气相色谱基本知识
- 格式:ppt
- 大小:2.50 MB
- 文档页数:51
气相色谱法知识汇总1.气相色谱法(GC):是以气体为流动相的色谱分析法。
2.气相色谱要求样品:气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。
大约有15%~20%的有机物能用气相色谱法进行分析。
3.气相色谱仪的组成:气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。
4.气路系统:包括气源、净化器和载气流速控制;常用的载气有:氢气、氮气、氦气。
5.进样系统:包括:进样装置和气化室,气体进样器(六通阀):试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;液体进样器:不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。
6.进样方式:分流进样:样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;不分流进样:样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。
7.分离系统:色谱柱:填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。
8.温控系统的作用:温度是色谱分离条件的重要选择参数;气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;气化室:保证液体试样瞬间气化;检测器:保证被分离后的组分通过时不在此冷凝;色谱柱恒温箱:准确控制分离需要的温度。
9.检测系统:作用:将色谱分离后的各组分的量转变成可测量的电信号;指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;检测器类型:浓度型检测器:热导检测器、电子捕获检测器;质量型检测器:氢火焰离子化检测器、火焰光度检测器。
10.热导检测器的主要特点:结构简单,稳定性好;对无机物和有机物都有响应,不破坏样品;灵敏度不高。
11.氢火焰离子化检测器的特点:优点:(1)典型的质量型检测器;(2)通用型检测器(测含C有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;缺点:(1)对载气要求高;(2)检测时要破坏样品,无法回收样品;(3)不能检测永久性气体、水及四氯化碳等。
气相色谱基本理论知识气相色谱理论可分为热力学和动力学理论两方面。
热力学理论是从相平衡观点来研究分离过程,以塔片理论为代表。
动力学理论是从动力学观点来研究各种动力学因素对柱效的影响,以Van Deemter 方程式为代表。
在叙述这两个理论前先介绍有关基本概念。
一、基本概念l.色谱峰(流出峰) 由电信号强度对时间作图所绘制的曲线称为色谱流出曲线。
流出曲线(图2-2)上的突起部分称为色谱峰。
正常色谱峰为对称形正态分布曲线,曲线有最高点,以此点的横坐标为中心,曲线对称地向两侧快速、单调下降。
不正常色谱峰有两种:拖尾峰及前延峰。
前沿陡峭,后沿拖尾的不对称色谱峰称为拖尾峰(tailing peak),前沿平缓,后沿陡峭的不对称色峰与不正常色谱峰可用对称因子f s(symmetryfactor)或叫拖尾因子来衡量(图20-3)。
对称因子在0.95~1.05之间为对称峰,小于0.95为前延峰,大于1.05为拖尾峰。
f s = W0.05h/2A = (A+B)/2A (2.1)一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示、用于定性)及峰宽(用于衡量柱效)说明。
2.基线在操作条件下,没有组分流出时的流出曲线称为基线。
稳定的基线应是一条平行于横轴的直线。
基线反映仪器(主要是检测器)的噪音随时间的变化。
3.保留值(滞留值) 是色谱定性参数。
(1)保留时间(t R):从进样开始到某个组分的色谱峰顶点的时间间隔称为该组分的保留时间(retention time),即从进样到柱后某组分出现浓度极大时的时间间隔。
