2012年常德市初中毕业学业考试数学试题卷解析
- 格式:doc
- 大小:490.00 KB
- 文档页数:11
湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.21 / 21。
初中毕业生学业测试数学试卷2012.5试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1. –3的相反数是( ▲ )A.13B.3C.31- D.3- 2.方程x 2 = 2x 的解是( ▲ )A.x=2B.x 1=2-,x 2= 0C.x 1=2,x 2=0D.x = 03.已知甲、乙两组数据的平均数相等,若甲组数据的方差2s 甲=0.055,乙组数据的方差2s 乙=0.105,则( ▲ )A.甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的数据波动不能比较 4.据某网站报道:一粒废旧纽扣电池可以使600吨水受到污染.某校团委四年来共回收废旧纽扣电池3500粒,若这3500粒废旧纽扣电池可以使m 吨水受到污染.用科学记数法表示m 为( ▲ )A.2.1×105B.2.1×10-5 C.2.1×106 D.2.1×10-65.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为252s t t =+,则当4t =时,该物体所经过的路程为( ▲ )A.28米B.48米C.68米D.88米6.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖,有人提出了4种地砖 的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密 铺的地砖的形状是( ▲ ).A.①B.②C.③D.④7.某物体的三视图如右图,那么该物体形状可能是( ▲ ) A.长方体 B.圆锥体 C.立方体 D.圆柱体8.若弧长为6π的弧所对的圆心角为60°,则这条弧所在的圆的半径为( ▲ ).A.6B.36C.312D.189.在的Rt △ABC 中,∠C =90°,cosA =51,则tanA =( ▲ )A.62B.26C.562D.2410.如图,AB ∥CD ,则图中∠1、∠2、∠3关系一定成立的是( ▲ ) A.∠1+∠2+∠3=180° B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠211.如图,若正△A 1B 1C 1内接于正△ABC 的内切圆,则11A B AB的值为( ▲ ) A.12C.13第7题321E DBA 第10题12.如图平面上有两个全等的正十边形ABCDEFGHIJ 、A′B′C′D′E′F′G′H′I′J′,其中A 点与A′点重合,C 点与C′点重合.求∠BAJ′的度数为何?( ▲ ) A 、96B 、108C 、118D 、126试 题 卷 Ⅱ二、填空题(每小题3分,共18分)13.分解因式:12-x = ▲ .14.不等式 5x -9≤3(x +1)的解集是 ▲ . .15.将抛物线2x y =的图象向右平移1个单位,则平移后的抛物线的解析式为 ▲ . 16.已知⊙O 1和⊙O 2外切,且圆心距为10c m ,若⊙O 1半径为3c m ,则⊙O 2的半径为 ▲ c m .17.已知函数1+-=x y 的图象与x 轴、y 轴分别交于点C 、B ,与双曲线xky =交于点A 、D ,若AB+CD= BC ,则k 的值为 ▲ .18.如图,△ABC 的面积为126,D 是BC 上的一点,且BD ∶CD =2∶1,DE ∥AC 交AB 于点E ,延长DE 到F ,使FE ∶ED =2∶1连结CF 交AB 于点G ,则△CDF 的面积为 ▲ .三、解答题(本大题有7小题,共66分)19.(本题5分)计算:0121(()(2)2-+---20.(本题7分)解方程:2532112x x x+=--第17题第12题第18题GFEDCBA21.(本题8分)实验探究:甲、乙两个不透明的纸盒中分别装有形状、大小和质地完全相同的两张和三张卡片.甲盒中的两张卡片上分别标有数字1和2,乙盒中的三张卡片分别标有数字3、4、5.小红从甲盒中随机抽取一张卡片,并将其卡片上的数字作为十位上的数字,再从乙盒中随机抽取一张卡片,将其卡片上的数字作为个位上的数字,从而组成一个两位数.(1)请你画出树状图或列表,并写出所有组成的两位数;(2)求出所组成的两位数是奇数的概率.22.(本题10分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?请说明理由。
2007年常德市初中毕业学业考试试卷数 学考生注意:1.请考生在总分栏上面的座位号方格内工整地填写好座位号; 2.本学科试卷共六道大题,满分150分,时量120分钟; 3.考生可带科学计算器参加考试.一、填空题(本大题8个小题,每小题4分,满分32分) 1.|7|-= .2.分解因式:22b b -= .3.如图1,若AB CD ∥,150∠=,则2∠= .4.若反比例函数ky x=的图象经过点(12)-,,则该函数的解析式为 . 5.据科学家测算,用1吨废纸造出的再生好纸相当于0.3~0.4亩森林木材的造纸量.我市今年大约有46.710⨯名初中毕业生,每个毕业生离校时大约有12公斤废纸,若他们都把废纸送到回收站生产再生好纸,则至少可使森林免遭砍伐的亩数为 亩. 6.分式方程532x x=-的解为x = . 7.如图2,O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .8.观察下列各式:3211=332123+= 33221236++= 33332123410+++=……猜想:333312310++++= .二、选择题(本题中的选项只有一个是正确的,请你将正确的选项填在下表中,本大题8个小题,每小题4分,共32分) 9.下列运算正确的是( ) A .236a a a =B .22124aa --=-C .235()a a -= D .22223a a a --=-1 2 A BDC图1EFCD G O图210.函数8y x =-的自变量x 的取值范围是( )A .8x <B .8x >C .8x ≤D .8x ≥11.下面图形中是正方体平面展开图的是( )12.若两圆的半径分别为3cm ,5cm ,圆心距为4cm ,则两圆的位置关系为( ) A .外切 B .内含 C .相交 D .内切13.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .210x +=B .2210x x ++= C .2230x x ++=D .2230x x +-=14.下列说法正确的是( ) A .“明天的降水概率为30%”是指明天下雨的可能性是30% B .连续抛一枚硬币50次,出现正面朝上的次数一定是25次C .连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D .某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖 15.如图4,正方形OABC 的边长为2,则该正方形绕点 O 逆时针旋转45后,B 点的坐标为( ) A .(22),B .(022),C .(220),D .(02),16.某电信部门为了鼓励固定电话消费,推出新的优惠套餐:月租费10元;每月拔打市内电话在120分钟内时,每分钟收费0.2元,超过120分钟的每分钟收费0.1元;不足1分钟时按1分钟计费.则某用户一个月的市内电话费用y (元)与拔打时间t (分钟)的函数关系用图象表示正确的是( )三、(本大题4个小题,每小题6分,满分24分)17.计算:2012279tan303-⎛⎫++- ⎪⎝⎭.A .B .C .D .CBAOyx图4y 元 t 分钟120 O10 A .y 元 t 分钟 120 O10 B .y 元t 分钟120 O10 C . y 元t 分钟 120 O10 D .18.先化简再求值:21111b bb b b ⎛⎫+++÷⎪--⎝⎭,其中3b =. 19.解方程组1(1)32(1)6(2)xy x y ⎧+=⎪⎨⎪+-=⎩ 20.图6-2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图6-1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?四、(本大题2个小题,每小题8分,满分16分)21.游艇在湖面上以12千米/小时的速度向正东方向航行,在O 处看到灯塔A 在游艇北偏东60方向上,航行1小时到达B 处,此时看到灯塔A 在游艇北偏西30方向上.求灯塔A 到航线OB 的最短距离(答案可以含根号).22.如图8,已知AB AC =,(1)若CE BD =,求证:GE GD =;(6分) (2)若CE m BD =(m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).(2分)马 卒卒炮马卒马图6-1图6-2ABO图7北6030图8 A BC D GE23.某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A 和B 共8吨,已知生产每吨A B ,产品所需的甲、乙两种原料如下表:甲原料 乙原料A 产品 0.6吨 0.8吨B 产品1.1吨0.4吨销售A B ,两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A 产品x 吨,且销售这两种产品所获得的总利润为y 万元. (1)求y 与x 的函数关系式,并求出x 的取值范围;(8分) (2)问化工厂生产A 产品多少吨时,所获得的利润最大?