2018年春北师版数学九年级下册3.1《圆》
- 格式:pptx
- 大小:1.50 MB
- 文档页数:16
圆【教学内容】3.1圆【教学目标】知识与技能学会用集合的观点描述圆,掌握圆的有关定义,在探索点与圆位置关系的过程,理解点与圆的位置关系过程与方法经历探索圆的有关定义,了解各个定义之间的区别。
探索点和圆的位置三种关系,并学会如何判断点和圆位置关系。
情感、态度与价值观引导学生对图形的观察,激发学生的好奇心和求知欲,使学生对圆的知识产生浓厚学习兴趣。
【教学重难点】重点:圆及其有关概念,点与圆的位置关系.难点:对用集合的观点描述圆的理解【导学过程】【知识回顾】什么叫做圆?一条线段OA绕它的一个端点O旋转一周,另一端点A旋转而成的图形是否是一个圆?【情景导入】圆是我们生活中很常见的图形,圆的很多知识生动有趣,你有信心学好吗?,【新知探究】探究一、圆可以看成是到定点的距离等于定长的所有点的组成的图形,其中定点是圆心,定长是半径。
以O为圆心的记作⊙O,读作“圆O”。
探究二、圆的有关定义:1、叫做弦,叫做直径。
2、叫做弧,叫做半圆。
3、叫做等圆,叫等弧。
长度相等的弧是等弧吗?为什么?探究三、⊙O是一个半径为r的圆,在圆内、圆外、圆上分别取一点,点到圆心的距离为d,请你用r 与d的大小关系刻画它们的位置关系。
点与圆的位置关系有三种:点在圆外,点在圆上,点在圆内。
【知识梳理】本节课我们学习与圆有关的定义,理解点与圆的三种位置关系及判断方法。
【随堂练习】1、如图,Rt△ABC的两条直角边BC=3,AC=4,斜边AB上的高为CD,若以C为圆心,分别以r1=2cm,r2=2.4cm,r3=3cm为半径作圆,试判断D点与这三个圆的位置关系.2、如何在操场上画出一个很大的圆?说一说你的方法.3、已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别为OA、OB的中点.求证:MC=NC.4、设⊙O的半径为2,点P到圆心的距离OP=m,且m使关于x的方程2x2-2x+m-1=0有实数根,试确定点P的位置.5、城市规划建设中,某超市需要拆迁.爆破时,导火索的燃烧速度与每秒0.9厘米,点导火索的人需要跑到离爆破点120米以外的安全区域,这个导火索的长度为18厘米,那么点导火索的人每秒跑6.5米是否安全?6、由于过渡采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向移动(如图3-1-5),距沙尘暴中心300km的范围内将受到影响,问A市是否会受到这次沙尘暴的影响?第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
北师大版数学九年级下册3.1《圆》教学设计一. 教材分析北师大版数学九年级下册3.1《圆》是本册教材中的重要内容,主要介绍了圆的定义、圆的性质、圆的方程等基础知识。
本节课的内容是学生对圆的基本认识,为后续学习圆的运算、圆与圆的位置关系等知识打下基础。
教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征,从而培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对图形的认识有了初步的了解。
但是,对于圆的概念和性质,部分学生可能还比较模糊。
因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行针对性的教学。
同时,由于圆的知识在实际生活中的应用非常广泛,学生对圆的兴趣和认知程度也会影响他们的学习效果。
三. 教学目标1.知识与技能:让学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:圆的定义、性质和方程。
2.难点:圆的性质的理解和应用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征。
2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。
六. 教学准备1.教具:圆的模型、图片、PPT等。
2.学具:学生分组准备,每组一份圆的模型、图纸等。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如硬币、轮子等,引导学生关注圆的特征。
然后提出问题:“你们对圆有什么认识?圆有哪些性质?”让学生回忆和思考圆的基本知识。
2.呈现(10分钟)教师通过PPT展示圆的定义和性质,引导学生观察和理解圆的特征。