图2-2中t R1及t R2分别为组分l及组分2的保留时间。
⽓相⾊谱基础知识⽓相⾊谱基本知识1、什么是⽓相⾊谱法以⽓体为流动相(称载⽓)的⾊谱分析法称⽓相⾊谱法(GC )。
2.、⽓相⾊谱是基于时间的差别进⾏分离在加温的状态下使样品瞬间⽓化,由载⽓带⼊⾊谱柱,由于各组分在固定相与流动相(载⽓)间相对吸附能⼒/保留性能不同⽽在两相间进⾏分配,在⾊谱柱中以不同速度移动,经⼀段时间后得到分离,再依次被载⽓带⼊检测器,将各组分的浓度或质量转换成电信号变化并记录成⾊谱图,每⼀个峰代表最初混合物中不同的组分。
峰出现的时间称为保留时间(t R ),可以⽤来对每个组分进⾏定性,根据峰的⼤⼩(峰⾯积)对每个组分进⾏定量。
涉及的⼏个术语:固定相(stationary phase ):在⾊谱分离中固定不动、对样品产⽣保留的⼀相;流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另⼀相;⾊谱图:若⼲物质的流出曲线,即在不同时间的浓度或响应⼤⼩;保留时间(retention time ,t R ):样品注⼊到⾊谱峰最⼤值出现的时间;3、⽓相⾊谱法特点3.⒈选择性⾼:能分离同位素、同分异构体等物理、化学性质⼗分相近的物质。
3.⒉分离效能⾼:⼀次可进⾏含有150多个组分的烃类混合物的分离分析。
3.⒊灵敏度⾼:⽓相⾊谱可检测1110-~1310-g的物质。
3.⒋分析速度快:⼀般⼏分钟或⼏⼗分钟便可完成⼀个分析周期。
3.⒌应⽤范围⼴:450℃以下有不低于27~330Pa 的蒸⽓压,热稳定性好的物质。
3.⒍缺点:不适应于⼤部分沸点⾼的和热不稳定的化合物;需要有已知标准物作对照。
4、⽓相⾊谱系统主要包括五⼤系统:载⽓系统、进样系统、分离系统、检测系统和记录系统。
基本流程如下脱⽔管限流器4.1、载⽓系统:可控⽽纯净的载⽓源。
载⽓从起源钢瓶/⽓体发⽣器出来后依次经过减压阀、净化器、⽓化室、⾊谱柱、检测器,然后放空。
载⽓必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。
气相色谱基本知识1、什么是气相色谱法以气体为流动相(称载气)的色谱分析法称气相色谱法(GC )。
2.、气相色谱是基于时间的差别进行分离在加温的状态下使样品瞬间气化,由载气带入色谱柱,由于各组分在固定相与流动相(载气)间相对吸附能力/保留性能不同而在两相间进行分配,在色谱柱中以不同速度移动,经一段时间后得到分离,再依次被载气带入检测器,将各组分的浓度或质量转换成电信号变化并记录成色谱图,每一个峰代表最初混合物中不同的组分。
峰出现的时间称为保留时间(t R ),可以用来对每个组分进行定性,根据峰的大小(峰面积)对每个组分进行定量。
涉及的几个术语:固定相(stationary phase ): 在色谱分离中固定不动、对样品产生保留的一相; 流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另一相; 色谱图:若干物质的流出曲线,即在不同时间的浓度或响应大小;保留时间 (retention time ,t R ):样品注入到色谱峰最大值出现的时间;3、气相色谱法特点3.⒈选择性高:能分离同位素、同分异构体等物理、化学性质十分相近的物质。
3.⒉分离效能高:一次可进行含有150多个组分的烃类混合物的分离分析。
3.⒊灵敏度高:气相色谱可检测1110-~1310-g的物质。
3.⒋分析速度快:一般几分钟或几十分钟便可完成一个分析周期。
3.⒌应用范围广:450℃以下有不低于27~330Pa 的蒸气压,热稳定性好的物质。
3.⒍缺点:不适应于大部分沸点高的和热不稳定的化合物;需要有已知标准物作对照。
4、气相色谱系统主要包括五大系统:载气系统、进样系统、分离系统、检测系统和记录系统。
基本流程如下脱水管限流器4.1、载气系统:可控而纯净的载气源。
载气从起源钢瓶/气体发生器出来后依次经过减压阀、净化器、气化室、色谱柱、检测器,然后放空。
载气必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。
气相色谱(GC)的定义和应用一、什么是气相色谱(GC)气相色谱(GasChromatography,缩写为GC)是一种广泛应用于分离和分析化学品、药物、环境样品等的分析技术。
