人教版八年级数学第十九章四边形测试题
- 格式:doc
- 大小:95.50 KB
- 文档页数:3
数学:19.1平行四边形课时练(人教新课标八年级下)课时一平行四边形的性质(一) 一、选择题1.平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定2.平行四边形的周长为24cm ,相邻两边的差为2cm ,则平行四边形的各边长为( ) A.4cm ,4cm ,8cm ,8cm B.5cm ,5cm ,7cm ,7cm C.5.5cm ,5.5cm ,6.5cm ,6.5cm D.3cm ,3cm ,9cm ,9cm3. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32° .则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°D.120°,32° 4. 在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )DA.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶1 5下面的性质中,平行四边形不一定具有的是( )A.对角互补B.邻角互补C.对角相等D.对边相等.6.在□ABCD 中,∠A 的平分线交DC 于E ,若∠DEA=30°,则∠B =( ) A100° B.120° C.135° D.150° 二、填空题7. .如图所示,A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA ,图中有 个平行四边形8. 已知:平行四边形一边AB =12 cm,它的长是周长的61,则BC =______ cm,CD =______ cm. 9.平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为 . 10.. ABCD 中,若∠A ∶∠B =1∶3,那么∠A =________,∠B =________, ∠C =________,∠D =________.11. 如图所示,,在ABCD 中,对角线AC 、BD 相交于点O ,图中全等三角形共有________对12.如图所示,在ABCD 中,∠B =110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F= 三、解答题13. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形. 14. 在□ABCD 中, ∠A+∠C=160°, , 求∠A,∠C,∠B,∠D 的度数第3题图 第7题图 第11题图 第12题图第14题图15. .如图所示,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.16. 如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.课时一答案:一、1.B ,提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90°;2.B ,提示:设相邻两边为,,ycm xcm 根据题意得⎩⎨⎧=-=+212y x y x ,解得⎩⎨⎧==57y x ;3. B ,提示:根据平行四边形的性质对角相等得∠D =∠ABC=120°,邻角互补得∠CAB +∠CAD+∠D =180°,则∠CAB =180°-32°-120°=28°;4. D ,提示:根据平行四边形的对角相等,得对角的比值相等故选D ;5.A ;6.B ,由题意得∠A =60°,根据平行四边形的邻角互补,得∠B =180°-60°=120°; 二、7.3个即四边形ABCB ′,C ′BCA ,ABA ′C 都是平行四边形;8.24 ,CD =12;9.100°,提示:先求出对角为100°,另一组对角为80°,所以较大的为100°;10.45°,135°,45°,135°11.4;15.70°,提示:根据平行四边形的对角互补得∠B=∠ADC=110°,则∠FDC=70°,再根据三角形的外角等于其不相邻的两个角的和,故为∠E+∠F=70°;三、13. 证明:∵AB ∥CD ,∴∠A+∠D=180°,又∵∠A =∠C,∴∠C+∠D=180°, ∴AD ∥CB, ∴四边形ABCD 是平行四边形.. 14.解:在□ABCD 中, ∠A =∠C,又∵∠A+∠C=160°∴∠A =∠C=80°∵在□ABCD 中AD ∥CB,∴∠A+∠B=180°, ∴∠B =∠D=180°-∠A=180°-80°=100° 15. 解:∵ABCD ,∴BC =AD =12,CD =AB =13,OB=21BD ∵BD ⊥AD ,∴BD =22AD AB -=221213-=5∴OB =25 16. AE =CF ;证明∵四边形ABCD 为平行四边形,∴AF ∥CE ,又∵AE ∥CF ∴四边形AECF 为平行四边形,AE=CF ;第15题图 第16题图课时二:平行四边形的性质(二)1. 