最大利润是多少?(2分)24.阅读理解:市盈率是某种股票每股市价与每股盈利的比率(即:某支股票的市盈率=该股票当前每股市价 该股票上一年每股盈利).市盈率是估计股票价值的最基本、最重要的指标之一.一般认为该比率保持在30以下是正常的,风险小,值得购买;过大则说明股价高,风险大,购买时应谨慎.应用:某日一股民通过互联网了解到如下三方面的信息: ①甲股票当日每股市价与上年每股盈利分别为5元、0.2元 乙股票当日每股市价与上年每股股盈利分别为8元、0.01元 ②该股民所购买的15支股票的市盈率情况如下表: 编号 1234 5 6 7 8 9 10 11 12 13 14 15 市盈率25 800 61191828283559806280808243③丙股票最近10天的市盈率依次为:20 20 30 28 32 35 38 42 40 44 根据以上信息,解答下列问题:(1)甲、乙两支股票的市盈率分别是多少?(2分)(2)该股民所购买的15支股票中风险较小的有几支?(2分) (3)求该股民所购15支股票的市盈率的平均数、中位数与众数;(3分) (4)请根据丙股票最近10天的市盈率画出折线统计图,并依据市盈率的有关知识和折线统计图,就丙股票给该股民一个合理的建议.(3分)图91 2 3 4 5 6 7 8 9 10天数市盈率 2025 30 35 404525.如图10所示的直角坐标系中,若ABC △是等腰直角三角形,82AB AC ==,D 为斜边BC 的中点.点P 由点A 出发沿线段AB 作匀速运动,P '是P 关于AD 的对称点;点Q 由点D 出发沿射线DC 方向作匀速运动,且满足四边形QDPP '是平行四边形.设平行四边形QDPP '的面积为y ,DQ x =. (1)求出y 关于x 的函数解析式;(5分)(2)求当y 取最大值时,过点P A P ',,的二次函数解析式;(4分)(3)能否在(2)中所求的二次函数图象上找一点E 使EPP '△的面积为20,若存在,求出E 点坐标;若不存在,说明理由.(4分)26.如图11,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FGAB BG=成立(考生不必证明). (1)探究:如图12,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(5分) (2)计算:若菱形ABCD 中660AB ADC ==,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长.(7分) (3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FGAB BG=还成立吗?(1分)常德市2007年初中毕业会考试卷(新课标版)图11ABDFCHG图12A BCDFHG图10x yA PB D F P ' Q C数 学参考答案及评分标准说明:(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分. (二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分.(三)评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而末改变本题的内容和难度者,视影响程度决定后面部分的得分,但原则上不超过后面部分应得分数的一半,如有严重的概念错误,就不给分.一、填空题(本小题8个小题,每小题3分,满分24分) 题号 1 23 4 5 6 7 8 答案7(2)b b - 1302y x=-241.2 3-20552或3025二、选择题(本小题8个小题,每小题3分,满分24分) 题 号 9 10 11 12 13 14 15 16 答 案DDCCDABB三、(本小题2个小题,每小题5分,满分10分)17.解:原式=1+9+33-33 ··································································· 4分=10 ······································································· 6分18.解:原式22111111b b bb b b-+-=⨯-+=+ ···································································· 5分 B =3时,原式41 ················································································· 6分 19.解:由(1)得:x +3=3y ,即x =3y -3 (3) ······················································ 2分由(2)得:2x -y =4 (4) ······················································ 4分 把(3)代入(4)得: y =2把y =2代入(3)得: x =3 ,因此原方程组的解为3,2.x y =⎧⎨=⎩··························· 6分20.解:红方马走一步可能的走法有14种,其中有3种情况吃到了黑方棋子 ····································································· 4分 则红马现在走一步能吃到黑方棋子的概率是143. ·················································· 6分 四、 (本大题2个小题,每小题8分,满分16分)21.解:过点A 作AC ⊥OB 交OB 于C ,则AC 为所求,设AC =x据题意得:OB=12千米,∠AOC=30,∠ABC =60 ·············································· 1分在Rt △ACO 和Rt △ACB 中:tan 30tan 60333x x OC BCOC x BC x ====,,则, ·········································································· 5分而OC +CB ==+x x 33312,解之得:x =33(千米)············································ 7分 答:灯塔A 到航线OB 的最短距离为33千米. ··················································· 8分 22.(1)证明:过D 作DF //CE ,交BC 于F , 则∠E =∠GDF …………………………2分 ∵AB =AC ,DF //CE∴∠DFB =∠ACB =∠ABC∴DF =DB =EC …………………………4分又∠DGF =∠EGC …………………………5分 ∴ △GDF ≌△GEC∴GE =GD …………………………6分 (2) GE = m ·GD ………………………………8分 五、 (本大题2个小题,每小题10分,满分20分) 23.解:(1)据题意得:y =0.45x +(8-x )×0.5 =-0.05x +4 ····························································· 3分 又生产两种产品所需的甲种原料为:0.6x +1.1×(8-x ), 所需的乙种原料为:0.8x +0.4×(8-x ) ···························································· 5分则可得不等式组()()0.6 1.1870.80.485x x x x +⨯-⎧⎪⎨+-⎪⎩≤≤ 解之得3.6 4.5x ≤≤ ···························· 8分(2) 因为函数关系式y =-0.05x +4中的-0.05<0,所以y 随x 的增大而减小.则由(1)可知当x =3.6时,y 取最大值,且为3.82万元. 答:略 ····································································································· 10分 24.解:(1)甲股票的市盈率为:5÷0.2=25乙股票的市盈率为:8÷0.01=800……………………………………2分 (2)5 支 ……………………4分 (3)平均数为100,中位数为59 众数为80 ……………………7分 (4)画图 ……………………9分合理即可(如:存在一定的风险, 建议卖掉;继续观察市盈率变化情况, 如果继续增加,可考虑减少持有量;) ···························································· 8分六、 (本大题2个小题,每小题13分,满分26分)EAB CGD 图1 F 1 2 3 4 5 6 7 8 9 10 2025 303540 45 市盈率 天数 图225.解:(1)∵△ABC 为等腰直角三角形,AB =AC =82∴BC =16∵D 为斜边BC 的中点 ∴AD =BD =DC =8 ······················································································· 2分 ∵四边形PDQP '为平行四边形,DQ =x ∴AF PF FP '===x 21故DF =AD -AF =218-x 则平行四边形PDQP '的面积2118822y DQ DF x x x x ⎛⎫==-=-+ ⎪⎝⎭ ·················· 5分 (2)当x =8时,y 取最大值,此时Q 点运动到C 点,P 点运动到AB 的中点,则点A 、P 、P '的坐标分别为(0,8)、(-44,)、()44,.