轴时122L ωE =B 平均速度取中点位置线速度v =ωL/23以任意点为轴时122()122L L ωE =B -与两段的代数和不同第三部分互感和自感涡流一、互感与互感电动势1.互感现象:一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.2.互感电动势:在互感现象中产生的电动势叫做互感电动势. 二、自感现象1.自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象.2.自感电动势1.定义:在自感现象中产生的电动势,叫做自感电动势. 2.作用:总是阻碍导体中原电流的变化.3.自感电动势的方向:自感电动势总是阻碍导体中原电流的变化.即当电流增大时,自感电动势阻碍电流增大;当电流减小时,自感电动势阻碍电流减小.4.自感电动势的大小:Lt∆I E =∆,自感电动势的大小与电流的变化率成正比,其中L 为自感系数.3.自感系数:自感系数也叫自感或电感.自感系数L 由线圈本身的特性决定.L 的大小与线圈的长度、线圈的横截面积等因素有关,线圈越长,单位长度的匝数越多,横截面积越大,自感系数L 越大.另外,若线圈中有铁芯,自感系数L 会大很多.4.自感现象与互感现象的区别和联系区别:1互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部; 2通过互感可以把能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放. 联系:二者都是电磁感应现象.通电自感和断电自感的比较例如图9-3-6所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其 直流电阻忽略不计.当电键K 闭合时,下列说法正确的是 比B 先亮,然后A 熄灭比A 先亮,然后B 逐渐变暗,A 逐渐变亮 、B 一齐亮,然后A 熄灭、B 一齐亮.然后A 逐渐变亮.B 的亮度不变 正解电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源,这样对整个回路图9-3-6图9-3-7而言相当于两个电源共同作用在同一个回路中.两个电源各自独立产生电流,实际上等于两个电流的叠加.根据上述原理可在电路中标出两个电源各自独立产生的电流的方向.图9-3-7a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图.由图可知在A灯处原电流与感应电流反向,故A灯不能立刻亮起来.在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流,故B灯比正常发光亮因正常发光时电流就是原电流.随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A灯变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光,应选B.三、三、涡流1.涡流:当线圈的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的漩涡,把它叫做涡电流,简称涡流.特点:整块金属的电阻很小,涡流往往很大.四.电磁阻尼与电磁驱动1电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动.注意:电磁阻尼与电磁驱动也是一种特殊的电磁感应现象,原理上都可以用楞次定律解释.五、电磁感应中的能量问题1.电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能量.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.解决这类问题的一般步骤:1用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向2画出等效电路,求出回路中电阻消耗电功率的表达式3分析导体机械能的变化,用动能定理或能量守恒关系,得到机械功率的改变所满足的方程。
高中物理电磁感应专题复习电磁感应专题复一电磁感应基础知识、自感和互感编写:XXX审核:XXX责编:XXX总体感知本专题是高考的重点,每年必考。