如图所示,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长x 的取值范围是________.2.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.63. 如图,在□ABCD 中,对角线AC ,BD 相交于点O ,MN 是过O 点的直线,交BC 于M ,交AD 于N ,BM =2,AN =2.8,求BC 和AD 的长.4.平行四边形的周长为25cm ,对边的距离分别为2cm 、3cm为( )A.15cm 2B.25cm 2C.30cm 2D.50cm 25. 如图所示,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .6. 如图所示,在□ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么?7.已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )第1题图第2题图 第3题图 第5题图 第6题图A.1B.2C.3D.48.平行四边形的对角线分别为y x ,,一边长为12,则y x ,的值可能是下列各组数中的( ) A.8与14 B.10与14 C.18与20 D.10与28 9. □ABCD 中,若,6,10,30cm AB cm BC B ===∠ο则□ABCD 的面积是 .10. 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且AE+AF =22,则平行四边形ABCD 的周长是 .11.如图所示,已知D 是等腰三角形ABC 底边BC 上的一点,点E ,F 分别在AC,AB 上,且DE ∥AB ,DF ∥AC 求证:DE+DF=AB12. 如图,□ABCD O 为D 的对角线AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,•点E 、F 在直线MN 上,且OE=OF .(1)图中共有几对全等三角形,请把它们都写出来; (2)求证:∠MAE=∠NCF .课时二答案:1. 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ;2. B ;3. BC =AD =4.8;4.A ;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=15cm 2;5. 证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F ,又∵∠EOA =∠FOC ∴△OAE ≌△OCF ,∴OE =OF ;6. OE =OF , 在□ABCD 中,OB=OD ,∵BE ⊥AC ,DF ⊥AC ∴∠BEO =∠DFO ,又∠BOE =∠DOF ,∴△BOE ≌△DOF ,∴OE =OF .7.D ,提示:因为平行四边形的对角线把平行四边形分成面积相等的4个小三角形,所以平行四边形的面积为4;8.C ,提示:根据三角形的两边之和大于第三边,两边之差小于第三第10题图 第11题图边,若y x >,则⎪⎪⎩⎪⎪⎨⎧<->+12221222yx yx ,所以符合条件的y x ,可能是18与20;9.302cm ;10.8;11.证明:∵DE ∥AB ,DF ∥AC∴四边形AEDF 是平行四边形,∴DF=AE ,又∵DE ∥AB ,∴∠B=∠EDC ,又∵AB=AC,∴∠B=∠C ,∴∠C=∠EDC ,∴DE=CE ,∴DF+DE=AE+CE=AC=AB. 12. 解:(1)有4对全等三角形.分别为△AMO ≌△CNO ,△OCF ≌△OAE ,△AME ≌△CNF ,△ABC ≌△CDA . (2)证明:∵OA=OC ,∠1=∠2,OE=OF , ∴△OAE ≌△OCF ,∴∠EAO=∠FCO . 在YABCD 中,AB ∥CD ,∴∠BAO=∠DCO ,∴∠EAM=∠NCF . 课时三平行四边形的判定(一) 一、选择题1.下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC2.已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.13.把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为( ) A.1 B.2 C.3 D.44. 在四边形ABCD 中,AC 与BD 相交于点O ,如果只给出条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下六个说法中,正确的说法有( )(1)如果再加上条件“AD ∥BC ”,那么四边形ABCD 一定是平行四边形; (2)如果再加上条件“AB =CD ”,那么四边形ABCD 一定是平行四边形;(3)如果再加上条件“∠DAB =∠DCB ”那么四边形ABCD 一定是平行四边形; (4)如果再加上“BC =AD ”,那么四边形ABCD 一定是平行四边形; (5)如果再加上条件“AO =CO ”,那么四边形ABCD 一定是平行四边形; (6)如果再加上条件“∠DBA =∠CAB ”,那么四边形ABCD 一定是平行四边形. A.3个 B.4个 C.5个 D.6个 二、填空题5.