设过上述三点的二次函数解析式为82+=ax y , 代入P 点坐标有8412+-=x y ····································································· 9分 (3)假设在8412+-=x y 的图象上存在一点E ,使20PP E S '=△ 设E 的坐标为(x ,y ), 则1|||4|202PP E S PP y ''=-=△.即=-|4|y 5,可得=y 9、1-,代入解析式可得E 点坐标为()()161,6---,、. ··· 13分 26.解:(1)结论BGFGAB FH =成立 ····································································· 1分 证明:由已知易得//FH AB ∴BCHCAB FH =································································································ 3分 ∵FH //GCBG FG BC HC = ∴BGFGAB FH = ············································································· 5分 (2)∵G 在直线CD 上 ∴分两种情况讨论如下:① G 在CD 的延长线上时,DG =10 如图3,过B 作BQ ⊥CD 于Q ,由于ABCD 是菱形,∠ADC =60, ∴BC =AB =6,∠BCQ =60, ∴BQ =33,CQ =3BA D C 图3F H GQ∴BG =972]33[1922=+ ········································································· 7分 又由FH //GC ,可得,BCBHGC FH = 而三角形CFH 是等边三角形∴BH =BC -HC =BC -FH =6-FH∴6616FH FH -=,∴FH =1148由(1)知BG FGAB FH = ∴FG =481162979711611FH BG AB == ···························································· 9分 ② G 在DC 的延长线上时,CG =16如图4,过B 作BQ ⊥CG 于Q , 由于ABCD 是菱形,∠ADC =600, ∴BC =AB =6,∠BCQ =600, ∴BQ =33,CQ =3∴BG =22]33[13+=14………………………………11分 又由FH //CG ,可得BCBHGC FH = ∴616BHFH =,而BH =HC -BC =FH -BC =FH -6 ∴FH =548又由FH //CG ,可得CGFHBG BF = ∴BF =5421654814=÷⨯ ∴FG =14+5112542= ····················································································· 12分 (3)G 在DC 的延长线上时,586548=÷=AB FH 58145112=÷=BG FG 所以BGFGAB FH =成立 结合上述过程,发现G 在直线..CD 上时,结论BGFGAB FH =还成立. ························ 13分ABC FHGD图4。
2012年常德市初中毕业学业考试数学试题卷准考证号姓名_______________ 考生注意:1、请考生在试题卷首填写好准考证号及姓名.2、请将答案填写在答题卡上,填写在试题卷上的无效.3、本学科试题卷共 4页,七道大题,满分120 分,考试时量 120 分钟.4、考生可带科学计算器参加考试.一、填空题(本大题8个小题,每小题3分,满分24分) 1.若向东走5米记作+5米,则向西走5米应记作 米.2.我国南海海域的面积约为350 0000 km 2,该面积用科学记数法应表示为 km 2. 3.分解因式:22m n .4. 如图1,在 Rt △ABC 中,90C ,AD 是BAC的平分线,DC =2,则D 到AB 边的距离是 . 5. 函数4yx中自变量x 的取值范围是 .6. 已知甲、乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差2s 甲=1.3275,乙种棉花的纤维长度的方差2s 乙=1.8775,则甲、乙两种棉花质量较好的是 .7. 若梯形的上底长是10厘米,下底长是30厘米,则它的中位线长为 厘米. 8. 规定用符号[]m 表示一个实数m 的整数部分,例如:2[]03,[3.14]3.按此规定1]的值为 .二、选择题(本大题8个小题,每小题3分,满分24分)9. 若a 与5互为倒数,则a = ( )A .15 B .5 C .-5 D .1510.图2所给的三视图表示的几何体是 ( )A .长方体B .圆柱C .圆锥D .圆台11.下列运算中,结果正确的是 ( )A .3412a a aB .1025a a aC .235a a aD .43a aaABCD图1图212. 实数a b ,在数轴上的位置如图3所示,下列各式正确的是 ( ) A .0a b B .0ab C .||0a b D .0a b13.若两圆的半径分别为2和4,且圆心距为7,则两圆的位置关系为( )A .外切B .内切C .外离D .相交 14. 对于函数6yx,下列说法错误..的是( ) A .它的图象分布在一、三象限B .它的图象既是轴对称图形又是中心对称图形C .当x >0时,y 的值随x 的增大而增大D .当x <0时,y 的值随x 的增大而减小 15.若一元二次方程220x x m有实数解,则m 的取值范围是( )A .1mB .1mC .4mD .12m 16. 若图4-1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图4-2,再将图4-2中的每一段作类似变形,得到图4-3,按上述方法继续下去得到图4-4,则图4-4中的折线的总长度为( ) A .2 B .1627C .169D .6427三、 (本大题2个小题,每小题5分,满分10分)17.计算:0111(3)()tan 45218. 解方程组:521x y x y 四、(本大题2个小题,每小题6分,满分12分)19. 化简:211()(2)111x x x x x .20. 在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同.甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号.将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜. 问:这个游戏公平吗?请说明理由.图4-1图4-2 图4-3图4-4O -1-2 a 图3①②五、(本大题2个小题,每小题7分,满分14分) 21.如图5,一天,我国一渔政船航行到A 处时,发现正东方向的我领海区域B 处有一可疑渔船,正在以12海里/小时的速度向西北方向航行.我渔政船立即沿北偏东60°方向航行,1.5小时后,在我领海区域的C 处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)22. 某工厂生产A 、B 两种产品共50件,其生产成本与利润如下表:A 种产品B 种产品成本(万元/件) 0.6 0.9 利润(万元/件)0.20.4若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利最大?最大利润是多少?六、(本大题2个小题,每小题8分,满分16分)23. 某市把中学生学习情绪的自我调控能力分为四个等级,即A 级:自我调控能力很强;B 级:自我调控能力较好;C 级:自我调控能力一般;D 级:自我调控能力较差.通过对该市农村中学的初中学生学习情绪的自我调控能力的随机抽样调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生? (2)求自我调控能力为C 级的学生人数;(3)求扇形统计图中D 级所占的圆心角的度数;(4)请估计该市农村中学60000名初中学生中,学习情绪自我调控能力达B 级及以上等级的人数是多少?图560C45AB东北A 级 16% D 级B 级 24%C 级 42% 图7 图624. 如图8,已知AB =AC ,∠BAC =120°,在BC 上取一点O ,以O 为圆心OB 为半径作圆,且⊙O 过A 点,过A 作//AD BC 交⊙O 于D . 求证:(1)AC 是⊙O 的切线; (2)四边形BOAD 是菱形.七、(本大题2个小题,每小题10分,满分20分)25. 已知四边形ABCD 是正方形,O 为正方形对角线的交点,一动点 P 从B 点开始,沿射线BC 运动,连结DP ,作CN ⊥DP 于点M ,且交直线AB 于点N ,连结OP ,ON . (当P 在线段BC 上时,如图9;当P 在BC 的延长线上时,如图10) (1)请从图9,图10中任选..一图形证明下面结论: ① BN =CP ; ②OP =ON ,且OP ⊥ON .(2)设AB =4,BP =x ,试确定以O 、P 、B 、N 为顶点的四边形的面积y 与x 的函数关系.26. 如图11,已知二次函数1(2)()48yx ax b 的图象过点A (-4,3) ,B (4,4). (1)求二次函数的解析式;(2)求证:△ACB 是直角三角形;(3)若点P 在第二象限,且是抛物线上的一动点,过点P 作PH 垂直x 轴于点H ,是否存在以P 、H 、D 为顶点的三角形与△ABC 相似?若存在,求出P 点的坐标;若不存在,请说明理由.图11图10CDABPO NMABC DP O N 图9M 图8 A BC DO2012年常德市初中毕业学业考试数学参考答案及评分标准说明:(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分120分. (二)《答案》中的解法只是该题解法中的一种或几种,如果考生的解法和本《答案》不同,可参照本答案中的标准给分。