命题频率较高的知识点有:感应电流的产生条件、方向判断和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题,在高考中时常出现。
知识网络电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、自感、涡流。
考纲要求I.掌握电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律的基本概念和计算方法。
II.了解自感、涡流的基本概念和应用。
内容命题规律从近五年的高考试题可以看出,本专题内容是高考的重点,每年必考。
命题频率较高的知识点有:感应电流的产生条件、方向判断和感应电动势的计算;电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题及感应电流(或感应电动势)的图象问题,在高考中时常出现。
本专题在高考试卷中涉及的试题题型全面,有选择题、填空题和计算题,选择题和填空题多为较简单的题目,计算题试题难度大,区分度高,能很好地考查学生的能力,备受的青睐。
今后高考对本专题内容的考查可能有如下倾向:①判断感应电流的有无、方向及感应电动势的大小计算仍是高考的重点,但题目可能会变得更加灵活。
②力学和电学知识相结合且涉及能量转化与守恒的电磁感应类考题将继续扮演具有选拔性功能的压轴题。
复策略1.左手定则与右手定则在使用时易相混,可采用“字形记忆法”:通电导线在磁场中受安培力的作用,“力”字的最后一撇向左,用左手定则;导体切割磁感线产生感应电流,“电”字最后一钩向右,用右手定则。
总之,可简记为力“左”电“右”。
2.矩形线框穿越有界匀强磁场问题,涉及楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。
3.电磁感应图象问题也是高考常见的题型之一;滑轨类问题是电磁感应中的典型综合性问题,涉及的知识多,与力学、静电场、电路、磁场及能量等知识综合,能很好的考察考生的综合分析能力。
高中物理《电磁感应》知识点总结【知识构建】【新知归纳】● 电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。
这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。
● 电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。
电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。
● 电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。
③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。
● 对电磁感应的理解:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。
引起电流的原因概括为五类:①变化的电流。
②变化的磁场。
③运动的恒定电流。
④运动的磁场。
⑤在磁场中运动的导体。
● 磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。
对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。
● 产生感应电流的条件:一是电路闭合。
二是磁通量变化。
● 楞次定律:内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
● 楞次定律的理解:①感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。
专题五 电磁感应和电路第1课时 电磁感应 专题复习定位 解决问题 本专题主要复习电磁感应的基本规律和方法,熟练应用动力学和能量观点分析并解决电磁感应问题。
高考重点 楞次定律和法拉第电磁感应定律的理解及应用;电磁感应中的平衡问题;电磁感应中的动力学和能量问题。
题型难度 本专题选择题和计算题都有可能命题,选择题一般考查楞次定律和法拉第电磁感应定律的应用,题目有一定的综合性,难度中等;计算题主要考查电磁感应规律的综合应用,难度较大。
1.楞次定律中“阻碍”的表现(1)阻碍磁通量的变化(增反减同)。