北师大版九年级数学下册第三章《圆》3.1同步练习题(含答案)一、选择题1、已知⊙O 与点P 在同一平面内,若⊙O 的半径为5,线段OP 的长为4,则点P( ) A .在⊙O 上 B .在⊙O 内C .在⊙O 外D .在⊙O 上或在⊙O 内 2、下列说法错误的是( ) A .圆有无数条直径B .连接圆上任意两点之间的线段叫弦C .过圆心的线段是直径D .能够重合的圆叫做等圆 3、下列说法正确的是( ) A .相等的圆心角所对的弧相等B .在同圆中,等弧所对的圆心角相等C .在同圆中,相等的弦所对的弧相等D .相等的弦所对的圆心角相等4、如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是( ) A .32°B .60°C .68°D .64°5、如图,在⊙O 中,AC ︵=2AB ︵,则以下数量关系正确的是( ) A .AB =ACB .AC =2ABC .AC <2ABD .AC >2AB6、如图,已知AD ︵=BC ︵,则AB 与CD 的关系为( ) A .AB =CDB .AB>CDC .AB<CD D .不能确定7、如图,在矩形ABCD 中,AB =8,BC =35,点P 在边AB 上,且BP =3AP.如果⊙P 是以点P 为圆心、PD 为半径的圆,那么下列判断正确的是( )A .点B ,C 均在⊙P 外B .点B 在⊙P 外,点C 在⊙P 内C .点B 在⊙P 内,点C 在⊙P 外D .点B ,C 均在⊙P 内二、填空题8、如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆.若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是____;9、已知点C 在线段AB 上,且0<AC <12AB.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是____.10、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE.若弦BE =3,则弦CE =____.11、如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是____12、如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于点B ,且AB =OC ,则∠A 的度数是____13、如图,AB 为⊙O 的直径,△PAB 的边PA ,PB 与⊙O 的交点分别为C ,D.若AC ︵=CD ︵=DB ︵,则∠P 的大小为____三、解答题14、如图,Rt △ABC 的两条直角边BC =3 cm ,AC =4 cm ,斜边AB 上的高为CD.若以点C 为圆心,分别以r 1=2 cm ,r 2=2.4 cm ,r 3=3 cm 为半径作圆,试判断点D 与这三个圆的位置关系.15、如图,小虎牵着小狗上街,小虎的手臂与绳共2.5 m(手臂与拉直的绳子在一条直线上),手臂肩部距地面 1.5 m .当小虎站立不动时,小狗在平整的地面上活动的最大区域是多少?并画出平面图.16、如图,以▱ABCD 的顶点A 为圆心,AB 为半径作⊙A ,交AD ,BC 于点E ,F ,延长BA 交⊙A 于点G.求证:GE ︵=EF ︵.17、如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为15千米/时,受影响区域的半径为100千米,B 市位于点P 的北偏东75°方向上,距离点P160千米处.(1)说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.18、如图,已知AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点,CM ⊥AB ,DN ⊥AB.求证:AC ︵=BD ︵.19、如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E ,求证:AD =BE.参考答案一、选择题1、已知⊙O 与点P 在同一平面内,若⊙O 的半径为5,线段OP 的长为4,则点P(B) A .在⊙O 上 B .在⊙O 内C .在⊙O 外D .在⊙O 上或在⊙O 内 2、下列说法错误的是(C)A .圆有无数条直径B .连接圆上任意两点之间的线段叫弦C .过圆心的线段是直径D .能够重合的圆叫做等圆 3、下列说法正确的是(B)A .相等的圆心角所对的弧相等B .在同圆中,等弧所对的圆心角相等C .在同圆中,相等的弦所对的弧相等D .相等的弦所对的圆心角相等4、如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是(D) A .32°B .60°C .68°D .64°5、如图,在⊙O 中,AC ︵=2AB ︵,则以下数量关系正确的是(C) A .AB =ACB .AC =2ABC .AC <2ABD .AC >2AB6、如图,已知AD ︵=BC ︵,则AB 与CD 的关系为(A) A .AB =CDB .AB>CDC .AB<CD D .不能确定7、如图,在矩形ABCD 中,AB =8,BC =35,点P 在边AB 上,且BP =3AP.如果⊙P 是以点P 为圆心、PD 为半径的圆,那么下列判断正确的是(C)A .点B ,C 均在⊙P 外B .点B 在⊙P 外,点C 在⊙P 内 C .点B 在⊙P 内,点C 在⊙P 外D .