湖南省张家界市2012年初中毕业学业考试试卷数 学考生注意:本卷共三道大题,满分120分,时量120分钟一、选择题(本大题共8个小题,每小题3分,共计24分) 1、-2012的相反数是( )A .-2012 B. 2012 C.20121-D.201212、下面四个几何体中,左视图是四边形的几何体共有( ) A . 1个B . 2个C . 3个D .4个3、下列不是必然事件的是( )A 、角平分线上的点到角两边的距离相等B 、三角形任意两边之和大于第三边C 、面积相等的两个三角形全等D 、三角形内心到三边距离相等 4、如图,直线a 、b 被直线c 所截,下列说法正确的是 ( )A .当∠1=∠2时,一定有a ∥bB .当a ∥b 时,一定有∠1=∠2C .当a ∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180° 时,一定有a ∥b5、某农户一年的总收入为50000元,右图是这个农户收入的扇形统计图,则该农户的经济作物收入为( )A .20000元 B.12500元 **元 D.17500元6、实数a 、b 在轴上的位置如图所示,且b a >, 则化简b a a +-2的结果为( )A .b a +2 B.b a +-2 C .b D.b a -27、顺次连结矩形四边中点所得的四边形一定是( )A.正方形B.矩形C.菱形D.等腰梯形8、当可能是在同一坐标系中的图像与函数时,函数xay ax y a =+=≠10( ).经济作 物收入 35%粮食作物收入 40%打工收入 25%aob二、填空题(本大题共8个小题,每小题3分,共计24分)9、因式分解:=-282a .10、已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 . 11、一组数据是4、x 、5、10、11共有五个数,其平均数为7,则这组数据的众数是 .12、2012年5月底,三峡电站三十二台机组全部投产发电,三峡工程圆满实现2250万千瓦的设计发电能力。
2012常德市数学中考试题及答案一、选择题1.2的相反数是( ) A .2B .-2C .21 D .22.y=(x -1)2+2的对称轴是直线 ( )A .x=-1B .x=1C .y=-1D .y=13.如图1,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( ) A .1:1B .1:2C .1:3D .1:4E D CBA(1) (2) (3)4.如图2是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( ) A .60° B .80° C .120° D .150°5.函数11+=x y 中自变量x 的取值范围是 ( )A .x≠-1B .x>-1C .x≠1D .x≠06.下列计算正确的是 ( )A .a 2²a 3=a 6B .a 3÷a=a 3C .(a 2)3=a 6D .(3a 2)4=9a 4 7.在下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .等腰三角形B .圆C .梯形D .平行四边形8.如图3是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( )A .69B .54C .27D .409.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( ) A .7cmB .16cmC .21cmD .27cm10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )A B C D(A) (B) (C) (D) 11.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( )A .-3或1B .-3C .1D .312.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
湖北省潜江市、仙桃市、天门市、江汉油田2012年中考数学试题(解析版)一、选择题(共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分1.2012的绝对值是()A.2012 B.﹣2012 C.D.﹣考点:绝对值。
专题:计算题。
分析:根据绝对值的性质直接解答即可.解答:解:∵2012是正数,∴|2012|=2012,故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图。
分析:找到从上面看所得到的图形即可.解答:解:空心圆柱由上向下看,看到的是一个圆环.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.3.吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数A.0.6×107B.6×106C.60×105D.6×105考点:科学记数法—表示较大的数。
分析:首先把600万化为6000000,再用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:600万=6000000=6×106,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组。
2012 年常德市初中毕业学业考试化学试卷可能用到的相对原子质量H:1 C:12O: 16N: 14一、选择题(在各题的四个选项中,只有一个选项切合题意。
每题 2 分,此题共44 分)1. 以下相关本次中考试卷用纸的性质中,属于化学性质的是()A .白色 B. 难溶于水 C.可燃性 D.易撕碎2.君君将必定量生铁样品加入过度稀硫酸中充足反响,发现有少许黑色物质残留。
以下做法不行取的是()A .充耳不闻 B.讨教老师 C.上网查资料 D.经过实验连续研究3.可可扯开饼干包装袋搁置在空气中,隔一段时间后,发现袋内松脆的饼干变软了,这说明空气中含有 ()A .氮气B.氧气 C.二氧化碳 D. 水蒸气4.以下属于可重生能源的是()A. 煤B. 石油C.天然气D. 乙醇5.实验室现有一瓶靠近饱和的KNO 3溶液,奇奇同学欲将其变为饱和溶液,以下方法中你以为不行行的是()A. 高升溶液温度B. 降低溶液温度C.蒸发部分溶剂D. 加入 KNO 3固体6.2012 年,我国云南、贵州部分地域遭受连续干旱,造成土地没法耕作、人畜饮水困难。
政府调用空军飞机、增雨火箭等装备进行人工降雨,以下可用于人工降雨的物质是() A. 食盐 B.干冰 C.氨水 D.石墨7.以下实验操作中错误的选项是()8.变色眼镜既可改正视力,又可像墨镜同样遮挡刺目的阳光。
其反响原理之一是2AgBr光2Ag+Br2,该反响的基本反响种类是()A. 化合反响B. 分解反响C.置换反响D.复分解反响9.据报导,世界上每年因腐化而报废的金属设施和资料,相当于每年金属产量的20%~40% 。
以下举措中,不可以防备金属腐化的是()A. 在金属门窗表面刷一层油漆B. 实时用钢丝球擦去铝制水壶表面的污垢C. 在剪刀表面涂油D. 在自行车钢圈表面镀一层耐腐化的金属10.某些水果在成熟期特别需要磷肥和氮肥,以下切合条件的一种化肥是()A. CO(NH2)2B. KClC. NH 4 H2PO4D. KNO311.以下含碳化合物中,属于有机物的是()A.C 2H 5OHB.COC.CO 2D. CaCO 312.液态水受热变为水蒸气,在这一过程中发生了变化的是()A. 水分子的大小B. 水分子间间隔的大小C.氢分子的大小D. 氧原子的大小13.妈妈在厨房里使用了“加碘食盐”,这里的“碘”应理解为()A. 分子B.单质C.氧化物D. 元素14.2012 年 4 月,媒体曝光某非法公司用皮革废料熬制成工业明胶,再制成药用胶囊流向市场。
2010年湖南常德市初中毕业学业考试数学试题卷一.填题(本大题8个小题,每小题3分,满分24分) 1.2的倒数为________. 2.函数26y x =-中,自变量x 的取值范围是_________.3.如图1,已知直线AB ∥CD ,直线EF 与直线AB 、CD 分别交于点E 、F ,且有170,2∠=︒∠=则__________.4.分解因式:269___________.x x ++=5.已知一组数据为:8,9,7,7,8,7,则这组数据的众数为____.6.化简:123______.-=7.如图2,四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则可添加的条件为_____________________.(填一个即可)8.如图3,一个数表有7行7列,设ij a 表示第i 行第j 列上的数(其中i=1,2,3,...,j=1,2,3,...,).例如:第5行第3列上的数537a =. 则(1)()()23225253______.a a a a -+-= (2)此数表中的四个数,,,,np nk m p m k a a a a 满足()()______.npnk mk mp aa a a -+-=DABC图21 2 3 4 3 2 1 2 3 4 5 4 3 2 3 4 5 6 5 4 3 4 5 6 7 6 5 4 5 6 7 8 7 6 5 6 7 8 9 8 7 6 7 8 9 10 9 8 7图3图1BD ACE F1 2二.选择题(本大题8个小题,每小题3分,满分24分) 9.四边形的内角和为( )A 。