(2)阻碍物体间的相对运动(来拒去留)。
(3)使线圈面积有扩大或缩小的趋势(增缩减扩)。
(4)阻碍原电流的变化(自感现象)。
2.感应电动势的计算(1)法拉第电磁感应定律:E =n ΔΦΔt ,常用于计算感应电动势的平均值。
①若B 变,而S 不变,则E =n ΔB Δt S ;②若S 变,而B 不变,则E =nB ΔS Δt。
(2)导体棒垂直切割磁感线:E =Bl v ,主要用于求感应电动势的瞬时值。
(3)如图1所示,导体棒Oa 围绕棒的一端O 在垂直匀强磁场的平面内做匀速转动而切割磁感线,产生的感应电动势E =12Bl 2ω。
图13.感应电荷量的计算回路中磁通量发生变化时,在Δt 时间内迁移的电荷量(感应电荷量)为q =I Δt =E R Δt =n ΔΦR Δt ·Δt =n ΔΦR 。
可见,q 仅由回路电阻R 和磁通量的变化量ΔΦ决定,与发生磁通量变化的时间Δt 无关。
4.电磁感应电路中产生的焦耳热当电路中电流恒定时,可用焦耳定律计算;当电路中电流变化时,则用功能关系或能量守恒定律计算。
解决感应电路综合问题的一般思路是“先电后力”,即:1.“源”的分析——分析电路中由电磁感应所产生的“电源”,求出电源参数E 和r 。
2.“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力。
电磁感应复习2姓名:___________班级:___________学号:___________一、单选题1.在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采取了双线绕法,如图所示,其道理是()A.当电路中的电流变化时,两股导线中产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线中产生的感应电流相互抵消C.当电路中的电流变化时,电流的变化量相互抵消D.当电路中的电流变化时,两股导线中产生的磁通量相互抵消2.如图甲所示,半径为r,匝数为n的线圈,其两极分别与固定在水平位置的平行金属板A,B相连,线圈处于匀强磁场之中,磁场的方向垂直于线圈平面,磁感t=时刻,应强度随时间变化的规律如图乙所示(垂直纸面向里为正方向,忽略虚线右侧的感生电场),在0q q>,重力不计的粒子从平行金属板中正位置由静止将一质量为m,电荷量为(0)释放,对粒子在0~T时间的运动,正确的判断是()A.粒子可能一直向下做加速运动B.粒子可能一直向上做加速运动C.粒子可能先向下加速运动接着向下减速运动且恰好到达下极板D.粒子可能先向上加速运动接着向上减速运动且恰打到达上极板3.如图所示,通电螺线管N置于闭合金属环M的轴线上,当N中的电流突然减小时,则()A.环M无任何变化 B.环M有扩张的趋势C.螺线管N有缩短的趋势 D.螺线管N有伸长的趋势二、多选题4.下列现象中利用的原理主要是电磁感应的有()A.如图甲所示,真空冶炼炉外有线圈,线圈中通入高频交流电,炉内的金属能迅速熔化B.如图乙所示,安检门可以检测金属物品,如携带金属刀具经过时,会触发报警C.如图丙所示,放在磁场中的玻璃皿内盛有导电液体,其中心放一圆柱形电极,边缘内壁放一环形电极,通电后液体就会旋转起来D.如图丁所示,用一蹄形磁铁接近正在旋转的铜盘,铜盘很快静止下来5.下列现象中与事实相符的是()A.甲图中,李辉用多用电表测量带铁芯的线圈的电阻。
高考物理电磁感应现象压轴题专项复习一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L=-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-(金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
电磁感应复习专题[知识结构][重点知识回顾]一. 法拉第电磁感应定律1. 引起某一回路磁通量变化的原因(1)磁感强度的变化(2)线圈面积的变化(3)线圈平面的法线方向与磁场方向夹角ϕ的变化2. 电磁感应现象中能的转化感应电流做功,消耗了电能。
消耗的电能是从其它形式的能转化而来的。
在转化和转移中能的总量是保持不变的。