已知:四边形ABCD 中,AD ∥BC ,要使四边形ABCD 为平行四边形, 需要增加条件 .(只需填上一个你认为正确的即可).6.如图所示,ABCD 中,BE ⊥CD,BF ⊥AD,垂足分别为E 、F ,∠EBF=60°AF=3cm ,CE=4.5cm ,则∠C= ,AB= cm ,BC= cm .7.如图所示,在ABCD 中,E,F 分别是对角线BD 上的两点, 且BE=DF ,要证明四边形AECF 是平行四边形,最简单的方法 是根据 来证明.第6题图第7题图8. 将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______. 三、解答题9.已知:如图所示,在ABCD 中,E 、F 分别为AB 、CD 的中点,求证四边形AECF 是平行四边形.10. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.11. 如图所示,平行四边形ABCD 的对角线A C 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE 是平行四边形.12. 如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .请你猜想:BE 与DF 有怎样的位置..关系和数量..关系? 并对你的猜想加以证明:课时三答案:一、1.C ;2.B ,提示:AD ∥BC ,添加条件①③④能使四边形ABCD 成为平行四边形;3.C ;4.B ;二、5. AD =BC (或AB ∥CD 或∠A=∠C 或∠B=∠D );6.30°,6,9;7.对角线互相平分;8. 3; 三、9.在ABCD 中,AD=CB,AB=CD,∠D =∠B ,∵E 、F 分别为AB 、CD 的中点,∴DF=BE , 又∵AB ∥CD ,AB=CD ,∴AE=CF ,∴四边形AECF 是平行四边形. 10. 证明:∵ABCD∴AB =CD ,AB ∥CD ∴∠1=∠2AE ⊥BD ,CF ⊥BD第9题图 第10题图 第11题图ABC DE F第12题图∴∠AEB =∠CFD =90°,AE ∥CF ∴△AEB ≌△CFD ,∴AE =CF ∴AECF 为平行四边形11. 证明:∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD又∵AE=CF ,∴OE=OF ∴四边形BFDE 是平行四边形. 12. 猜想:BE DF ∥,BE DF = 证明:证法一:如图第12-1.Q 四边形ABCD 是平行四边形. BC AD ∴= 12∠=∠ 又CE AF =Q BCE DAF ∴△≌△ BE DF ∴= 34∠=∠BE DF ∴∥证法二:如图第12-2.连结BD ,交AC 于点O ,连结DE ,BF . Q 四边形ABCD 是平行四边形 BO OD ∴=,AO CO = 又AF CE =Q AE CF ∴= EO FO ∴=∴四边形BEDF 是平行四边形BE DF ∴∥ 课时四平行四边形的判定(二)1.如图所示,D 、E 、F 为△ABC 的三边中点, 则图中平行四边形有( ) A.1个 B2个 C 3个 D.4个2. D 、E 、F 为△ABC 的三边中点,L 、M 、N 分别是△DEF 三边的中点,若△ABC 的周长为20cm ,则△LMN 的周长是( ) A.15cm B.12cm C.10cm D.5cm3.已知等腰三角形的两条中位线长分别为3和5, 则此等腰三角形的周长为 .4.□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别是OB 、OD 的中点,四边形AECF 是_______.5. 如图,DE ∥BC ,AE =EC ,延长DE 到F ,使EF =DE , 连结AF 、FC 、CD ,则图中四边形ADCF 是______.ABCDEF第12-2OAB CDE F 第12-1 2 3 4 1第1题图第5题图6. 如图,在□ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F (1)求证:△ABE ≌△DFE ;(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.7. 如图所示,某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE ,BD ∥AE ,EF=FC ,甲、乙两人同时从B 站乘车到F 站,甲乘1路车,路线是B →A →E →F ,乙乘2路,路线是B →D →C →F ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.8. 