900B 。
180oC 。
360oD 。
720o10.某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为( ) A 。
72.5810⨯元 B 。
62.5810⨯元 C 。
70.25810⨯元 D 。
625.810⨯元11.已知⊙O 1的半径为5㎝,⊙O 2的半径为6㎝,两圆的圆心距O 1O 2=11㎝,则两圆的位置关系为( ) A 。
2012年长沙中考数学试卷解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.﹣3.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但<>=4.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()C D,即:.5.下列四边形中,两条对角线一定不相等的是()停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行 ...8.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E ,AD =6cm ,则OE 的长为( )CD9.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()=.10.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()二、填空题(本题共8个小题,每小题3分,共24分)11.已知函数关系式:y=,则自变量x的取值范围是x≥1.12.如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=105度.)16.在半径为1cm的圆中,圆心角为120°的扇形的弧长是cm.=故答案为:π17.如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=360度.18.如图,等腰梯形ABCD中,AD∥BC,AB=AD=2,∠B=60°,则BC的长为4.三、解答题:(本题共2个小题,每小题6分,共12分)19.计算:.×20.先化简,再求值:,其中a=﹣2,b=1.++,=2四.解答题:(本题共2个小题,每小题8分,共16分)21.某班数学科代表小华对本班上期期末考试数学成绩作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率统计表中,a=8;b=0.08;(2)请将频数分布直方图补充完整;(3)小华在班上任选一名同学,该同学成绩不低于80分的概率是多少?(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.×五、解答题(本题共2个小题,每小题9分,共18分)23.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个.(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个?(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.=,25.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5x(﹣x26.如图半径分别为m,n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴,y轴分别切于点M,点N,⊙O2与x轴,y轴分别切于点R,点H.(1)求两圆的圆心O1,O2所在直线的解析式;(2)求两圆的圆心O1,O2之间的距离d;(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2.试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.,解得==±﹣=5+=8=PQ=××(=,解得,,=)(。
湖南省常德市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列各数中无理数为( )A .2B .0C .12017D .﹣1 【答案】A .考点:无理数.2.若一个角为75°,则它的余角的度数为( )A .285°B .105°C .75°D .15° 【答案】D . 【解析】试题分析:它的余角=90°﹣75°=15°,故选D . 考点:余角和补角.3.一元二次方程23410x x -+=的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根 【答案】D . 【解析】试题分析:∵△=(﹣4)2﹣4×3×1=4>0,∴方程有两个不相等的实数根.故选D . 考点:根的判别式.4.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,22 【答案】B .考点:中位数;加权平均数.5.下列各式由左到右的变形中,属于分解因式的是( )A .a (m +n )=am +anB .2222()()a b c a b a b c --=-+- C .21055(21)x x x x -=- D .2166(4)(4)6x x x x x -++=+-+ 【答案】C . 【解析】试题分析:A .该变形为去括号,故A 不是因式分解;B .该等式右边没有化为几个整式的乘积形式,故B 不是因式分解; D .该等式右边没有化为几个整式的乘积形式,故D 不是因式分解; 故选C .考点:因式分解的意义.6.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B . 【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B . 考点:由三视图判断几何体.7.将抛物线22x y =向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( ) A.5)3(22--=x y B .5)3(22++=x y C .5)3(22+-=x y D .5)3(22-+=x y 【答案】A .考点:二次函数图象与几何变换;几何变换.8.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )302sin60° 22 ﹣3 ﹣2 ﹣sin45° 0 |﹣5| 6 23()﹣14()﹣1A .5B .6C .7D .8 【答案】C .【解析】试题分析:∵第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第四行为3,4,5,6,∴第三行为5,6,7,8,∴方阵中第三行三列的“数”是7,故选C .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.二、填空题(本小题共8小题,每小题3分,共24分)9.计算:328-- = . 【答案】0. 【解析】试题分析:原式=2﹣2=0.故答案为:0. 考点:实数的运算;推理填空题. 10.分式方程xx 412=+的解为 . 【答案】x =2.考点:解分式方程.11.据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为 .【答案】8.87×108. 【解析】试题分析:887000000=8.87×108.故答案为:8.87×108. 考点:科学记数法—表示较大的数.12.命题:“如果m 是整数,那么它是有理数”,则它的逆命题为: . 【答案】“如果m 是有理数,那么它是整数”.【解析】试题分析:命题:“如果m 是整数,那么它是有理数”的逆命题为“如果m 是有理数,那么它是整数”. 故答案为:“如果m 是有理数,那么它是整数”.考点:命题与定理.13.彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷 千克. 【答案】24000. 【解析】试题分析:根据题意得:200÷5×600=24000(千克).故答案为:24000. 考点:用样本估计总体.14.如图,已知Rt △ABE 中∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是 .【答案】0≤CD ≤5.考点:含30度角的直角三角形;直角三角形斜边上的中线.15.如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 .【答案】2244y x x =-+(0<x <2).考点:根据实际问题列二次函数关系式;正方形的性质.16.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.【答案】12n -.【解析】试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=12n-.故答案为:12n-.