3. 法拉第电磁感应定律:(1)决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢(2)注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同φ—磁通量,∆φ—磁通量的变化量,∆∆∆φφφt t=-21(3)定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。
(4)感应电动势大小的计算式:E ntWb t sE vn=⎧⎨⎪⎪⎩⎪⎪∆∆∆∆φφ————线圈匝数注:(1)若闭合电路是一个n匝的线圈,线圈中的总电动势可看作是一个线圈感应电动势的n倍。
(2)E是∆t时间内的平均感应电动势(5)几种题型①线圈面积S 不变,磁感应强度均匀变化:E B S t n Bt s =⋅=⋅∆∆∆∆ ②磁感强度不变,线圈面积均匀变化:E n B S t nB St==∆∆∆∆ ③B 、S 均不变,线圈绕过线圈平面内的某一轴转动时,计算式为: E nBS BS t nBS t=-=-cos cos cos cos ϕϕϕϕ2121∆∆二. 导体切割磁感线时产生感应电动势大小的计算式:1. 公式:E Blv B T l m v m s E V=----⎧⎨⎪⎪⎩⎪⎪/2. 题型:(1)若导体变速切割磁感线,公式中的电动势是该时刻的瞬时感应电动势。
(2)若导体不是垂直切割磁感线运动,v 与B 有一夹角,如图:E B l v B l v==1s i n θ (3)若导体在磁场中绕着导体上的某一点转动时,导体上各点的线速度不同,不能用E Blv =计算,而应根据法拉第电磁感应定律变成“感应电动势大小等于直线导体在单位时间内切割磁感线的条数”来计算,如图:ω从图示位置开始计时,经过时间∆t ,导体位置由oa 转到oa 1,转过的角度∆∆θω=t ,则导体扫过的面积∆∆∆S l l t ==121222θω 切割的磁感线条数(即磁通量的变化量) ∆∆∆ϕω==B S Bl t 122单位时间内切割的磁感线条数为:∆∆∆∆ϕωωt Bl tt Bl ==121222,单位时间内切割的磁感线条数(即为磁通量的变化率)等于感应电动势的大小: 即:E t Bl ==∆∆φω122计算时各量单位:B T l m rad s E V----⎧⎨⎪⎪⎩⎪⎪ω/三. 楞次定律应用题型1. 阻碍变化变形为−→−−−阻碍原磁通的变化2. 阻碍变化拓展为−→−−−阻碍(导体间的)相对运动,即“来时拒,去时留”3. 阻碍变化推广为−→−−−阻碍原电流的变化,应用在解释自感现象的有关问题。
电磁感应·专题复习一. 知识框架:二. 知识点考试要求:知识点要求1. 右手定则 B2. 楞次定律 B3. 法拉第电磁感应定律 B4. 导体切割磁感线时的感应电动势 B5. 自感现象 A6. 自感系数 A7. 自感现象的应用 A三. 重点知识复习:1. 产生感应电流的条件(1)电路为闭合回路(2)回路中磁通量发生变化∆φ≠02. 自感电动势(1)E L I t自=⋅∆∆(2)L—自感系数,由线圈本身物理条件(线圈的形状、长短、匝数,有无铁芯等)决定。
(2)自感电动势的作用:阻碍自感线圈所在电路中的电流变化。
(4)应用:<1>日光灯的启动是应用E自产生瞬时高压<2>双线并绕制成定值电阻器,排除E自影响。
3. 法拉第电磁感应定律 (1)表达式:E Nt=∆∆φN —线圈匝数;∆φ—线圈磁通量的变化量,∆t —磁通量变化时间。
(2)法拉第电磁感应定律的几个特殊情况:i )回路的一部分导体在磁场中运动,其运动方向与导体垂直,又跟磁感线方向垂直时,导体中的感应电动势为E B l v= 若运动方向与导体垂直,又与磁感线有一个夹角α时,导体中的感应电动势为:E B l v =s i n α ii )当线圈垂直磁场方向放置,线圈的面积S 保持不变,只是磁场的磁感强度均匀变化时线圈中的感应电动势为E BtS =∆∆ iii )若磁感应强度不变,而线圈的面积均匀变化时,线圈中的感应电动势为:E BS t=∆∆ iv )当直导线在垂直匀强磁场的平面内,绕其一端作匀速圆周运动时,导体中的感应电动势为:E Bl =122ω 注意:(1)E B l v =s i n α用于导线在磁场中切割磁感线情况下,感应电动势的计算,计算的是切割磁感线的导体上产生的感应电动势的瞬时值。
(2)E Nt=∆∆φ,用于回路磁通量发生变化时,在回路中产生的感应电动势的平均值。
(3)若导体切割磁感线时产生的感应电动势不随时间变化时,也可应用E N t=∆∆φ,计算E 的瞬时值。
