实数与二次根式复习[下学期] 北师大版
- 格式:ppt
- 大小:256.50 KB
- 文档页数:25
命题点1 实数的相关概念1. (2015烟台)-23的相反数是( )A. -23B. 23C. -32D. 322. (2015广安)15的倒数是( )A. 5B. -5C. 15D. -153. (2015重庆B 卷)-3的绝对值是( ) A. 3 B. -3 C. 13 D. -134. (2015毕节)-12的倒数的相反数等于( )A. -2B. 12C. -12D. 25. (2015广州)四个数-3.14,0,1,2中为负数的是( )A. -3.14B. 0C. 1D. 26. (2015宜昌)陆地上最高处是珠穆朗玛峰顶,高出海平面8848 m ,记为+8848 m ;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m ,记为( )A. +415 mB. -415 mC. ±415 mD. -8848 m 7. (2015上海)下列实数中,是有理数的为( )A. 2B. 34 C. π D. 08. (2015长沙)下列实数中,为无理数的是( ) A. 0.2 B. 12 C. 2 D. -59. (2015黄冈)9的平方根是( ) A. ±3 B. ±13C. 3D. -310. (2015徐州)4的算术平方根是________. 11. (2015安徽)-64的立方根是________.命题点2 科学记数法12. (2015北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米.将140000用科学记数法表示应为( )A. 14×104B. 1.4×105C. 1.4×106D. 0.14×10613. (2015成都)今年5月,在成都举行的世界机场城市大会上,成都新机场的规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市.按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( )A. 126×104B. 1.26×105C. 1.26×106D. 1.26×10714. (2015河南)据统计,2014年我国高新技术产品出口总额达40570亿元.将数据40570亿用科学记数法表示为( )A. 4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×101215. (2015贵港)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为________.16. (2015常德)埃是表示极小长度的单位名称,是为纪念瑞典物理学家埃基特朗而定的.1埃等于一亿分之一厘米,请用科学记数法表示1埃等于________厘米.命题点3 实数的大小比较17. (2015重庆A 卷)在-4,0,-1,3这四个数中,最大的数是( ) A. -4 B. 0 C. -1 D. 318. (2015孝感)下列各数中,最小的数是( )A. -3B. |-2|C. (-3)2D. 2×10319. (2015安徽)在-4,2,-1,3这四个数中,比-2小的数是( ) A. -4 B. 2 C. -1 D. 320. (2015丽水)在数-3,-2,0,3中,大小在-1和2之间的数是( ) A. -3 B. -2 C. 0 D. 3第21题图21. (2015菏泽)如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A. 点MB. 点NC. 点PD. 点Q命题点4 二次根式及其运算22. (2015徐州)使x -1有意义的x 的取值范围是( ) A. x ≠1 B. x ≥1 C. x >1 D. x ≥023. (2015贵港)计算3×5的结果是( ) A. 8 B. 15 C. 3 5 D. 5 324. (2015嘉兴)与无理数31最接近的整数是( ) A .4 B .5 C .6 D .725. (2015天津)估计11的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间 26. (2015泰州)计算:18-212等于________. 命题点5 实数的运算27. (2015陕西)计算:(-23)0=( )A. 1B. -32C. 0D. 2328. (2015邵阳)计算(-3)+(-9)的结果是( )A. -12B. -6C. +6D. 1229. (2015天津)计算(-18)÷6的结果等于( ) A. -3 B. 3 C. -13 D. 1330. (2015绍兴)计算(-1)×3的结果是( )A. -3B. -2C. 2D. 331. (2015南充)计算8-2sin45°的结果是________.32. (2015十堰)计算:3-1+(π-3)0-|-13|=________.33. (2015扬州4分)计算:(14)-1+|1-3|-27tan30°.34. (2015陕西5分)计算:3×(-6)+|-22|+(12)-3.35. (2015珠海6分)计算:-12-29+50+|-3|.36. (2015兰州5分)计算:2-1-3tan60°+(π-2015)0+|-12|.37. (2015北京5分)计算:(12)-2-(π-7)0+|3-2|+4sin60°.38. (2015常德5分)计算:(-5sin20°)0-(13)-2+|-24|+3-27 .39. (2015毕节改编8分)计算:(-2015)0+|1-2|-2cos45°+8+(-3)-2.中考冲刺集训一、选择题(共19题,每题3分,共57分) 1. (2015青岛)2的相反数是( ) A. - 2 B. 2 C. 12D. 22. (2015 德州)|-12|的结果是( )A. -12B. 12C. -2D. 23. (2015绵阳)±2是4的( ) A. 平方根 B. 相反数 C. 绝对值 D. 算术平方根4. (2014重庆A 卷)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4 ℃、5 ℃、6 ℃、-8 ℃,当时这四个城市中,气温最低的是( )A. 北京B. 上海C. 重庆D. 宁夏5. (2015遵义)在0,-2,5,14,-0.3中,负数的个数是( )A. 1B. 2C. 3D. 46. (2015威海)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是( )A. -2B. -3C. 3D. 57. (2015河南)下列各数中最大的数是( ) A. 5 B. 3 C. π D. -88. (2015怀化)某地一天的最高气温是12 ℃,最低气温是2 ℃,则该地这天的温差是( )A. -10 ℃B. 10 ℃C. 14 ℃D. -14 ℃9. (2015南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆10. (2015自贡)将2.05×10-3用小数表示为( )A. 0.000205B. 0.0205C. 0.00205D. -0.00205 11. (2015河北)计算:3-2×(-1)=( ) A. 5 B. 1 C. -1 D. 612. (2015南京)估计5-12介于( ) A. 0.4与0.5之间 B. 0.5与0.6之间 C. 0.6与0.7之间 D. 0.7与0.8之间 13. (2015泰州)下列4个数:9,227,π,(3)0,其中无理数是( )A. 9B. 227C. πD. (3)014. (2014凉山州)在实数5,227,0,π2,36,-1.414中,有理数有( )A. 1个B. 2个C. 3个D. 4个15. (2015绵阳)要使代数式2-3x 有意义,则x 的( )A. 最大值是23B. 最小值是23C. 最大值是32D. 最小值是32第16题图16. (2015河北)在数轴上标注了四段范围,如图,则表示8的点落在( )A. 段①B. 段②C. 段③D. 段④17. (2015威海)已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( ) A. |a |<1<|b |第17题图B. 1<-a <bC. 1<|a |<bD. -b <a <-118. (2015杭州)下列计算正确的是( )A. 23+25=28B. 22-24=2-2C. 25×20=25D. 25÷23=2819. (2015常州)已知a =22,b =33,c =55,则下列大小关系正确的是( ) A. a >b >c B. c >b >a C. b >a >c D. a >c >b二、填空题(共10题,每题3分,共30分)20. (2015凉山州)81的平方根是________.21. (2015连云港)数轴上表示-2的点与原点的距离是________. 