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.三、解答题(本题共2小题,每小题5分,共10分.)17.甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少? 【答案】23. 【解析】试题分析:用树状图表示出所有情况,再根据概率公式求解可得. 试题解析:用树状图分析如下:∴一共有6种情况,甲、乙两人恰好相邻有4种情况,∴甲、乙两人相邻的概率是46=23. 考点:列表法与树状图法.18.求不等式组⎪⎩⎪⎨⎧⋯-≤-⋯+≤-+②①)23(2352513)1(4x x x x 的整数解. 【答案】0,1,2.考点:一元一次不等式组的整数解.四、解答题:本大题共2小题,每小题6分,共12分.19.先化简,再求值:⎪⎪⎭⎫⎝⎛--+-+-⎪⎪⎭⎫ ⎝⎛---+-22231231334222x x x x x x x x x ,其中x =4. 【答案】x ﹣2,2.考点:分式的化简求值.20.在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园货运总量是多少万吨?(2)该物流园空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数?【答案】(1)240;(2)36;(3)18°.(2)空运货物的总量是240×15%=36吨,条形统计图如下:(3)陆运货物量对应的扇形圆心角的度数为12240×360°=18°. 考点:条形统计图;扇形统计图.五、解答题:本大题共2小题,每小题7分,共14分.21.如图,已知反比例函数xky =的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数xky =的图象上,当﹣3≤x ≤﹣1时,求函数值y 的取值范围.【答案】(1)k =4,m =1;(2)﹣4≤y ≤﹣43. 【解析】试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x =﹣3和﹣1时y 的值,再根据反比例函数的性质求解.考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征. 22.如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO . (1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.【答案】(1)证明见解析;(2)4.8. 【解析】试题分析:(1)由BE ∥CO ,推出∠OCB =∠CBE ,由OC =OB ,推出∠OCB =∠OBC ,可得∠CBE =∠CBO ; (2)在Rt △CDO 中,求出OD ,由OC ∥BE ,可得DC DOCE OB=,由此即可解决问题;试题解析:(1)证明:∵DE 是切线,∴OC ⊥DE ,∵BE ∥CO ,∴∠OCB =∠CBE ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠CBE =∠CBO ,∴BC 平分∠ABE .(2)在Rt △CDO 中,∵DC =8,OC =0A =6,∴OD =22CD OC +=10,∵OC ∥BE ,∴DC DO CE OB =,∴8106CE =,∴EC =4.8.考点:切线的性质.六、解答题:本大题共2小题,每小题8分,共16分.23.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)到甜甜和她妹妹在六一收到红包的年增长率是多少?(2)六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.试题解析:(1)设到甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:到甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150,所以484﹣150=334(元).答:甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.考点:一元一次方程的应用;一元二次方程的应用;增长率问题.24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.答:篮框D到地面的距离是3.05米.考点:解直角三角形的应用.七、解答题:每小题10分,共20分.25.如图,已知抛物线的对称轴是y轴,且点(2,2),(1,54)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作P A⊥x轴于A,PC⊥y轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N 的对称点,D是C点关于N的对称点.(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:△DPE∽△P AM3P的坐标.【答案】(1)2114y x =+, N (0,1);(2)证明见解析;(3)证明见解析,P (23,4)或(﹣23,4). 试题解析:(1)解:∵抛物线的对称轴是y 轴,∴可设抛物线解析式为2y ax c =+ ,∵点(2,2),(1,54)在抛物线上,∴4254a c a c +=⎧⎪⎨+=⎪⎩,解得:141a c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为2114y x =+,∴N 点坐标为(0,1); (2)证明:设P (t ,2114t +),则C (0,2114t +),P A =2114t +,∵M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点,且N (0,1),∴M (0,2),∵OC =2114t +,ON =1,∴DM =CN =2114t +﹣1=214t ,∴OD =2114t -,∴D (0,2114t -+),∴DM =2﹣(2114t -+)=2114t +=P A ,且PM ∥DM ,∴四边形PMDA 为平行四边形;(3)解:同(2)设P (t ,2114t +),则C (0,2114t +),P A =2114t +,PC =|t |,∵M (0,2),∴CM =2114t +﹣2=2114t -,在Rt △PMC 中,由勾股定理可得PM =22PC CM +2221(1)4t t +- =221(1)4t +=2114t +=P A ,且四边形PMDA 为平行四边形,∴四边形PMDA 为菱形,∴∠APM =∠ADM =2∠PDM ,∵PE ⊥y 轴,且抛物线对称轴为y 轴,∴DP =DE ,且∠PDE =2∠PDM ,∴∠PDE =∠APM ,且PD DE PA PM=,∴△DPE ∽△P AM ;∵OA =|t |,OM =2,∴AM =24t +,且PE =2PC =2|t |,当相似比为3时,则AM PE =3,即224tt + =3,解得t =23或t =﹣23,∴P 点坐标为(23,4)或(﹣23,4).考点:二次函数综合题;压轴题.26.如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.试题解析:(1)在Rt △ABE 和Rt △DBE 中,∵BA =BD ,BE =BE ,∴△ABE ≌△DBE ;(2)①过G 作GH ∥AD 交BC 于H ,∵AG =BG ,∴BH =DH ,∵BD =4DC ,设DC =1,BD =4,∴BH =DH =2,∵GH ∥AD ,∴21GM HD MC DC ==,∴GM =2MC ;考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.。
优质课程资源全新课标理念,学习方法报社年初中毕业学业考试试卷湖南省张家界市2012 数学分钟考生注意:本卷共三道大题,满分120分,时量120分)3分,共计24一、选择题(本大题共8个小题,每小题)1、-2012的相反数是(11 D. B. 2012 C.A.-2012 20122012)2、下面四个几何体中,左视图是四边形的几何体共有(4个D.C.3个2A.1个B.个)、下列不是必然事件的是( 3 B、三角形任意两边之和大于第三边、角平分线上的点到角两边的距离相等 A 、三角形内心到三边距离相等DC 、面积相等的两个三角形全等)b被直线c所截,下列说法正确的是(4、如图,直线a、A.当∠1=∠2时,一定有a∥b21=∠bB.当a∥时,一定有∠时,一定有∠1+∠2=90°C.当a∥b +∠2=180°时,一定有a∥bD.当∠1 元,右图是这个农户收5、某农户一年的总收入为50000粮食作物收入)入的扇形统计图,则该农户的经济作物收入为(40%B.12500元A.20000元经济作元 D.17500 元C.15500 物收入打工收入35%ba?a b25%,、实数、在轴上的位置如图所示,且62b?a?a)则化简的结果为(b2?bab2a???a2b D. B. C ..Ao b a)7、顺次连结矩形四边中点所得的四边形一定是(菱形矩形等腰梯形D. A.正方形 B. C.a可能是??ax1与函数y在同一坐标系中的图像?时,函数?a0y. 、当8()x全新课标理念,优质课程资源学习方法报社yyy y1 1x oo xxo xo -1-1C A DB二、填空题(本大题共8个小题,每小题3分,共计24分)2?8a?2.9、因式分解:DEF△DEF△ABC△△ABC的相似比为相似且面积比为4∶与25,则10、已知.与x.5、、10、11共有五个数,其平均数为7,则这组数据的众数是11、一组数据是4、万千瓦的设计发电能力。