点B ,C 均在⊙P 内二、填空题8、如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆.若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是3<r <5;9、已知点C 在线段AB 上,且0<AC <12AB.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是点B 在⊙C 外.10、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE.若弦BE =3,则弦CE =3.11、如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是120°.12、如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于点B ,且AB =OC ,则∠A 的度数是28°.13、如图,AB 为⊙O 的直径,△PAB 的边PA ,PB 与⊙O 的交点分别为C ,D.若AC ︵=CD ︵=DB ︵,则∠P 的大小为60°.三、解答题14、如图,Rt △ABC 的两条直角边BC =3 cm ,AC =4 cm ,斜边AB 上的高为CD.若以点C 为圆心,分别以r 1=2 cm ,r 2=2.4 cm ,r 3=3 cm 为半径作圆,试判断点D 与这三个圆的位置关系.解:在Rt △ABC 中,根据勾股定理,得AB =5 cm ,则CD =AC ·BCAB=2.4 cm.①当r 1=2 cm 时,2.4>2,点D 在圆外; ②当r 2=2.4 cm 时,点D 在圆上; ③当r 3=3 cm 时,2.4<3,点D 在圆内15、如图,小虎牵着小狗上街,小虎的手臂与绳共2.5 m(手臂与拉直的绳子在一条直线上),手臂肩部距地面 1.5 m .当小虎站立不动时,小狗在平整的地面上活动的最大区域是多少?并画出平面图.解:小狗在地面上环绕的圆的半径为r = 2.52-1.52=2.0(m),S =πr 2=4π(m 2).故小狗在平整的地面上活动的最大区域是以2.0 m 为半径的圆,其面积为4π m 2.如图:16、如图,以▱ABCD 的顶点A 为圆心,AB 为半径作⊙A ,交AD ,BC 于点E ,F ,延长BA交⊙A 于点G.求证:GE ︵=EF ︵.证明:连接AF. ∵AB =AF ,∴∠ABF =∠AFB.∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAF =∠AFB ,∠GAE =∠ABF. ∴∠GAE =∠EAF.∴GE ︵=EF ︵.17、如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为15千米/时,受影响区域的半径为100千米,B 市位于点P 的北偏东75°方向上,距离点P160千米处.(1)说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.解:(1)作BH ⊥PQ 于点H , 在Rt △BHP 中,由条件知,PB =160千米,∠BPQ =75°-45°=30°, ∴BH =160sin30°=80千米<100千米. ∴本次台风会影响B 市. (2)若台风中心移动到P 1时,台风开始影响B 市,台风中心移动到P 2时,台风影响结束, 由(1)得BH =80千米,由条件得BP 1=BP 2=100千米, ∴P 1P 2=21002-802=120(千米).∴台风影响B 市的时间t =12015=8(小时).答:台风影响B 市的时间为8小时.18、如图,已知AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点,CM ⊥AB ,DN ⊥AB.求证:AC ︵=BD ︵.证明:连接OC ,OD ,∵AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点,∴OM =ON. ∵CM ⊥AB ,DN ⊥AB , ∴∠OMC =∠OND =90°.在Rt △OMC 和Rt △OND 中,⎩⎪⎨⎪⎧OM =ON ,OC =OD ,∴Rt △OMC ≌Rt △OND(HL). ∴∠COM =∠DON.∴AC ︵=BD ︵.19、如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E ,求证:AD =BE.证明:连接OC. ∵AC ︵=CB ︵,∴∠AOC =∠BOC. ∵CD ⊥OA ,CE ⊥OB , ∴∠CDO =∠CEO =90°.在△COD 和△COE 中,⎩⎪⎨⎪⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS).∴OD =OE.∵AO =BO ,∴AD =BE.。
教学设计圆一、教材分析圆是(北师版)《数学》九年级下册第三章第一节内容,本章主要研究圆的性质及与圆有的关的应用;本节课要求经历形成圆的概念的过程,经历探索点与圆位置关系的过程,理解圆的概念,理解点与圆的位置关系。