22. (2015湖州)计算:23×(12)2=________.23. (2015陕西)将实数5,π,0,-6由小到大用“<”号连起来,可表示为______________.24. (2015泉州)比较大小:4________15(用“>”或“<”号填空).25. (2015烟台)如图,数轴上点A ,B 所表示的两个数的和的绝对值是______.第25题图26. (2015安顺)计算:(-3)2013·(-13)2011=________.27. (2015自贡)若两个连续整数x 、y 满足x <5+1<y ,则x +y 的值是________.28. (2014河北)若实数m ,n 满足|m -2|+(n -2014)2=0,则m -1+n 0=______.29. (2014娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为________.第29题图三、解答题(共5题,第30~31题每题4分,第32~34题每题5分,共23分) 30. (2015长沙)计算:(12)-1+4cos60°-|-3|+9.31. (2015济宁)计算:π0+2-1-14-|-13|.32. (2015绵阳)计算:|1-2|+(-12)-2-1cos45°+3-8.33. (2015梅州)计算:8+|22-3|-(13)-1-(2015+2)0.34. (2015遂宁)计算:-13-27+6sin60°+(π-3.14)0+|-5|.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
北师大版初中数学知识点梳理北师大版初中数学知识点梳理,按照中考一轮复习的顺序整理的,知识点很全面,适合所有采用北师大版教材的地区,稍作改动后,也可适用于人教版或其他版本教材的地区; 供大家参考学习第一章实数考点一、实数的概念及分类 3分1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,,归纳起来有四类:1开方开不尽的数,2有特定意义的数,如圆周率π,或化简后含有π的数,等;4某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 3分1、相反数实数与它的相反数时一对数只有符号不同的两个数叫做互为相反数,零的相反数是零,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立;2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0;正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小;3、倒数如果a与b互为倒数,则有ab=1,反之亦成立;倒数等于本身的数是1和-1;零没有倒数;考点三、平方根、算数平方根和立方根 3—10分1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根或二次方跟;一个数有两个平方根,;正数a2、算术平方根正数a 的正的平方根叫做a 的算术平方根,正数和零的算术平方根都只有一个,零的算术平方根是零;3、立方根 如果一个数的立方等于a,那么这个数就叫做a 的立方根或a 的三次方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;这说明三次根号内的负号可以移到根号外面;考点四、科学记数法和近似数 3—6分1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字;2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法; 考点五、实数大小的比较 3分1、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时,要注意上述规定的三要素缺一不可;解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用;2、实数大小比较的几种常用方法1数轴比较:在数轴上表示的两个数,右边的数总比左边的数大;2求差比较:设a 、b 是实数,3求商比较法:设a 、b 是两正实数4绝对值比较法:设a 、b 是两负实数,5平方法:设a 、b 是两负实数,则b a b a <⇔>22;考点六、实数的运算 做题的基础,分值相当大 1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 a ab c b a +=+)(6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的;第二章 代数式考点一、整式的有关概念 3分1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式;单独的一个数或一个字母也是代数式;2、单项式只含有数字与字母的积的代数式叫做单项式;注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如这种表示就是错误的,一个单项式中,所有字母的指数的和叫做这个单项式的次数;如c b a 235-是6次单项式;考点二、多项式 11分1、多项式几个单项式的和叫做多项式;其中每个单项式叫做这个多项式的项;多项式中不含字母的项叫做常数项;多项式中次数最高的项的次数,叫做这个多项式的次数;单项式和多项式统称整式;用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值;注意:1求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;2求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入;2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项;几个常数项也是同类项;3、去括号法则1括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号;2括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号;4、整式的运算法则整式的加减法:1去括号;2合并同类项; 整式的乘法:),(都是n m a a a n m n m +=• 整式的除法:)0,,(≠=÷-a n m a a a nm n m 都是正整数注意:1单项式乘单项式的结果仍然是单项式;2单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同;3计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号;4多项式与多项式相乘的展开式中,有同类项的要合并同类项;5公式中的字母可以表示数,也可以表示单项式或多项式;7多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的;考点三、因式分解 11分1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式;2、因式分解的常用方法 1提公因式法:)(c b a ac ab +=+2运用公式法:))((22b a b a b a -+=-3分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++ 4十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:1如果多项式的各项有公因式,那么先提取公因式;2在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式3分解因式必须分解到每一个因式都不能再分解为止;考点四、分式 8~10分1、分式的概念一般地,用A 、B 表示两个整式,A÷B ,如果B 中含有字母,叫做分式;其中,A 叫做分式的分子,B 叫做分式的分母;分式和整式通称为有理式;2、分式的性质1分式的基本性质:分式的分子和分母都乘以或除以同一个不等于零的整式,分式的值不变;2分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;3、分式的运算法则考点五、二次根式 初中数学基础,分值很大1、二次根式,a必须是非负数;2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式;化二次根式为最简二次根式的方法和步骤:1如果被开方数是分数包括小数或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简;2如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来;3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式;4、二次根式的性质5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的或先去括号;第三章方程组考点一、一元一次方程的概念 