2012年常德市初中学业水平考试指导丛书 · 数学参考答案 达标训练1.11. 2012,5 ,142.>,<,>,=3. (1)C ,(2)62.310-⨯4. 0.0030,25.A达标训练1.21.1,18,81 2.A 3. 234. 155.266.(1)5 (2)2 (3)C7. (1)3,(2)33,(3)333,(4)3333.22...2211...111-= 33…33;2n 个1 n 个2 n 个38.(1)158 (2)(6,5)9. 【答案】(1)111n n -+ (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n n n n +-+=)1(1+n n .(3)原式=1-12+12-31+31-41+…+20091-20101 =12009120102010-=.达标训练2.11.3m+5n2.-6x 63.D4.C5.180a6.64 x 77.)2(+n n 8.20149.(1) (a +1)2 (2)x(x-2)2 (3)x (x +1)(x -1)(4) (x-5)(x+5) (5) 2(1)(1)a a +- (6) 3m (2x -y +n )(2x —y -n )10. -360b 2 11. (1)化简原式=2a (2a -b ),将a =2,b =1代入得12. (2)x 3-1,-9; 12.(1)21,1,23 (2)4s m l = (3)∵a+b -c=m ,∴a+b=m+c . a 2+2ab+b 2=m 2+2mc+c 2, 2ab=m 2+2mc ,∴11(2)2424ab m m c s m l a b c m c +===+++.达标训练2.21.B2.C3. x ≠34.-25.A6. y x -7.C8.(1) 1+1124(2) -.9.(1) a (2) 2x , 当23=x 时,x 2=232⨯=3.达标训练3.11.A2.B3.C4. a <45.(1)-57,(2)-1.5,(3)2,(4)x 1=0 x 2=0.5,(5)x 1=-1.4 x 2=0.6, (6) 2535± 6. (1)x=5,y=1 (2)x=1,y=0.7.∵(1)方程有实数根 ∴⊿=22-4(k +1)≥0,解得 k ≤0.k 的取值范围是k ≤0(2)根据一元二次方程根与系数的关系,得x 1+x 2=-2, x 1x 2=k +1.x 1+x 2-x 1x 2=-2+ k +1由已知,得 -2+ k +1<-1 解得 k >-2又由(1)k ≤0 , ∴ -2<k ≤0 ∵ k 为整数 ∴k 的值为-1和0.达标训练3.21.x=-1,y=1;-2,5和1,0和-1和4(依次1,2,3行)2.解(1)设摩托车的速度是x 千米/时,则抢修车的速度是1.5x 千米/时. 由题意得45x -451.5x =38, 解得x =40. 经检验,x =40千米/时是原方程的解且符合题意.答:摩托车的速度为40千米/时. 解(2) 当甲、乙两人同时到达时,由题意得t +4560=4545, 解得t =14.∵ 乙不能比甲晚到,∴ t ≤14.∴ t 最大值是 14(时);或:答:乙最多只能比甲迟 14(时)出发.3.设灌溉用井打x 口,生活用井打y 口,由题意得⎩⎨⎧,=+,=+80y 2.0x 458y x 解这个方程组,得⎩⎨⎧,=,=40y 18x 答:灌溉用井打18口,生活用井打40口.4.⑴因为篮球、羽毛球拍和乒乓球拍的单价比为8︰3︰2,所以,可以依次设它们的单价分别为x 8,x 3,x 2元,于是,得130238=++x x x ,解得10=x . 所以,篮球、羽毛球拍和乒乓球拍的单价分别为80元、30元和20元.⑵设购买篮球的数量为y 个,则够买羽毛球拍的数量为y 4副,购买乒乓球拍的数量为)480(y y --副,根据题意,得⎩⎨⎧≤--≤+⨯+②15480①30004y)-y -20(804y 3080y y y由不等式①,得14≤y ,由不等式②,得13≥y ,于是,不等式组的解集为1413≤≤y ,因为y 取整数,所以y 只能取13或14.因此,一共有两个方案:方案一,当13=y 时,篮球购买13个,羽毛球拍购买52副,乒乓球拍购买15副; 方案二,当14=y 时,篮球购买14个,羽毛球拍购买56副,乒乓球拍购买10副. 5.(1) 2x 50-x(2)由题意得:(50-x )(30+2x )=2100 化简得:x 2-35x +300=0 解得:x 1=15, x 2=20∵该商场为了尽快减少库存,则x =15不合题意,舍去. ∴x =20答:每件商品降价20元,商场日盈利可达2100元.6.(1)依题意得216412y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解之得1163x y =⎧⎨=-⎩,2242x y =-⎧⎨=⎩. ∴(63)A -,,(42)B -,.(2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M 由(1)可知:OA =OB =∴AB =∴122OM AB OB =-=, 过B 作BE x ⊥轴,E 为垂足, 由BEO CMO △∽△, 得:OC OM OB OE =,∴54OC =, 同理:52OD =,∴550042C D ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,, 设CD 的解析式为y kx b =+(0k ≠),∴50452k b b ⎧=+⎪⎪⎨⎪-=⎪⎩ ∴252k b =⎧⎪⎨=-⎪⎩.∴AB 的垂直平分线的解析式为:522y x =-.O 达标训练4.11.12≤t≤202.D3. A4. B5.54001.1>x 6.-2≤x ≤1 7.D 8.解不等式(1),得2x <-,解不等式(2),得5x -≥,∴原不等式组的解集为52x -<-≤. ∴它的所有整数解为:543---、、. 9.(1)7x <- (2) x <-110. 由①得:x <8由②得x ≥6∴不等式的解集是:6≤x <8达标训练4.21. 解: 设购买甲种小鸡苗x 只,那么乙种小鸡苗为(200-x )只. (1)根据题意列方程,得4500)2000(32=-+x x , 解这个方程得:1500=x (只),500150020002000=-=-x (只),·即:购买甲种小鸡苗1500只,乙种小鸡苗500只.(2)根据题意得:4700)2000(32≤-+x x , 解得:1300≥x ,即:选购甲种小鸡苗至少为1300只. (3)设购买这批小鸡苗总费用为y 元,根据题意得:6000)2000(32+-=-+=x x x y , 又由题意得:%962000)2000%(99%94⨯≥-+x x , 解得:1200≤x ,因为购买这批小鸡苗的总费用y 随x 增大而减小,所以当x =1200时,总费用y 最小,乙种小鸡为:2000-1200=800(只),即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y 最小,最小为4800元.2.(1)设有x 人,则4515535x x+=-,∴x =175人.(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, 解这个不等式组,得111244y ≤≤.∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.3.解:(1) 400×5%=20.答:这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x 克,由题意得:x+4x+20+400×40% =400, ∴x=44,∴4x=176答:所含蛋白质的质量为176克.(3)解法一:设所含矿物质的质量为y 克,则所含碳水化合物的质量为(380-5y)克,∴4y+(380-5y)≤400×85%,∴y≥40,∴380-5y ≤180,∴所含碳水化合物质量的最大值为180克. 解法二:设所含矿物质的质量为而克,则n ≥(1-85%-5%)×400∴n≥40,∴4n≥160,∴400×85%-4n ≤180,∴所含碳水化合物质量的最大值为180克.4.(1)设每台电脑机箱的进价是x 元,液晶显示器的进价是y 元,得1087000254120x y x y +=⎧⎨+=⎩,解得60800x y =⎧⎨=⎩ 答:每台电脑机箱的进价是60元,液晶显示器的进价是800元 (2)设购进电脑机箱z 台,得60800(50)2224010160(50)4100x x x x +-≤⎧⎨+-≥⎩,解得24≤x ≤26 因x 是整数,所以x=24,25,26利润10x+160(50-x)=8000-150x ,可见x 越小利润就越大,故x=24时利润最大为4400元答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器。
2012年常德市初中毕业学业考试数学试题卷解析准考证号___________ 姓名______考生注意∶1.请考生在试题卷首填写好准考证号及姓名2.请将答案填写在答题卡上,填写在试题卷上无效3.本学科试题卷共4页,七道大题,满分120分,考试时量120分钟。
4.考生可带科学计算机参加考试一、填空题(本大题8个小题,每小题3分,满分24分﹚21.若向东走5米记作+5米,则向西走5米应记作_____米。
知识点考察:有理数的认识;正数与负数,具有相反意义的量。
分析:规定向东记为正,则向西记为负。
答案:-5点评:具有相反意义的一对量在日常生活中很常见,若一个记为“+”,则另一个 记为“-”。
22.我国南海海域的面积约为3500000㎞2,该面积用科学计数法应表示为_____㎞2。