在气相色谱中,样品溶解在气态的流动相中,通过静态相中的柱子进行分离。
柱子通常由特殊填充物或涂层剂构成,能以不同速度吸附或吸附少量样品组分。
然后,流动相继续通过柱子,使不同组分逐渐分离,并在检测器中被检测和计量。
气相色谱技术通常用于分离非极性或低极性化合物,其分子量通常小于1000。
二、气相质谱联用技术(GC-MS)的原理和应用气相质谱联用技术(Gas Chromatography-Mass Spectrometry,缩写为GC-MS)是将气相色谱和质谱联用的一种分析技术。
GC-MS结合了气相色谱的分离能力和质谱的灵敏度,能够实现对复杂样品的高效分析和定性鉴定。
在GC-MS中,样品首先通过气相色谱进行分离,然后进入质谱进行检测和分析。
气相质谱联用技术具有广泛的应用领域,包括食品安全检测、环境分析、药物代谢研究等。
它可以用来定性和定量分析样品中的有机化合物,检测并鉴定有毒物质或污染物,以及研究化合物的分解、代谢和转化过程。
GC-MS还可以用于质谱图谱库的建立和参考,方便样品的鉴定和比对。
三、什么是液相色谱(LC)液相色谱(LiquidChromatography,缩写为LC)是一种基于液相流动相的分离技术。
在液相色谱中,样品溶解在液体流动相中,通过固体填充柱或涂层进行分离。
分离过程主要通过样品在流动相与固定相之间的选择性分配实现。
液相色谱通常用于分离具有极性或中极性的化合物,其分子量范围比气相色谱要广。
液相色谱具有分离效率高、灵敏度高、选择性好等优点,广泛应用于生化分析、药物分析、环境监测等领域。
根据固定相的不同,液相色谱可分为反相色谱、离子交换色谱、凝胶过滤色谱等不同类型,在不同应用中发挥着关键的作用。
四、液相质谱联用技术(LC-MS)的原理和应用液相质谱联用技术(Liquid Chromatography-Mass Spectrometry,缩写为LC-MS)是将液相色谱和质谱联用的一种分析技术。
气相色谱期末总结一、气相色谱的原理气相色谱的原理是基于化学物质在固定相(柱填料)和流动相(惰性气体)共同作用下的分离行为。
样品经过气相进样器进入GC柱,被固定相吸附或溶解,然后由流动相推动分离,并逐个通过检测器,最终由信号采集系统得到峰形图。
气相色谱的分离机理主要包括吸附、分配和离子交换等。
在吸附色谱中,样品成分在固定相表面吸附,并根据亲和力大小进行分离。
在分配色谱中,样品成分在流动相和固定相之间按照平衡分配系数的大小进行分离。
在离子交换色谱中,固定相上的离子交换基团与样品成分的带电部分发生离子交换反应,实现分离。
二、气相色谱的仪器气相色谱主要由进样系统、柱箱、检测器和信号采集系统等组成。
进样系统包括进样口、气化室、气道、进样针和进样阀等。
进样量的大小和均匀性对分析结果有很大影响,因此进样系统的设计和使用非常重要。
柱箱是气相色谱的核心部分,用于放置和温控柱子。
根据需要,柱子可以是毛细管柱、开管柱或厚膜柱等。
检测器是气相色谱的核心部分,用于将化学物质转化为可测量的信号。
常见的检测器有火焰离子化检测器(FID)、热导率检测器(TCD)、质谱检测器(MS)等。
信号采集系统用于接收检测器输出的信号,并将信号转换为可读的峰形图或数据。
三、气相色谱的方法气相色谱的方法主要包括站相法和程序升温法。
站相法是最早也是最简单的气相色谱方法,即柱子温度恒定,样品在柱子中各部分达到平衡后即得到分离结果。
该方法适用于样品成分相对简单的情况。
程序升温法则是针对样品成分复杂的情况设计的。
柱子温度会按照一定的升温速度进行升温,使样品成分在不同温度下分离出来。
该方法能够得到更好的分离效果,并且可以通过分析峰的保留时间确定样品成分。
四、气相色谱的应用气相色谱广泛应用于各个领域的化学分析,如环境检测、食品安全、制药和石油化工等。
在环境检测中,气相色谱常用于挥发性有机物(VOCs)的分析,如甲醛、苯系物、多氯联苯等。
通过气相色谱分析,可以对环境中有害物质的浓度进行定量分析,评估环境质量。
frit 气相色谱-回复气相色谱(Gas Chromatography,简称GC)是一种重要的色谱技术,在化学分析、环境检测、食品安全等领域起着重要的作用。