6分1、方程含有未知数的等式叫做方程;2、方程的解能使方程两边相等的未知数的值叫做方程的解;3、等式的性质1等式的两边都加上或减去同一个数或同一个整式,所得结果仍是等式;2等式的两边都乘以或除以同一个数除数不能是零,所得结果仍是等式;4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0a x 0≠=+b a x 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项;考点二、一元二次方程 6分1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程;2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项;考点三、一元二次方程的解法 10分1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法;直接开平方法适用于解形如b a x =+2)(的一元二次方程;根据平方根的定义可知,a x +是b 的平方根,当0≥b 时当b<0时,方程没有实数根; 2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用;配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x,并用x 代替,则有222)(2b x b bx x±=+±; 3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法; 一元二次方程)0(02≠=++a c bx ax 的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法;考点四、一元二次方程根的判别式 3分根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即a b 42-=∆考点五、一元二次方程根与系数的关系 3分如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;考点六、分式方程 8分1、分式方程分母里含有未知数的方程叫做分式方程;2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”;它的一般解法是:1去分母,方程两边都乘以最简公分母2解所得的整式方程3验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根;3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法;考点七、二元一次方程组 8~10分1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解;3、二元一次方程组两个或两个以上二元一次方程合在一起,就组成了一个二元一次方程组;4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解;5、二元一次方正组的解法1代入法2加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程;7、三元一次方程组由三个或三个以上一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组; 第四章 不等式组考点一、不等式的概念 3分1、不等式用不等号表示不等关系的式子,叫做不等式;2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解;对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集;求不等式的解集的过程,叫做解不等式;3、用数轴表示不等式的方法考点二、不等式基本性质 3~5分1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变;2、不等式两边都乘以或除以同一个正数,不等号的方向不变;3、不等式两边都乘以或除以同一个负数,不等号的方向改变;考试题型:考点三、一元一次不等式 6~8分1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式;2、一元一次不等式的解法解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x 项的系数化为1考点四、一元一次不等式组 8分1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组;几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集; 求不等式组的解集的过程,叫做解不等式组;当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集;2、一元一次不等式组的解法1分别求出不等式组中各个不等式的解集2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集;第五章 统计初步与概率初步考点一、平均数 3分1、平均数的概念1平均数:一般地,如果有n 个数,,,,21n x x x 那么n个数的平均数拔”;2加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次这里n f f f k=++ 21,那么,根据平均数的定义,这n 个数的平均数可以表示为,其中k f f f ,,,21 叫做权; 2、平均数的计算方法1定义法当所给数据,,,,21n x x x 比较分散时,2加权平均数法:当所给数据重复出现时,其中n f f f k=++ 21; 3新数据法:当所给数据都在某一常数a 的上下波动时,其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -=';数通常把,,,,21nx x x 叫做原数据,,',,','21n x x x 叫做新数据; 考点二、统计学中的几个基本概念 4分1、总体所有考察对象的全体叫做总体;2、个体总体中每一个考察对象叫做个体;3、样本从总体中所抽取的一部分个体叫做总体的一个样本;4、样本容量样本中个体的数目叫做样本容量;5、样本平均数样本中所有个体的平均数叫做样本平均数;6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数; 考点三、众数、中位数 3~5分1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数;2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据或最中间两个数据的平均数叫做这组数据的中位数;考点四、方差 3分1、方差的概念在一组数据,,,,21nx x x 中,,叫做这组数据的方差;通常用“2s ”表示,即2、方差的计算1基本公式:2简化计算公式Ⅰ:此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方;3简化计算公式Ⅱ:当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么](此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方;4新数据法: 原数据,,,,21n x x x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得,',,','21nx x x 的方差就等于原数据的方差; 3、标准差方差的算数平方根叫做这组数据的标准差,用“s”表示,即考点五、频率分布 6分1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布;2、研究频率分布的一般步骤及有关概念1研究样本的频率分布的一般步骤是:①计算极差最大值与最小值的差②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图2频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数样本容量n的比值叫做这一小组的频率;考点六、确定事件和随机事件 3分1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件;不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件;2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件;考点七、随机事件发生的可能性 