知识点考察:科学计数法。
分析:掌握科学计数的方法。
)10(10≤<⨯a a n答案:3.5×106点评:掌握科学计数的定义与方法,科学计数分两种情况:①非常大的数,②很小的 数,要准确的确定a 和n 的值。
23.分解因式:=22-n m _____。
知识点考察:因式分解。
分析:平方差公式分解因式。
答案:()()n m n m -+点评:因式分解是把一个多项式分解为几个整式积的形式。
要注意运用“一提、二套、 三分组”的方法。
24.如图1,在Rt △ABC 中,∠C=90º,AD 是∠BAC 的平分线,DC=2,则D 到AB 边的 距离是_____。
知识点考察:①点到直线的距离,②角平分线性质定理,③垂直的定义。
分析:准确理解垂直的定义,判断AC 与BC 的位置关系, 然后自D 向AB 作垂线,并运用角平分线性质定理。
答案:2点评:自D 向AB 作垂线是做好该题关键的一步。
25.函数4-x y =中自变量x 的取值范围是_____。
知识点考察:①二次根式的定义,②一元一次不等式的解法。
分析: 根据二次根式被开方式是非负数列不等式,再解不等式。
答案:4≥x点评:准确理解二次根式的定义。
26.已知甲、乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差 S 2甲=1.3275,乙种棉花的纤维长度的方差S 2乙=1.8775,则甲、乙两种棉花质量较好的是_____。
知识点考察:方差的运用。
分析:在产品的比较过程中方差大的波动大,性能不稳定,产品质量差等等。
答案:甲点评:准确理解方差的含义,根据方差的值的比较作出相应的结论。
27.若梯形的上底长是10厘米,下底长是30厘米,则它的中位线长为_____厘米。
知识点考察:梯形的中位线定理。
分析:梯形的中位线的长度等于上下两底和的一半。
答案:20点评:梯形的中位线定理的简单运用。
28.规定用符号[m]表示一个实数m 的整数部分,例如: [32]=0,[3.14]=3.按此规定 [110+]的值为_____。
知识点考察:①数的结构,②算术平方根分析:先确定10的近似值,然后确定110+的整数部分。
答案:4点评:此题除考察知识点外,还考察了学生的阅读理解能力。
是课改后的一种很 常见的题型,解此类题要注意阅读理解和模仿。
二、选择题(本大题8个小题,每小题3分,满分24分﹚9、若a 与5互为倒数,则a= ( ) A.51 B. 5 C. -5 D. 51- 知识点考察:倒数的定义,互为倒数的两个数之间的关系。
分析:根据5a=1去求a 答案:A点评:概念、定义的简单运用。
10、图2所给的三视图表示的几何体是 ( )A. 长方体B. 圆柱C. 圆锥D. 圆台知识点考察:简单几何体的三视图。
分析:根据三视图准确判断出几何体。
答案:B点评:在平时的学习中要对圆柱、圆锥、圆台、正三棱锥、正三棱柱、球等几何体的三视图要加以练习和识别。
11、下列运算中,结果正确的是 ( )A.1243a a a =∙B.5210a a a =÷C.532a a a =+ D.a a a 3-4=知识点考察:①同底数幂的乘法、除法,②同类项的定义,③整式的加减。
分析:在运用公式的过程中要注意公式中字母的取值范围,答案B 中的a ≠0。
答案:D点评:对每一个选择支在法则和定义的框架中都要认真推敲,否则就会落入陷阱。
12、实数a ,b 在数轴上的位置如图3所示,下列各式正确的是 ( ) A.0>+b a B.0>ab C.0<+b a D.0->b a知识点考察:①数轴,②绝对值,③有理数的运算,④有理数的大小比较。
分析:通过观察a 离开原点的单位长度小于b 离开原点的单位长度。
答案:A点评:此题还考察了学生的观察能力,根据a 、b 所在的位置去判断a 、b 的正负,然后根据它们离开原点的单位长度进行比较,并按指定的运算去估计值的正负。
13、若两圆的半径分别为2和4,且圆心距为7,则两圆的位置关系为 ( ) A. 外切 B. 内切 C. 外离 D. 相交 知识点考察:圆与圆的位置关系。
分析:通过数量的比较去判断两圆的位置关系(21r r d +>)答案:C点评:圆与圆的位置关系的几种情况要非常清楚,此题是通过数量的比较去判断两圆 的位置关系。
14、对于函数xy 6=,下列说法错误..的是 ( ) A. 它的图像分布在一、三象限 B. 它的图像既是轴对称图形又是中心对称图形C. 当x>0时,y 的值随x 的增大而增大D. 当x<0时,y 的值随x 的增大而减小 知识点考察:反比例函数的性质。
分析:画出xy 6=的图像,然后观察y 随x 的变化。
答案:C点评:①要看清题目的要求(下列说法错误..的是)②要熟悉反比例函数的性质。
③要建立型数结合思想。
15、若一元二次方程022=++m x x 有实数解,则m 的取值范围是 ( ) A. 1-≤m B. 1≤m C. 4≤m D.21≤m 知识点考察:①一元二次方程判别式的运用。
②一元一次不等式的解法。
分析:一元二次方程022=++m x x 有实数解,则△≥0,然后再解不等式。
答案:B点评:此题是一元二次方程判别式的逆用(即根据方程根的情况去列不等式解决方程 中字母的取值范围)。
16、若图4-1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图4-2,再将图4-2中的 每一段作类似变形,得到图4-3,按上述 方法继续下去得到图4-4,则图4-4中的 折线的总长度为 ( )A. 2B.2716C. 916D. 2764知识点考察:①等边三角形的性质,②幂的运算性质,③轴对称图形。
能力考察:①观察能力, ②逻辑思维能力,③运算能力。
分析:①通过对图1-4的观察,可发现图1-4都是轴对称图形。
②从图形2可知每一 条短线段的长为31,③从图形3可知每一条短线段的长为91,从而可以得出 每一条短线段的长与图形序号之间的关系为1-31n ⎪⎭⎫⎝⎛,④再看线段的条数,根据轴对称只看左边,图形2是两条,图形3是8条,图形4是32条,可以得出 第n 个图形线段的条数与序号n 的关系为2-22n ,所以综合起来折线的总长度由1-31n ⎪⎭⎫ ⎝⎛×2-22n ,当n=4时,折线的总长度为2764。
答案:D点评:此题是寻找规律之类的题型,在中考中很常见,虽然有一定的难度,但只要认 真观察、仔细思考,就会发现规律,达到解题的目的。
三、(本大题2个小题,每小题5分,满分10分)17、计算:知识点考察:①绝对值,②零次幂、负整指数幂,③特殊角的三角函数值。
能力考察: 特殊运算的运算能力,实数的运算法则。
分析:根据相应的定义和公式计算每一个指定的运算,再按实数的运算法则进行计算。
解:原式=1+1-2+1 =1点评:初中数学的一些概念要熟练掌握,运算要准确。
如:221121-1==⎪⎭⎫⎝⎛ 18、解方程组:⎩⎨⎧==+1-25y x y x知识点考察:二元一次方程组的解法。
能力考察:①观察能力,②运算能力。
分析:通过观察,直接采用加减消元的方法消去y 解:①+②得:3x=6………………③① ② 01-045tan 21--31-++)()(π∴ x=2 将x=2代人①∴ y=3 ∴方程组的解为⎩⎨⎧==32y x点评:解方程的思想就是消元,二元一次方程组消元的方法有“代人消元”、“加减 消元”。
四、(本大题2个小题,每小题6分,满分12分)19.化简:知识点考察:①分式的通分,②分式的约分,③除法变乘法的法则,④同类项的合并,⑤平方差公式。
能力考察:分式、整式的运算能力。
分析:先对两个括号里的分式进行通分运算,再把除法变乘法进行约分运算。
解:原式=1-1-12-21--2223x x x x x x x x +++÷+=222321-1-xx x x ∙ =2x 点评:注意运算顺序,注意运算的准确,只要每一步都到位了,此题也就完成了。
20、在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同。
甲、乙、两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再甲乙同学从中随机摸出一球,记下球号。
将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数。
若该两位数能被4整除,则甲胜,否则乙胜.问:这个游戏公平吗?请说明理由。
知识点考察:①列举法求概率,②概率的比较,③数的 整除性质。
能力考察:①逻辑思维能力,②绘图能力。
分析:先画出树状分析图求概率,再确定每一个 两位数, 然后判断能否被4整除。
解:树状分析图如右图:因为甲的概率≠乙的概率,所以游戏不公平。
点评:判断游戏是否公平,关键是对概率进行比较。
五、(本大题2个小题,每小题7分,满分14分)21、如图5,一天,我国一渔政船航行到A 处时,发现正东方向的我领海区域B 处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60º方向航行,1.5小时后,在我领海区域的C 处截获可疑渔船。
问我渔政船的航行路程是多少海里?(结果保留根号)知识点考察:①解直角三角形,②点到直线的距离,③两角互 余的关系④方向角,⑤特殊角的三角函数值。
⎪⎭⎫ ⎝⎛++÷⎪⎭⎫ ⎝⎛+11-1-121-2x x x xx能力考察:①作垂线,②逻辑思维能力,③运算能力。
分析:自C 点作AB 的垂线,垂足为D ,构建Rt △ACD , Rt △BCD ,再解这两个Rt △。
解:自C 点作AB 的垂线,垂足为D ,∵南北方 向⊥AB ,∴∠CAD=30º,∠CBD=45º 在等腰 Rt △BCD 中, × 1.5=18,∴BC=12CD=18sin45º=29,在Rt △ACD 中,CD=AC ×sin30º,∴AC=218(海里)答:我渔政船的航行路程是218海里。