如图所示,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD=CD ,∠ADB=90°,CH ⊥AB 于H ,CH 交AD 于F . (1)求证:CD ∥AB ; (2)求证:△BDE ≌△ACE ; (3)若O 为AB 中点,求证:OF=12BE .9.. 已知如图:在ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF ,则线段AC 与EF 是否互相平分?说明理由.第6题图 第7题图 第8题图 第9题图10. 如图所示,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F ,G 是OA 的中点,H 是OC 的中点,四边形EGFH 是平行四边形,说明理由.11.如图所示,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?课时四答案:1.C;2.D ,提示:根据三角形中位线的性质定理:;21,21DEF LMN ABC DEF L L L L ∆∆∆∆==3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形 ;5.平行四边形;6.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB ∥CF . ∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE . ∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE ∴AB=DF 又AB ∥CF .∴四边形ABDF 是平行四边形. 7.解:∵BA ∥DE ,BD ∥AE ,∴四边形ABDE 是平行四边形 ∴AB=DE ,BD=AE ,又EF=FC 且AF ∥BC ,EC ⊥BC ,∴DE=DC , ∴EA+AE+EF=BD+DC+CF ,∴二人同时到达F 站.8.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB . (2) ∵ CD ∥AB ∴∠CDA=∠3.第10题图第10题图 第11题图∠BCD=∠2=∠3.且BE=AE.且∠CDA=∠BCD.∴DE=CE.在△BDE和△ACE中,DE=CE,∠DEB=∠CEA,BE=AE.∴△BDE≌△ACE (3) ∵△BDE≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH⊥AB,.∴∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF.CF=EF.∴EF=AFO为AB中点,OF为△ABE的中位线∴OF=12BE9.线段AC与EF互相平分.理由是:∵四边形ABCD是平行四边形.∴AB∥CD,即AE∥CF,AB=CD,∵BE=DF,∴AE=CF∴四边形AECF是平行四边形,∴AC与EF互相平分.10.是平行四边形,△AOE≌△COF.11是平行四边形,四边形AMCN、BMDN是平行四边形.。
八年级下第十九章四边形测验班别__________ 姓名_____________ 成绩__________一、选择题(每小题5分,共25分)1.下列图形中,是中心对称图形而不是轴对称图形的是( )(A )平行四边形 (B )等腰梯形 (C )正三角形 (D )正方形2.下列命题中,真命题的个数是( )(1) 平行四边形是中心对称图形。
(2) 两个全等三角形一定成中心对称。
(3) 对称中心是连接两对称点线段的中点。
(4) 是轴对称图形一定不是中心对称图形。
(5) 是中心对称图形一定不是轴对称图形。
(A )1个 (B )2个 (C )3个(D )4个3.顺次连接对角线相等的平行四边形四边中点所得的四边形必是( ) (A )梯形 (B )菱形 (C )矩形 (D )正方形 4.如果等腰梯形两底之差等于一腰的长,那么这个等腰梯形的锐角是( ) (A )60° (B )30° (C )45° (D )15° 5.正方形的对角线长为a ,则它的对角线的交点到它的边的距离为( )(A )a 22(B )a 42 (C )2a (D )a 22二、填空题(每小题5分,共25分)6. 四边形ABCD 为菱形,∠A=60°, 对角线BD 长度为10cm , 则此菱形的周长______cm . 7.已知正方形的一条对角线长为8cm ,则其面积是 cm2.8.平行四边形ABCD 中, AB=6cm ,AC+BD=14cm ,则△AOC 的周长为 . 9.在平行四边形ABCD 中,∠A=70°,∠D= , ∠B= .10.等腰梯形ABCD 中,AD ∥BC ,∠A=120°,两底分别是15cm 和49cm ,则等腰梯形的腰长为 .三、解答题(共50分)11、(8分)如图,在等腰梯形ABCD 中,AB ∥CD ,AB ﹥CD ,AD=BC ,BD 平分∠ABC ,∠A=60°,AB 的长是10厘米,求DC 的长。