3分一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同;对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小;要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样;所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题;考点八、概率的意义与表示方法 5~6分1、概率的意义一般地,在大量重复试验中,如果事件A p附近,那么这个常数p就叫做事件A的概率;2、事件和概率的表示方法一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为PA=P考点九、确定事件和随机事件的概率之间的关系 3分1、确定事件概率1当A是必然发生的事件时,PA=12当A是不可能发生的事件时,PA=02、确定事件和随机事件的概率之间的关系事件发生的可能性越来越小0 1概率的值不可能发生必然发生事件发生的可能性越来越大考点十、古典概型 3分1、古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等;我们把具有这两个特点的试验称为古典概型;2、古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为考点十一、列表法求概率 10分1、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法; 2、列表法的应用场合当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;考点十二、树状图法求概率 10分 1、树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法; 2、运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率; 考点十三、利用频率估计概率8分 1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率;2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验;3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作;把这些随机产生的数据称为随机数;第六章 一次函数与反比例函数考点一、平面直角坐标系 3分 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系;其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O 即公共的原点叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面;为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限;注意:x 轴和y 轴上的点,不属于任何象限; 2、点的坐标的概念点的坐标用a,b 表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒;平面内点的坐标是有序实数对,当b a ≠时,a,b 和b,a 是两个不同点的坐标; 考点二、不同位置的点的坐标的特征 3分 1、各象限内点的坐标的特征点Px,y 在第一象限0,0>>⇔y x点Px,y 在第二象限0,0><⇔y x 点Px,y 在第三象限0,0<<⇔y x 点Px,y 在第四象限0,0<>⇔y x2、坐标轴上的点的特征点Px,y 在x 轴上0=⇔y ,x 为任意实数 点Px,y 在y 轴上0=⇔x ,y 为任意实数点Px,y 既在x 轴上,又在y 轴上⇔x,y 同时为零,即点P 坐标为0,0 3、两条坐标轴夹角平分线上点的坐标的特征 点Px,y 在第一、三象限夹角平分线上⇔x 与y 相等 点Px,y 在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同; 5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点Px,y 到坐标轴及原点的距离:1点Px,y 到x2点Px,y 到y 3点Px,y 考点三、函数及其相关概念 3~8分 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;一般地,在某一变化过程中有两个变量x 与y,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数;2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式; 使函数有意义的自变量的取值的全体,叫做自变量的取值范围; 3、函数的三种表示法及其优缺点 1解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法;2列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法;3图像法用图像表示函数关系的方法叫做图像法; 4、由函数解析式画其图像的一般步骤 1列表:列表给出自变量与函数的一些对应值2描点:以表中每对对应值为坐标,在坐标平面内描出相应的点3连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来; 考点四、正比例函数和一次函数 3~10分 1、正比例函数和一次函数的概念一般地,如果b kx y +=k,b 是常数,k ≠0,那么y 叫做x 的一次函数;特别地,当一次函数b kx y +=中的b 为0时,kx y =k 为常数,k ≠0;这时,y 叫做x 的正比例函数;2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征: 一次函数b kx y +=的图像是经过点0,b 的直线;正比例函数kx y =的图像是经过原点0,0的直线;。
第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。
易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。
易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。
易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。
易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。
易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。
考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。
北师大版数学八年级上册7《二次根式》说课稿3一. 教材分析北师大版数学八年级上册7《二次根式》是初中数学的重要内容,它既是对实数系统的完善,也是进一步学习代数、几何等知识的基础。
本节课主要介绍二次根式的概念、性质和运算。
通过学习,学生能够理解二次根式的实际意义,掌握二次根式的基本性质,提高解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了实数的基本概念,具有一定的代数基础。
他们对实数的认识有助于理解二次根式。
然而,学生对二次根式的理解可能仍停留在表面,对其内在联系和应用可能不够深入。
因此,在教学过程中,需要关注学生的认知水平,引导学生深入理解二次根式。
三. 说教学目标1.知识与技能:学生能够理解二次根式的概念,掌握二次根式的性质,学会进行二次根式的运算。
2.过程与方法:通过观察、思考、交流,学生能够发现二次根式的性质,提高分析问题和解决问题的能力。
3.情感态度与价值观:学生能够体验数学与实际生活的联系,培养学习数学的兴趣和自信心。
四. 说教学重难点1.重点:二次根式的概念、性质和运算。
2.难点:二次根式的性质的发现和证明,二次根式在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作学习、探究发现的教学方法,引导学生主动参与,培养学生的思维能力和创新能力。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过实际问题引入二次根式的概念,激发学生的兴趣。
2.新课导入:介绍二次根式的概念,引导学生探究二次根式的性质。
3.例题讲解:通过典型例题,讲解二次根式的运算方法。
4.实践环节:学生自主探究,发现二次根式的性质。
5.应用拓展:结合实际问题,引导学生运用二次根式解决实际问题。
6.总结:对本节课的内容进行总结,强调二次根式的概念、性质和运算。
7.作业布置:布置巩固二次根式的练习题,提高学生的应用能力。
七. 说板书设计板书设计要清晰、简洁,能够突出二次根式的关键信息。