本文将从基本原理、仪器系统、操作步骤、应用领域等方面一步一步地介绍气相色谱的相关知识。
一、基本原理气相色谱是基于化学物质在气态载体流动相中的分离与检测。
其基本原理是利用分离柱对样品中化合物进行分离,然后通过检测器对分离出的化合物进行定性和定量分析。
这种分离是通过样品溶液在进样器注入,由主流气体将其推进,样品蒸发,形成气相,然后通过柱子的填充物(固定相)进行分离。
二、仪器系统气相色谱仪由进样系统、柱温控制系统、分离柱、检测器和数据处理系统组成。
其中,进样系统用于样品的自动加入和蒸发,柱温控制系统控制柱子温度的稳定性,分离柱是决定分离效果的重要部分,检测器用于检测分离出的化合物,数据处理系统用于对所得数据进行分析和处理。
三、操作步骤1. 样品的制备:根据需要的分析物质,选择合适的溶剂将样品溶解或提取。
2. 进样:将样品溶液以适量注入进样器中,其中进样量要根据样品的浓度和分析要求进行调整。
3. 分离:样品进入进样器后,由气流带动样品蒸发,进而进入柱子进行分离。
柱子的填充物和柱温是影响分离效果的两个核心参数。
4. 检测:通过检测器对分离出的化合物进行检测,一般常用的检测器有FID(火焰离子化检测器)、TCD(热导检测器)、ECD(电子捕获检测器)等。
5. 数据处理:通过数据处理系统对所得数据进行分析和处理,得出最终的结果。
四、应用领域气相色谱广泛应用于化学分析、环境检测、食品安全等领域。
在化学分析中,通过气相色谱可以对样品中的化合物进行分离和鉴定,从而确定其组成及含量。
在环境检测中,气相色谱可以用于监测大气中的有机物、土壤中的残留物等。
在食品安全方面,气相色谱可以用于检测食品中的农药残留、添加剂等有害物质。
总结:气相色谱作为一种重要的色谱技术,在化学分析、环境检测、食品安全等领域起着重要的作用。
气相色谱知识大全(整理)色谱分析法基本原理色谱法,又称层析法。
根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。
吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。
常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。
分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。
其中一相为液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相。
常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。
离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。
常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。
排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离。
常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。
色谱法的分离方法,有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。
色谱所用溶剂应与试样不起化学反应,并应用纯度较高的溶剂。
色谱时的温度,除气相色谱法或另有规定外,系指在室温下操作。
分离后各成分的检出,应采用各单体中规定的方法。
通常用柱色谱、纸色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm的紫外灯下检视。
纸色谱或薄层色谱也可喷显色剂使之显色。
薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。
用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板上测出。
柱色谱、气相色谱和高效液相色谱可用接于色谱柱出口处的各种检测器检测。
柱色谱还可分部收集流出液后用适宜方法测定。
柱色谱法所用色谱管为内径均匀、下端缩口的硬质玻璃管,下端用棉花或玻璃纤维塞住,管内装有吸附剂。