一堂数学课,既要让学生获得具体的数学知识,又要让学生在获得知识的过程中,提高数学思维能力,掌握一些数学的分析方法,从而形成一定的数学素养.经历形成圆的概念的过程有两个目标,一是得到圆的概念,这是基础目标;二是经历由生活现象揭示其数学本质的过程,培养抽象思维,这是能力目标.经历探索点与圆位置关系的过程,初步体会定性分析与定量分析之间的关系.二、教学目标1.经历圆的形成过程,理解圆的相关概念及它们之间的关系;2.经历定性描述点与圆的位置关系,定量刻画点与圆的位置关系的过程,发展学生几何直观和逻辑推理能力;3.运用点与圆的位置关系的性质解决问题,发展学生数学建模能力。
三、教学重、难点教学重点:理解圆的概念,理解点与圆的位置关系。
教学难点:用集合的观点研究圆的概念。
四、教学过程环节一、回顾旧知,引出概念问题:(1)小明等四位同学正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?相信这个问题难不倒大家,这个游戏不公平,他们应该以目标物为圆心站成一个圆形,说起圆,大家并不陌生,对于圆的知识你知道哪些?(2)请同学们仔细回忆初中几何学习的历程,想一想我们已经学习了哪些平面几何对象,又是如何研究的.【学生回忆,教师有条理地板书(如图1)】(3)之前我们研究的都是直线形图形,遵循了从简单到复杂、从一般到特殊的研究思路,从今天起,我们将开启曲线图形的学习之旅,从最简单的曲线图形——圆展开研究. 请同学们展望一下:在本章中将要研究哪些内容以及如何研究呢?根据几何研究的基本套路,学生猜测将研究圆的定义、性质、判定,圆的有关计算,以及圆与其他图形.【设计意图】上述过程借助学生的最近发展区,创设情境引入概念;从已有知识出发,通过回忆旧知,寻找新知的生长点;通过对旧知研究内容的梳理,为新知建构找到方向.其中第(3)小问从生活素材中抽象并判断圆,引发认知冲突,从而明确本课的学习任务,让学生感受到进一步研究的必要性.环节二、动手操作,生成概念探究活动1:探究活动一,请用圆规在草稿纸上,画一个圆.画圆时,需要注意什么?“固定点”“固定长”通过刚才的画图,你能用自己的语言描述出圆的定义吗?(学生抽象、概括及用语言表达,教师给出圆的符号表示)【设计意图】学生经历了画圆的过程,切身体会到了圆是怎么产生的.这种通过直观感知,用运动的观点(可类比“角”的生成)进行抽象概括的方法,自然能建构起圆的描述性定义.同时,在师生的补充中不断完善概念,强调“在平面内”及“圆”指的是“圆周”,并根据圆的定义,纠正了学生的认知偏差.追问:通过画圆的过程思考一下,要想确定一个圆,需要知道哪些条件.【设计意图】此处的追问为了顺势引出同心圆、等圆的概念,教给学生发现新结论的研究方法.探究活动2:阅读理解(识圆一,了解圆的有关概念)。
北师大版九年级数学下册:3.1《圆》教案一. 教材分析北师大版九年级数学下册3.1《圆》是学生在学习了直线、射线、线段的基础上,进一步对圆的概念、性质和圆与其他几何图形的关系进行探讨。
本节课的内容包括圆的定义、圆的半径和直径、圆的周长和面积等,这些都是基础知识,对于学生来说比较抽象,需要通过实例和操作来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、射线、线段等概念有一定的了解。
但是,圆的概念比较抽象,学生可能难以理解。
因此,在教学过程中,需要通过实例和操作来帮助学生理解和掌握圆的概念。
同时,学生对于实际操作和图形观察比较感兴趣,可以利用这一点来提高学生的学习兴趣。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆的半径和直径的性质,会计算圆的周长和面积。
2.过程与方法:通过实例和操作,培养学生的观察能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.圆的定义和性质。
2.圆的周长和面积的计算。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等,通过引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的观察能力、思维能力和创新能力。
六. 教学准备1.准备相关的实例和图片,用于引导学生观察和理解圆的概念。
2.准备圆的模型或图片,用于讲解圆的性质。
3.准备圆的周长和面积的计算公式,用于讲解和练习。
七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如硬币、车轮等,引导学生观察和思考:什么是圆?圆有哪些特点?2.呈现(10分钟)讲解圆的定义和性质,引导学生理解圆的概念。
展示圆的半径和直径的性质,让学生通过观察和操作,理解半径和直径的关系。
3.操练(10分钟)让学生分组合作,用圆规和直尺画圆,测量圆的半径和直径,计算圆的周长和面积。
通过实际操作,让学生加深对圆的概念的理解。
4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成,检查学生对圆的概念和计算方法的掌握情况。