Day1 数与式说明:由于电脑输入问题,下文出现的“√”为根号一、实数1、科学计数法把一个数写成a×10ⁿ的形式叫做科学记数法,其中(1≤|a|<10,n 是整数)方法:把小数点拉到第一个数a的右边,再数经过了多少个数即为n 2、绝对值指一个数在数轴上所对应点到原点的距离注意:“距离”一定是正数3、相反数绝对值相等,正负号相反的两个数互为相反数4、倒数分子和分母相倒并且两个乘积是1的数互为倒数,0没有倒数。
5、无理数、有理数无理数:①开方开不尽的方根②无限不循环小数有理数:整数、分数6、实数的比较大小①定义法:正数>0>负数记忆方法:两个都是负数的情况下,绝对值大的反而小②数轴法:在数轴上的两个数,右边的数比左边的大③作差法:a-b>0则a>b;a-b<0则a<b;a-b=0则a=b7、数轴规定了原点、正方向和单位长度的直线叫数轴。
实数与数轴上的点是一一对应的8、近似数经过四舍五入得到的与原始数据相差不大的一个数9、平方根、算术平方根、立方根平方根:如果x²=a,则称x为a的平方根,其中a≥0,a的平方根也写成±√a(0的平方根是0;负数没有平方根)注意:根号里面的东西一定是≥0算术平方根:如果一个正数x满足x²=a,则称这个正数x为a的算术平方根。
a的算术平方根写作√a(0的算术平方根是0)★平方根与算术平方根的区别:平方根的x可以是正数、负数、0;算术平方根里面的x只能是正数或者0而不能是负数,并且√a没有负号的情况立方根:如果x³=a,则称x为a的立方根,a的立方根也写成±³√a(正数的立方根是正数、负数的立方根是负数)记忆:所谓立方,就是三次方的意思。
其实也是用了“负负得正、正负得负”的原理,之所以“正数的立方根是正数、负数的立方根是负数”,是因为三个正数相乘是正数,而三个负数相乘则是负数。
10、实数的运算(1)运算顺序:乘方-开方-乘除-加减,如果有括号就先算括号里面的,同级运算从左到右。
《实数与二次根式》复习资料一、内容提要 1、平方根:(1)定义:如果一个数x 的平方等于a ,那么x 叫做a 的平方根,即若x 2=a 则x=± a .(2)性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 2、算术平方根:(1)定义:如果一个正数x 的平方等于a ,那么x 叫做a 的算术平方根, 零的算术平方根是零.(2)性质:( a )2=a (a≥0);a 2 =│a │. 3、立方根:(1)定义:如果一个数x 的立方等于a ,那么x 叫做a 的立方根,即若x 3=a 则x=3a . (2)性质:一个正数的立方根是一个正数;零的立方根是零;一个负数的立方根是一个负数.4、实数与实数的性质(见有关资料).5、算术根的运算法则:(1) a · b =ab (a ≥0,b ≥0);(2)ab=a b(a ≥0,b>0). 二、例题精讲 【例1】选择题1、下列各对数中,互为相反数的是( )A 、m+1、m-1B 、 3 - 2 、 3 + 2C 、23、32D 、( 3 )°、-1 2、如图,数轴上表示1、 2 的对应点分别 是A 、B ,点B 关于点A 的对称点为C,则 点C 所表示的数是( ) A 、 2 -1 B 、1- 2 C 、2- 2 D 、 2 -2 3、实数13 ,24 ,6中,分数的个数有( )A 、0B 、1C 、2D 、34、当0<x<1时,x 2、x 、1x的大水顺序是( )A 、1x < x < x 2B 、1x < x 2< xC 、x 2< x <1x D 、x < x 2<1x【例2】填空题1、若 a =a ,则a=___________;252-242的算术平方根是___________.0 1 22、(-2)6的平方根是___________;(-2)6的立方根是___________.3、│1- 2 │的相反数是___________;-1+m+n 的最小值为___________;m 、n 的关系为___________.4、若 a =1.164,ab =116.4,则b=___________.5、若│a │< 5 ,且a 为非负整数,则a=___________.6、计算│1- 2 │+│ 2 - 3 │+│ 3 - 2 │=___________.7、若a+4 =4,则(a -2)2=___________.8、已知│x -5│+y+2x+6 =0,则3x+y+1=___________.9、已知x+1x = 5 ,则x -1x =___________.【例3】解答题1、已知+--32b a (a+b -2 2 )2=0,求a 2+b 2的值.2、解方程:(x 2+5x )2+x 2-5 =0.3、在实数范围内求代数式││-(x-4)2 -1│-2│.4、求a+4 -9-2a +1-3a +-a 2 的值.三、巩固提高 (一)选择题1、下列各式“①-6是36的平方根;②49的平方根是7;③-3-23 =-│-2│;④带根号的数是无理数;⑤当a ≠0时, a 总是正数;⑥零的平方根是零;⑦81 的平方根是±3 ”中.正确的共有( )A 、一个B 、二个C 、三个D 、四个 2、当a=2 6 时,a 2-10a+25 +a 2-8a+16 的值等于( ) A 、4 6 -9 B 、9-4 6 C 、1 D 、-1 3、化简a1a的结果为( ) A 、-aB 、 aC 、- aD 、--a4、已知y=x-1 +1-x +10,那么2x+y5x-2y 的值等于( )A 、1B 、78C 、-54D 、-455、化简(-3-x )2-(x-4)2 的结果为( )A 、7-2xB 、-2x -1C 、1D 、-16、若a 的平方根为±8,则a 立方根为( )A 、±4B 、4C 、-4D 、8(二)填空题1、计算:(10 -3)100·(10 +3)99=___________.2、已知a= 2 +1,b=1- 2 ,则a 2+ab+b 2的值为___________.3、当x___________时,2--x x有意义. 4、已知x 2-3x+1=0,则x 2+1x2 的值为___________. 5、已知长方形相邻两边之比为2∶3,对角线的长为39 ,则长方形的面积为___________. (三)计算 1、( 2 -25 )·(-13 )-1+30.008 -289 2、24+63-( 2 -1)2(四)解答题1、已知2a -1的平方根是±3,3a+2b -1的平方根是±4,求a+2b 的值.2、已知a 、b 为实数,且满足()0111=---+b b a ,求20042004a b -的值.3、已知有理数a 、b 满足等式a b a -+=-332235,求a 、b 的值.4、已知251,251+=-=b a ,求2++baa b 的值.5、已知625,625-=-+=+b a b a ,求20042221a b--⎛⎫ ⎪⎝⎭的值.6、已知a 、b 是实数,且a 2-4a+b 2+2b+5=0,求(1+ab )2的平方根.7、若4-3的整数部分为a,小数部分为b,①求b a 的值;②求1-2b+b 2b-1 -b 2-2b+1b 2-b 的值.8、已知023=-+++-+y x xy y x ,求代数式xyy x +的值.。
第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。
2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。
3.平方根的性质:若a x =2,那么a x =-2)(,则也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。
二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。
2.算术平方根的表示方法:正数a 的算术平方根可记作,读作:根号a 。
3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。
一个正数a 的正的平方根就是它的算术平方根。
三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。
开平方运算是已知指数和幂求底数。
2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。
3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。
考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a 的立方根(或三次方根)。
2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。
3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。
5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。