4. 引起回路磁通量变化的两种情况:(1)磁场的空间分布不变,而闭合回路的面积发生变化或导线在磁场中转动,改变了垂直磁场方向投影面积,引起闭合回路中磁通量的变化。
(2)闭合回路所围的面积不变,而空间分布的磁场发生变化,引起闭合回路中磁通量的变化。
5. 楞次定律的实质:能量的转化和守恒。
楞次定律也可理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因。
(1)阻碍原磁通量的变化或原磁场的变化 (2)阻碍相对运动,可理解为“来拒去留”。
(3)使线圈面积有扩大或缩小的趋势。
(4)阻碍原电流的变化(自感现象)。
6. 综合题型归纳(1)右手定则和左手定则的综合问题 (2)应用楞次定律的综合问题(3)回路的一部分导体作切割磁感线运动 (4)应用动能定理的电磁感应问题 (5)磁场均匀变化的电磁感应问题 (6)导体在磁场中绕某点转动 (7)线圈在磁场中转动的综合问题 (8)涉及以上题型的综合题【典型例题】例1. 如图12-9所示,平行导轨倾斜放置,倾角为θ=︒37,匀强磁场的方向垂直于导轨平面,磁感强度B T =4,质量为m k g =10.的金属棒ab 直跨接在导轨上,ab 与导轨间的动摩擦因数μ=025.。
ab 的电阻r =1Ω,平行导轨间的距离L m =05.,R R 1218==Ω,导轨电阻不计,求ab 在导轨上匀速下滑的速度多大?此时ab 所受重力的机械功率和ab 输出的电功率各为多少?(sin .cos .37063708︒=︒=,,g 取10 m/s 2)分析:金属棒下滑过程中,除受重力、支持力外,还受到磁场力和滑动摩擦力作用。
匀速下滑时,合外力为零。
金属棒沿斜面下滑,重力方向竖直向下,重力做功的功率P m g v =⋅︒s i n 37。
解:(1)m g m g B I L s i n c o s 3737︒=︒+μI A =2 I B L v R r v IR r B L=+=+()其中R ==1829Ω v ms =⨯⨯=21040510./(2)P m g v W=︒=⨯⨯⨯=s i n ..371010100660 (3)P I R W 出==⨯=24936 由上,金属棒ab 最大速度为10 m/s ,重力的功率为60W ,输出电功率为36W 。
例2. 如图12-23所示,一矩形线圈面积为400 cm 2,匝数为100匝,绕线圈的中心轴线O O '以角速度ω匀速转动,匀强磁场的磁感强度B T =2,转动轴与磁感线垂直,线圈电阻为1Ω,R R 1236==ΩΩ,,R 312=Ω,其余电阻不计,电键K 断开,当线圈转到线圈平面与磁感线平行时,线圈所受磁场力矩为16Nm ⋅。
求: (1)线圈转动的角速度ω。
(2)感应电动势的最大值。
(3)电键K 闭合后,线圈的输出功率。
分析:当线圈平面与磁感线平行时,感应电动势最大,线圈所受磁场力矩也最大。
解:(1)线圈平面平行磁感线时εωm n BS =I r R R nB S r R R M nBIS n B S r R R rad sm=++=++==++==εωωω121222212165/(2)εωmn B S V==⨯⨯⨯⨯==-10025400102022824.(3)当K 闭合后,外电路总电阻为R R RR R R =++=123237Ω电流有效值 I R r Am=+=ε225(). 输出功率P I R W 出==24375. 例3. 如图3(b )所示,一个圆形线圈的匝数n =1000,线圈面积S c m =2002线圈电阻为r =1Ω,在线圈外接一阻值R =4Ω的电阻,电阻一端b 跟地相接,把线圈放入一个方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图16(a )B t -所示。
求:(1)从计时起,在t s t s ==35,时穿过线圈的磁通量是多少?(2)a 点最高电势和最低电势各多少?解析:(1)由题知0~4s 内,∆∆Bt T s /./=-⨯=⨯--424100510114~6s 内,∆∆Bt T s/()/=-⨯=-⨯--4610211011(B 2为t =0时的磁场强度,B 1为t =4时的磁场强度) t s =3时,B B BtT =+⋅=⨯+⨯⨯=⨯---21113210053103510∆∆.. φ==⨯⨯⨯=⨯---BS Wb 351020010710143.t s =5时,B B B tT s =+⨯=-⨯⨯=⨯--111141110310∆∆()/φ214631020010610==⨯⨯⨯=⨯---B S W b(2)线圈与电阻构成闭合回路 U U UU U R ra b a b aa b=-==+ε由法拉第电磁感应定律 εφ==nt n BSt∆∆∆∆,取顺时针电流为正。