图10D C B A 八年级数学第十九章《四边形》章节检测题时间:90分钟 满分:100分一、选择题(本大题8个小题,每小题3分,共24分)1、如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于………………( )A 、18° B、36° C、72° D、108°2、如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB=5,BC=3,则EC 的长…………………………………………………………………………………( )A 、1B 、1.5C 、2D 、33、顺次连结任意四边形四边中点所得的四边形一定是………………………( )A 、平行四边形B 、矩形C 、菱形D 、正方形4、正方形具有而菱形不一定具有的性质是………………………………………( )(A )四条边相等 (B )对角线互相垂直平分(C )对角线平分一组对角 (D )对角线相等5、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是………………………………………………………………( )A 、3:4B 、5:8C 、9:16D 、1:26、下列命题中,真命题是……………………………………………………………( )A 、有两边相等的平行四边形是菱形B 、有一个角是直角的四边形是直角梯形C 、四个角相等的菱形是正方形D 、两条对角线相等的四边形是矩形7、如图10,在梯形ABCD 中,AD ∥BC ,AB=CD ,那么它的四个内角按一定顺序的度数比可能为……………………………………………………………………( )A 、3:4:5:6B 、4:5:4:5C 、2:3:3:2D 、2:4:3:3 8、如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF,AE 、BF 相交于点O,下列结论①AE=BF;②AE ⊥BF;③AO=OE;④S △AOB =S 四边形DEOF 中,错误的有………………………………………………………………………( )A.1个B.2个C.3个D.4个A B C D 第5题图 E D C B A 第2题图 A B C D E A B C E D F O 第8题图第1题图二、填空题(本大题7个小题,每小题3分,共21分)9、如图,□ABCD 中,AE ⊥CD 于E ,∠B=55°,则∠DAE= °.10、如图,△ABC 、△ACE 、△ECD 都是等边三角形,则图中的平行四边形有 个。
BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。
求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。
求证:EG 和HF 互相平分。
练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
数学:第19章平行四边形综合检测题A (人教新课标八年级下)一、选择题(每题3分;共30分)1;一块均匀的不等边三角形的铁板;它的重心在( )2;如图1;如果□ABCD 的对角线AC 、BD 相交于点O ;那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3;平行四边形的一边长是10cm ;那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm 4;在四边形ABCD 中;O 是对角线的交点;能判定这个四边形是正方形的条件是( )A.AC =BD ;AB =CD ;AB ∥CDB.AD //BC ;∠A =∠CC.AO =BO =CO =DO ;AC ⊥BDD.AO =CO ;BO =DO ;AB =BC5;如图2;过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线;分别相交于E 、F 、G 、H 四点;则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6;如图3;大正方形中有2个小正方形;如果它们的面积分别是S 1、S 2;那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定7;矩形一个角的平分线分矩形一边为1cm 和3cm 两部分;则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28;如图4;菱形花坛 ABCD 的边长为 6m ;∠B =60°;其中由两个正六边形组成的图形部分种花;则种花部分的图形的周长(粗线部分)为( )A.123mB.20mC.22mD.24m9;如图5;将一个边长分别为4、8的长方形纸片ABCD 折叠;使C 点与A 点重合;则折痕EF 的长是( )A .3B .23C .5D .25图6 图4 F EDC B A 图5 图3 AD C B HE FG 图2O A B D C 图110;如图6;是由两个正方形组成的长方形花坛ABCD ;小明从顶点A 沿着花坛间小路直到走到长边中点O ;再从中点O 走到正方形OCDF 的中心O 1;再从中心O 1走到正方形O 1GFH 的中心O 2;又从中心O 2走到正方形O 2IHJ 的中心O 3;再从中心O 3走2走到正方形O 3KJP 的中心O 4;一共走了31 2 m ;则长方形花坛ABCD 的周长是( )A.36 mB.48 mC.96 mD.60 m二、填空题(每题3分;共30分)11;如图7; 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状;并使其面积为矩形面积的一半;则这个平行四边形的一个最小内角的值等于___.12;如图8;过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ;那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13;如图9;四边形ABCD 是正方形;P 在CD 上;△ADP 旋转后能够与△ABP ′重合;若AB =3;DP =1;则PP ′=___.14;已知菱形有一个锐角为60°;一条对角线长为6cm ;则其面积为___cm 2. 15;如图10;在梯形ABCD 中;已知AB ∥CD ;点E 为BC 的中点; 设△DEA 的面积为S 1;梯形ABCD 的面积为S 2;则S 1与S 2的关系为___.16;如图11;四边形ABCD 的两条对角线AC 、BD 互相垂直;A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8;BD =10;那么四边形A 1B 1C 1D 1的面积为___.17;如图12;□ABCD 中;点E 在边AD 上;以BE 为折痕;将△ABE 向上翻折;点A 正好落在CD 上的点F ;若△FDE 的周长为8;△FCB 的周长为22;则FC 的长为___.18;将一张长方形的纸对折;如图13所示;可得到一条折痕(图中虚线);继续对折;对折时每次折痕与上次的折痕保持平行;连续对折三次后;可以得到7条折痕;那么对折四次可以得到 条折痕;如果对折n 次;可以得到 条折痕.…… 第一次对折 第二次对折 第三次对折图13图11A 1B 1C 1D 1 D A B C D A B C EF 图12 D C BA 图7 图9 图8K NM Q C B 图10 E D C B A三、解答题(共40分)19;如图1;4;等腰梯形ABCD 中;AD ∥BC ;∠DBC =45°;翻折梯形ABCD ;使点B重合于D ;折痕分别交边AB 、BC 于点F 、E ;若AD =2;BC =8.求BE 的长.20;在一次数学实践探究活动中;小强用两条直线把平行四边形ABCD 分割成四个部分;使含有一组对顶角的两个图形全等;(1)根据小强的分割方法;你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程;你发现所画的饿两条直线有什么规律?21;如图16;已知四边形ABCD 是平行四边形;∠BCD 的平分线CF 交边AB 于F ;∠ADC 的平分线DG 交边AB 于G .(1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件;使得△EFG 为等腰直角三角形;并说明理由.22;如图17;已知□ABCD 中;E 为AD 的中点;CE 的延长线交BA 的延长线于点E .(1)试说明线段CD 与F A 相等的理由;(2)若使∠F =∠BCF ;□ABCD 的边长之间还需再添加一个什么条件?请你补上这个条件;并说明你的理由(不要再增添辅助线).23;(08上海市)如图;已知平行四边形ABCD 中;对角线AC BD ,交于点O ;E 是BD 延长线上的点;且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠;求证:四边形ABCD 是正方形.A B C D A B C D D CB A 图15 A BCDEF 图17图16 O F D B E C A· 图18 F E D C B A 图1424;已知:如图19;四边形ABCD 是菱形;E 是BD 延长线上一点;F 是DB 延长线上一点;且DE =BF .请你以F 为一个端点;和图中已标明字母的某一点连成一条新的线段;猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结____________;(2)猜想:______=______;(3)证明:25;如图20;已知正方形ABCD 的对角线AC 、BD 相交于点O ;E 是AC 上一点;连结EB ;过点A 作AM ⊥BE ;垂足为M ;AM 交BD 于点F .(1)试说明OE =OF ;(2)如图21;若点E 在AC 的延长线上;AM ⊥BE 于点M ;交DB 的延长线于点F ;其它条件不变;则结论“OE =OF ”还成立吗?如果成立;请给出说明理由;如果不成立;请说明理由.参考答案:一、1;C;2;D ;3;D ;4;C ;5;C ;6;A ;7;D ;8;B ;9;D ;10;C .