专题2.4 二次根式【八大题型】【北师大版】【题型1 判断二次根式】 (1)【题型2 根据二次根式有意义的条件求参数范围】 (2)【题型3 利用二次根式被开方数的非负性求值】 (2)【题型4 根据二次根式是整数求字母的值】 (2)【题型5 数轴与二次根式的化简的综合运用】 (3)【题型6 逆用(√a)2=a (a ≥0)在实数范围内分解因式】 (4)【题型7 根据含隐含条件的参数范围化简二次根式】 (4)【题型8 复合型二次根式的化简求值】 (4)【知识点1 二次根式的定义】形形√a 形a ≥0形形形形形形形形形形形√a 形形形形形形形a 形形形形形形.【题型1 判断二次根式】【例1】(2023春·八年级单元测试)a 是任意实数,下列各式中:形√a +2;形√(−2a)4;形√a 2+3;形√a 2+6a +9;形√a 2−3,一定是二次根式的个数是( )A .1B .2C .3D .4【变式1-1】(2023春·湖北孝感·八年级统考期中)下列各式中,一定是二次根式的是( )A .√aB .√23C .√12D .√−4【变式1-2】(2023春·全国·八年级专题练习)下列式子一定是二次根式的是 ( )A .√a 2B .-√aC .√a 3D .√a【变式1-3】(2023春·陕西·八年级阶段练习)下列式子:√7,√2x ,√1−m ,√a 2+b 2,√100,√a 2−1,√|a |+1中,一定是二次根式的是( )A .3个B .4个C .5个D .6个【知识点2 二次根式有意义的条件】(1)形形形形形形形形形形形形形形形形2形形形形形形形形形形形√a ≥0.【题型2 根据二次根式有意义的条件求参数范围】【例2】(2023·辽宁丹东·八年级统考期末)在函数y =√2−x √x−1中,自变量x 的取值范围是( ) A .−1<x ≤2 B .−2<x ≤1 C .1≤x ≤2 D .1<x ≤2【变式2-1】(2023春·湖北孝感·八年级统考期中)若式子√1−3x x有意义,则x 的取值范围是___. 【变式2-2】(天津市南开区2022-2023学年八年级下学期期末数学试题)下列各式中x 的取值范围是x ≥3的是( ) A .√3−x B .√x −3 C .√3+x D .√x−3【变式2-3】(2023春·浙江绍兴·八年级校联考期中)若x =2能使下列二次根式有意义,则这个二次根式可以是( ). A .√x −1 B .√1−x C .√x −3 D .√−x【知识点3 二次根式的性质】 性质1:(√a)2=a (a ≥0),即一个非负数的算术平方根的平方等于它本身;性质2:√a 2=|a |={a (a ≥0)−a (a <0),即一个任意实数平方的算术平方根等于它本身的绝对值. 【题型3 利用二次根式被开方数的非负性求值】【例3】(2023春·福建福州·八年级统考期中)已知y =√x −2022−√2023−x +1,其中x 为整数,则y 的值为__________.【变式3-1】(2023春·河北邢台·八年级校考期末)若√x −1+√y +3=0,求x −y 的值.【变式3-2】(2023春·黑龙江绥化·八年级统考期中)若y =√x −3+√3−x −2,则x y =______.【变式3-3】(2023·全国·八年级假期作业)已知实数a 满足√(2008−a)2+√a −2009=a ,求a −20082的值是多少?【题型4 根据二次根式是整数求字母的值】【例4】(2023春·八年级单元测试)若√36n 是整数,则整数n 的所有可能的值为_______.【变式4-1】(2023春·广东惠州·八年级校考期中)已知:√20n是整数,则满足条件的最小正整数n为()A.2B.4C.5D.20(2023春·湖北武汉·八年级统考期中)已知√10−n是整数,则自然数n所有可能的值的和为______.【变式4-2】【变式4-3】(2023春·江苏·八年级专题练习)如果√17+4a是一个正整数,则整数a的最小值是()A.-4B.-2C.2D.8【题型5 数轴与二次根式的化简的综合运用】【例5】(2023春·广东云浮·八年级统考期中)已知实数a,b,c在数轴上对应点的位置如图所示,化简:√a2+(√−a+b)2−|c−b|.【变式5-1】(2023春·八年级单元测试)已知:实数a,b在数轴上对应的点的位置如图所示,化简:√(a+1)2+ 2√(b−1)2−∣a−b∣.【变式5-2】(2023春·全国·八年级期末)实数a,b,c在数轴上对应的点的位置如图所示,则化简√c2−(√a)2+ 3)3得()(√a+bA.b−c B.−2a−b−c C.b+c D.−b−c【变式5-3】(2023春·山东临沂·八年级统考期中)阅读材料,解答问题。
中考数学复习《实数与二次根式及其运算》经典题型及测试题(含答案)命题点分类集训命题点1 实数的相关概念【命题规律】1.实数的相关概念是实数部分的常考知识点,考查内容有:①相反数、绝对值、倒数;②负数、有理数和无理数;③平方根、算术平方根、立方根;2.相反数、绝对值、倒数考查频次较高,一般以-10 到 10之间的数设题;3.题位常设置在选择题和填空题中第1个,选择题较多 1. 下列各数中,-3的倒数是( )A. -13B. 13 C. -3 D. 3A 【解析】∵-3×(-13)=1,∴-3的倒数为-13.2.-6的绝对值是( )A. -6B. 6C. 16D. -16B 【解析】∵-6小于0,∴-6的绝对值为-(-6)=6. 3.-12016的倒数的绝对值是( )A. -2016B. 12016C. 2016D. -12016C 【解析】-12016的倒数是-2016,-2016的绝对值是2016.4.四个数-3,0,1,2,其中负数是( ) A. -3 B. 0 C. 1 D. 2 A 【解析】正数前面添上负号就是负数,∴-3是负数.5.下列实数中的无理数是( )A. 0.7B. 12C. πD. -8C 【解析】0.7是有限小数,是有理数;12是分数;π是无理数;-8是负整数.6. 4的平方根是( )A. ±2B. -2C. 2D. ±12A 【解析】∵(±2)2=4,∴4的平方根是±2. 7. (-2)2的平方根是( )A. 2B. -2C. ±2D. 2 C 【解析】∵(-2)2=4,∴4的平方根是±2.8.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作( ) A. 7 ℃ B. -7 ℃ C. 2 ℃ D. -12 ℃B 【解析】零上记为正数,则零下记为负数,零上5℃记为+5℃,则零下7℃记为-7℃.9. 38=________. 2 【解析】38=323=2.10. |-0.3|的相反数等于________.-0.3 【解析】|-0.3|=0.3,而0.3的相反数是-0.3. 命题点2 科学记数法【命题规律】1.考查内容与形式:①大数科学记数法(数字一般在万位以上,或带单位万、亿),②小数科学记数法(绝对值大于0小于1的数);2.设题材料:大数科学记数法的设题一般以当下时事热点新闻、当地人文、财政等信息为主;小数科学记数法设题一般以细胞、花粉的直径等为主;3.选择和填空均有考查,以选择题居多,在做题时,可直接用a 的取值(1≤a <10)排除选项正误.【命题预测】科学记数法既可以准确方便地表示日常生活中遇到的一些极大或极小的数,同时也很好地体现了时下热点信息11.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( ) A. 0.955×105B. 9.55×105C. 9.55×104D. 9.5×104C 【解析】将一个大数表示成a ×10n 的形式,其中1≤a <10,故a =9.55,n 等于原数的整数位数减1,所以n =5-1=4,故数字95500用科学记数法表示为9.55×104.12.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为( ) A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 C 【解析】1亿=108,84.5亿=84.5×108=8.45×109,故本题选C.13.人体中红细胞的直径约为0.0000077 m ,将数0.0000077用科学记数法表示为( ) A. 77×10-5B. 0.77×10-7C. 7.7×10-6D. 7.7×10-7C 【解析】将一小数表示为a ×10-n 的形式,其中1≤a <10,n 等于原数左起第一位非零数字前所有零的个数(含小数点前的零),则0.0000077用科学记数法表示为:7.7×10-6 .14. 2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a ×10n 的形式,则n 的值是________.16 【解析】科学记数法的表示形式为a ×10n ,其中1≤a <10,∴3386×1013=3.386×1016,则n =16. 命题点3 实数的大小比较【命题规律】常考形式:1.①下列各数中最大(小)的是;②下列各数中,比a 大(小)的是;③比较a 和b 的大小;2.选择、填空均有考查,近年选择居多;3.以第①种形式为主.【命题预测】实数的大小比较仍会考查,是命题的方向,尤其以“下列各数中最大(小)的是”和“比a 大(小)的是”的形式命题的值得关注. 15.