ε11=-伏 ε24=V ∴=-U V 08.或U V =32. 最小值 U U V =-=0832..电磁感应---基础知识练习一. 选择题:1. 如图1所示,矩形线框abcd 位于通电直导线附近,且开始时与导线在同一平面,线框的两个边与导线平行。
欲使线框中产生感应电流,下面做法可行的是( )A. 线框向上平动B. ad 边与导线重合,绕导线转过一个小角度C. 以bc 边为轴转过一个小角度D. 以ab 边为轴转过一个小角度a bd c图12. 如图2所示,两光滑水平导轨平行放置在匀强磁场中,磁场垂直导轨所在平面。
金属棒ab 可沿导轨自由滑动,导轨一端跨接一个定值电阻R ,导轨电阻不计。
现将金属棒沿导轨由静止向右拉,若保持拉力恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 作速运动,保持拉力的功率恒定,经时间t 2后速度为v ,加速度为a 2,最终速度为2v 作匀速运动,则( )A. t 1=t 2B. t 2<t 1C. 2a 1=a 2D. 3a 1=a 23. 如图3所示,导线ab 、cd 跨接在电阻不计的光滑的导轨上,ab 的电阻比cd 大。
当cd 在外力F 1作用下,匀速向右运动时,ab 在外力F 2的作用下保持静止。
则两力和导线的端电压的关系为( )A. FF U U ab cd 12=>, B. F F U U ab cd 12==, C. F F U U ab cd 12>>, D. F F U U ab cd 12<=,4. 如图4所示,导体ab 可在水平导轨上无摩擦滑动,并与电容器C 组成电路,导轨所在的空间存在着竖直向下的匀强磁场B 。
现使导体ab 沿导轨以速度v 向右运动一段距离,令其突然停止,再立即释放,此后导体ab 的运动情况为( )A. 向左匀速运动B. 向右匀速运动C. 先向左作加速运动,而后作匀速运动D. 先向右作加速运动,而后沿同一方向作匀速运动5. 如图5所示,π形光滑金属导轨对水平地面倾斜固定,空间有垂直于导轨平面的磁场,将一根质量为m 的金属杆ab 垂直于导轨放置。
金属杆ab 从高度h 1处释放后,到达高度为h 2的位置(图中虚线所示)时,其速度为v ,在此过程中,设重力G 和磁场力F 对杆ab 做的功分别为W G 和W F ,那么( )A. m v m g h m g h 22/=- B. m v W W 22/=+ C. m v W W 22/>+ D. m v W W 22/<+6. 如图6所示,闭合线圈abcd 在匀强磁场中绕轴O O '匀速转动,在通过线圈平面与磁场平行的位置时,线圈受到的磁力矩为M 1,若从该位置再转过θ角,(θ<︒90),线圈受到的磁力矩为M 2,则M 1:M 2等于( ) A. 1/sin θ B. 12/s in θ C. 1/cos θ D. 12/c o s θ图67. 如图7所示,L 1、L 2为两个分别套有甲、乙两个闭合铜环的螺线管,但导线绕向不明,图中未画出线圈,电路中直流电源的正负极性也未知,电键K 是闭合的,因滑动变阻器的滑片移动,引起甲、乙两环的运动,那么( )A. 若P 向左移动,甲、乙两环都向左移动B. 若P 向左移动,甲、乙两环都向右移动C. 若P 向右移动,甲、乙两环都可能相互靠近,也可能分开远离D. 根据甲、乙两环的运动方向,可以判断电源的正负极8. 如图8所示,匀强磁场磁感强度为B ,长为3L 的导体棒AC 可无摩擦地在宽为2L 的导轨上以速度v 向右滑动,导轨左端接有电阻R ,AC 棒电阻也为R ,其余电阻不计,则( ) A. DC 两点电压U B L vD C =45/ B. AC 两点电压U B L v A C=115/ C. 作用在AC 上的外力为12522B L v R / D. 作用在AC 上的外力为18522B L v R/ 9. 如图9所示,两根倾斜放置的平行导电轨道,它们之间用导线连接,处于垂直轨道平面向下的匀强磁场中,轨道上放有一根金属杆,杆处于静止状态。