下列实数中小于0的数是( )A. 2016B. -2016C. 2016D. 12016B16.在实数-13,-2,0,3中,最小的实数是( )A. -2B. 0C. -13D. 3A 【解析】正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,所以-2<-13<0<3,故答案为A.17.下列四个数中,最大的数是( )A. -2B. 13C. 0D. 6D 【解析】四个数中选择最大的数可直接在正数中选,比较13<6,故最大的数为6.18.实数a ,b 在数轴上的对应点的位置如图所示.把-a ,-b ,0按照从小到大的顺序排列,正确的是( ) A .-a <0<-b B .0<-a <-b C .-b <0<-a D .0<-b <-aC 【解析】由数轴可知:a <0<b, ∴-a >0>-b ,即 -b <0<-a . 19.比较大小:-2________-3.(选填>,=或<)> 【解析】∵负数比较大小,绝对值大的反而小,∴-2>-3. 命题点4 二次根式及其运算【命题规律】1.考查内容:①二次根式有意义的条件;②二次根式的简单运算;③二次根式的估值;2.二次根式有意义的条件常与分式化简求值结合,在分式化简后为字母取值的计算中涉及.【命题预测】二次根式及其运算仍会考查,尤其是实数运算或分式化简求值中涉及到的,值得我们关注 20.若二次根式a -2有意义,则a 的取值范围是( ) A. a ≥2 B. a ≤2 C. a >2 D. a ≠2 A21.实数2的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间 B 【解析】∵1=1<2<4=2,∴1<2<2,故选B. 22.下列计算正确的是( ) A. 12=2 3 B.32=32C. -x 3=x -xD. x 2=x A 【解析】逐项分析如下:选项 逐项分析 正误 A 12=4×3=23 √ B 32=32=62≠32 错 C ∵-x 3≥0,∴x ≤0,-x 3=x 2·-x =-x-x ≠x-x错 Dx 2=|x |≠x错23. (3-7)(3+7)+2(2-2). 解:原式=9-7+22-2=2 2.命题点5 实数的运算【命题规律】1.考查内容:①有理数加减乘除的简单运算;②实数的混合运算;2.实数混合运算一般涉及:①零次幂,②负整数指数幂(含-1次幂);③ -1的奇偶次幂;④去绝对值号;⑤开平方;⑥二次根式运算;⑦特殊角的三角函数值;3.选择题和填空题中常以两项运算考查为主,解答题常考查三项或四项的混合运算.【命题预测】实数的运算是常考内容,尤其是混合运算,体现了实数部分知识的综合,是重要的命题点.24.计算:(-12)×2( )A. -1B. 1C. 4D. -4 A 【解析】(-12)×2=-(12×2)=-1.25.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )A. 45.02B.44.9C.44.98D.45.01B 【解析】加工零件的尺寸要求, 45+0.03-0.04意思是合格产品的直径最大不超过45+0.03,最小不低于45-0.04,从而确定合格产品的范围,进而得出结果.由题意得:合格尺寸的范围为44.96≤≤45.03,∴可判断出B 选项的尺寸不合格. 26.计算:|38-4|-(12)-2=________.-2 【解析】原式=|2-4|-4=2-4=-2. 27.计算:55-(2-5)0+(12)-2.解:原式=5-1+4=5+3.28.计算:(-1)3+|-12|-(-32)0×(-23).解:原式=-1+12-1×(-23)=-12+23=16.29.计算:|-3|-(2016+sin30°)0-(-12)-1.解:原式=3-1+2 =2+2 =4.30.计算:(12)-1+(sin60°-1)0-2cos30°+|3-1|.解:原式=2+1-2×32+3-1 =2+1-3+3-1 =2.31.计算:2-2-2cos60°+|-12|+(π-3.14)0.解:原式=14-2×12+23+1=14-1+23+1 =14+2 3.中考冲刺集训一、选择题1. 化简|-2|得( )A. 2B. -2C. +2D. 122.-2的相反数是( ) A. 2 B. -22C. - 2D. -2 3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是( )A. -2B. -3C. 3D. 5 4.下列四个选项中,计算结果最大的是( )A. (-6)0B. |-6|C. -6D. 165. 38的算术平方根是( )A. 2B. ±2C. 2D. ± 2 6. ±2是4的( )A. 平方根B. 相反数C. 绝对值D. 算术平方根7.据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1048. 下列实数中,有理数是( )A. 8B. 34 C. π2D. 0.10100100019. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克.将数0.000000076用科学记数法表示为( )A. 7.6×10-9B. 7.6×10-8C. 7.6×109D. 7.6×10810. 实数a ,b 在数轴上对应点的位置如图所示,化简|a |+(a -b )2的结果是( ) A. -2a +b B. 2a -b C . -b D.b 11. 下面实数比较大小正确的是( )A. 3>7B. 3> 2C. 0<-2D. 22<3 12. 下列计算正确的是( )A. x 2+3x 2=4x 4B. x 2y ·2x 3=2x 6y C. (6x 3y 2)÷(3x )=2x 2D. (-3x )2=9x 213. 下列运算正确的是( )A. (a -3)2=a 2-9B. a 2·a 4=a 8C. 9=±3D. 3-8=-214. 13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 77二、填空题15.实数-27的立方根是________.16.数轴上表示-2的点与原点的距离是________. 17.计算:|1-3|-12=________. 18.计算:3-8+(13)-2+(π-1)0=________.19.若两个连续整数x 、y 满足x <5+1<y ,则x +y 的值是________. 20.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:测试项目 创新能力 综合知识 语言表达 测试成绩(分)708092将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是________分.21.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.三、解答题22.计算:(12)-2+|3-2|+3tan30°.23.计算:(-3)2-(15)-1-8×2+(-2)0.24.计算:(-1)2016+2sin60°-|-3|+π0.25.计算:8-(-2016)0+|-3|-4cos45°.26.计算:2sin30°+3-1+(2-1)0- 4.27.计算:|3-2|+(2015-1)0+2sin45°-2cos30°+(12015)-1.答案及解析:1. A2. A3. A 【解析】最接近标准的工件是绝对值最小的数,-2的绝对值是2,-3和3的绝对值是3,5的绝对值是5,所以最接近的是-2.4. B 【解析】A.(-6)0=1,B.|-6|=6,D.16≈0.17, ∵6>1>0.17>-6,∴|-6|的计算结果最大.5. C6. A 【解析】∵(±2)2=4,∴±2是4的平方根.7. A 【解析】把一个大数用科学记数法表示为a ×10n 的形式,其中1≤a <10,故a =4.47,n 等于原数的整数位数减1,即n =7-1=6,∴4470000=4.47×106.8. D9. B 【解析】把一个小数用科学记数法表示成a ×10-n 的形式,1≤a <10,故a =7.6,n 为小数点向右移动的位数,n=8,所以0.000000076=7.6×10-8,故选B.10. A【解析】由数轴可知,a<0,b>0,所以a-b<0,所以||a+(a-b)2=-a+||a-b=-a -(a-b)=-a-a+b=-2a+b.11. B【解析】∵3<7,选项A错误;比较两个正数的算术平方根,被开方数越大,这个数的算术平方根就越大,∵3>2,∴3>2,选项B正确;负数小于0,所以0>-2,选项C错误;∵22=4 ,4>3,∴22>3,选项D错误.故选B.12. D13. D【解析】A.(a-3)2=a2-6a+9,故错误;B.a2·a4=a6,故错误;C.9=3,故错误;D.3-8=-2,故正确.14. C【解析】根据题意,得7×7×7×7×7×7=76,故选C.15. -3【解析】∵(-3)3=-27,∴-27的立方根为-3.16. 2【解析】数轴上的点到原点的距离即为该数的绝对值,|-2|=2.17. -3-1【解析】原式=3-1-23=-3-1.18. 8【解析】原式=-2+9+1=8.19. 7【解析】∵4<5<9,∴2<5<3,∴3<5+1<4,∴满足x<5+1<y的两个连续整数x、y 分别是3和4.∴x+y的值是7.20. 77.4【解析】5+3+2=10,70×510+80×310+92×210=35+24+18.4=77.4.21. 55【解析】将3代入程序框图,先计算其平方为9,比10小,按程序操作:加上2,等于11,再乘以5,得55.22. 解:原式=4+2-3+3×3 3=6-3+ 3=6.23. 解:原式=9-5-4+1 =1.24. 解:原式=1+2×32-3+1=1+3-3+1 =2.25. 解:原式=22-1+3-4×2 2=22-1+3-2 2 =2.26. 解:原式=2×12+13+1-2=1+13+1-2=13. 27. 解:原式=3-2+1+2×22-2×32+2015 =3-2+1+2-3+2015 =2016.。
实数和二次根式》全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.5.理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.6.熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.7.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.【知识网络】【要点梳理】类型平方根立方根项目被开方数非负数任意实数3a符号表示a性质一个正数有两个平方根,且互为一个正数有一个正的立方根;要点二、无理数与实数有理数和无理数统称为实数. 1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点三、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质(1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2)a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 取何值,2a 意义.(32a a ,再根据绝对值的意义来进行化简. (42a 2()a 的异同2a a 可以取任何实数,而2a 中的a 必须取非负数;2a a ,2)a =a (0a ≥).相同点:被开方数都是非负数,当a 2a 2a .3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.如222,,3,ab x a b +等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如2与8,由于8=22,2与8显然是同类二次根式.要点四、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则逆用法则二次根式的乘法(0,0)a b ab a b ⨯=≥≥积的算术平方根化简公式:(0,0)ab a b a b =⨯≥≥二次根式的除法(0,0)a a a b b b=≥> 商的算术平方根化简公式:(0,0)a aa b b b=≥> 要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd ⋅=.(2)被开方数a b 、一定是非负数(在分母上时只能为正数).如(4)(9)49-⨯-≠-⨯-.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-.【典型例题】类型一、有关方根的问题【高清课堂:389318 实数复习,例1】1、已知31233-+-+-=x x x y ,求y x 2的值.【思路点拨】由被开方数是非负数,分母不为0得出x 的值,从而求出y 值,及y x 2的值. 【答案与解析】 解:由题意得303030x x x ⎧-≥⎪-≥⎨⎪-≠⎩,解得x =-3 31233-+-+-=x x x y =-2∴y x 2=()()23218-⨯-=-.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到y x 2的值. 举一反三: 【变式1】已知322+-+-=x x y ,求x y 的平方根。
第二章实数压轴题考点训练|﹣(﹣)﹣)﹣2×2+﹣﹣=【答案】(1)5342是“和好数”,理由见详解;3(2)4567【分析】(1)依据“和好数”的定义和G (p )的定义即可判断求解;(2)首先确定s 、t 的千位数、被位数、十位数和个位数,再依据“和好数”的定义找到1m n -=和2x y =,再根据相应的取值范围,确定符合条件的数组(m ,n )和(x ,y ),依据G (p )的定义得到()()3(2124)G s G t m x =+-+,再确定其取值范围,最后根据()()3(2124)G s G t m x =+-+是完全平方数即可求出符合条件的数组(m ,x ),即可求出满足条件的s .【详解】(1)∵3+4≠6+2,∴3264不是“和好数”,∵5+2=3+4,∴5342是“和好数”,∴G (5342)=3(4-3)=3;(2)∵100010517s n m =++,且28m ≤≤,19n ≤≤,∴s 的千位数是n ,百位数是5,十位数是m +1,个位数是7,又∵s 是“和好数”,∴751n m +=++,即1m n -=,根据整数m 、n 的取值范围可知满足条件的数组(m ,n )有:(2,1)、(3,2)、(4,3)、(5,4)、(6,5)、(7,6)、(8,7),则m 可以取的数为:2、3、4、5、6、7、8,∴()()315312G s m m =+-=-,∵1023390t x y =++,且19x ≤≤,14y ≤≤,∴t 的千位数是3,个位数是2y ,∵40039010480x ≤+≤,∴t 的百位数是4,十位数是x -1,又∵t 是“和好数”,∴3241y x +=+-,即2x y =,根据整数x 、y 的取值范围可知满足条件的数组(x ,y )有:(2,1)、(4,2)、(6,3)、(8,4),则x 可以取的数为:2、4、6、8,∴()()314315G t x x =--=-∵231()()3122()36423(214)5m m x G s G t x m x =-+=+-=+-+-,由m 、x 的取值,可知3(214)m x +-最大可以为30,∵2()()G s G t +是一个完全平方数,则3(214)m x +-可以为30以内能被3整除的完全平方数,即有:3(214)m x +-为只能为9,即:3(214)9m x +-=,得:m +2x =17,∴根据整数m 、x 的取值范围可知满足条件的数组(m ,x )只有:(5,6),∴m =5,x =6,∴n =4,y =3,∴100010517100041055174567s n m =++=⨯+⨯+=.【点睛】本题主要是考查了二元方程的正整数解,理解“和好数”的定义和G (p )的定义是解题的基础,利用题中正整数、完全平方数的限制条件最终确定m 、n 、x 、y 的值是解题的关键.。
新北师大版八年级数学上册《二章实数二次根式复习课》公开课二次根式复习课教学设计一、学习目标:1.理解二次根式的有关概念;2.掌握二次根式的性质3.能熟练、准确地利用公式进行二次根式的运算。
二、教学重点:1.二次根式的混合运算2.运用二次根式的性质、乘除法则化简和计算二次根式三、教学过程:展示学习任务任务1:小组长检查预习作业,同学间交流完善知识框架,并提出你们在预习中遇到的困惑。
任务2:结合知识框架,先独立完成各考点的中考链接,然后小组交流、更正。
考点一二次根式的有关概念中考链接1、在下列式子中,是二次根式的是()A.B.C.D.某2、若在实数范围内有意义,则某的取值范围是_________3、下列根式中,最简二次根式是()A.B.C.D.考点小结:1、二次根式应满足两个条件:①有二次根号“”,②被开方数是正数或02、最简二次根式满足以下三个条件:7-38某25a22ba-3a0.5(1)分母中不含有根号;(2)被开方数不含有分母;(3)被开方数中不含能够开得尽方的因数或因式考点二二次根式的性质中考链接的结果是)(、计算221-1某某DCBA==-==2.3-2-3-2.2323.3212.2)()、下列计算正确的是(())(,化简<、若=1-1-132aaA.a﹣2B.2﹣aC.aD.﹣a考点小结:1、二次根式的双重非负性:)00≥≥aa(2、,()0,0≥≥=babaab)>,00(bababa≥=3、考点三二次根式的运算中考链接1、下列各式中,与互为同类二次根式的是____02-1814-31242)(、计算:考点小结:二次根式的运算属于代数式的基本运算,运算的结果可以是数或(0)(0)aaaaa≥=-≤3整式,也可以是最简二次根式,若运算结果不是最简二次根式,则必须化为最简二次根式。
四、小结本节课对二次根式定义及意义、性质、乘除及加减法则、化简和运算、最简二次根式的定义,混合运算进行了回顾和总结,并结合中考题型针对性地进行了突破性练习。