二、11;30°;12;=;13;;14;或15;1212S S =;16;20;17;7;18;15、2n -1.三、21;由题意得△BEF ≌△DFE ;∴DE=BE ;∵在△BDE 中;DE=BE ;∠DBE=45°;∴∠BDE=∠DBE=45°;∴∠DEB=90°;∴DE ⊥BC.∴EC=12(BC-AD)= 12(8-2)=3.∴BE=5;22;(1)无数;(2)只要两条直线都过对角线的交点即可;(3)这两条直线过平行四边形的对称中心(或对角线的交点);23;:(1)四边形ABCD 是平行四边形;AO CO ∴=.又ACE △是等边三角形;EO AC ∴⊥;即DB AC ⊥.∴平行四边形ABCD 是菱形;EB AO C 图19 D A B F 图20 图21(2)ACE △是等边三角形;60AEC ∴∠=.EO AC ⊥;1302AEO AEC ∴∠=∠=. 2AED EAD ∠=∠;15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=.四边形ABCD 是菱形;290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形.24;(1)说明△CED ≌△CEA 即可;(2)BC =2AB ;理由略;25;(1)四边形ABCDOE .∵四边形ABCD 是平行四边形;∴DO =OB ;∵四边形DEBF 是菱形;∴DE =BE ;∴EO ⊥BD ;∴∠DOE = 90°;即∠DAE = 90°;又四边形ABCD 是平行四边形;∴四边形ABCD 是矩形.(2)解:∵四边形DEBF 是菱形;∴∠FDB =∠EDB ;又由题意知∠EDB =∠EDA ;由(1)知四边形ABCD 是矩形;∴∠ADF =90°即∠FDB +∠EDB +∠ADE =90°;则∠ADB =60°;∴在Rt △ADB 中;有AD ∶AB =1:3;即3=BCAB ;26;(1)连结AF ;(2)猜想AF =AE ;(3)连结AC ;交BD 于O ;因为四边形ABCD 是菱形;所以AC ⊥BD 于O ;DO =BO ;因为DE =BF ;所以EO =BO 所以AC 垂直平分EF ;所以AF =AE ;27;(1)因为四边形ABCD 是正方形;所以∠BOE =∠AOF =90°;OB =OA ;又因为AM ⊥BE ;所以∠MEA +∠MAE =90°=∠AFO +∠MAE ;所以∠MEA =∠AFO ;所以Rt △BOE 可以看成是绕点O 旋转90°后与Rt △AOF 重合;所以OE =OF ;(2)OE =OF 成立.证明:因为四边形ABCD 是正方形;所以∠BOE =∠AOF =90°;OB =OA 又因为AM ⊥BE ;所以∠F +∠MBF =90°=∠B +∠OBE ;又因为∠MBF =∠OBE ;所以∠F =∠E ;所以Rt △BOE 可以看成是由Rt △AOF 绕点O 旋转90°以后得到的;所以OE =OF ;。
人教版八年级数学第十九章平行四边形的判定练习题组姓名___________班级__________学号__________分数___________一、选择题1.(827)平行四边形ABCD 的周长32,5AB =3BC ,则对角线AC 的取值范围为( ) A .6<AC <10 B .6<AC <16 C .10<AC <16 D .4<AC <16 2.(828)在平行四边形ABCD 中,∠A =65°,则∠D 的度数是 ( )A . 105°B . 115°C . 125°D . 65° 3.(829)在平行四边形ABCD 中,∠B -∠A =20°,则∠D 的度数是 ( ) A . 80° B . 90° C . 100° D . 110°4.(830)由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的 ( )A .周长B .一腰的长C .周长的一半D .两腰的和5.(831)在以下平行四边形的性质中,错误的是 ( )A . 对边平行B . 对角相等C . 对边相等D . 对角线互相垂直二、填空题 6.(821)如图,D ,E ,F 分别在△ABC 的三边BC ,AC ,AB 上,且DE ∥AB , DF ∥AC , EF ∥BC ,则图中共有________个平行四边形,分别是________________________.FE DC BA7.(822)已知平行四边形的周长是100cm , AB ︰BC =4︰1,则AB 的长是__________. 8.(823)已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是__________. 9.(824)在平行四边形ABCD 中,∠A ︰∠B =3︰2,则∠C =________度,∠D =_________度. 10.(825)用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3︰2,则它的边长为_______短边长为________.11.(826)在平行四边形ABCD 中, BC =2AB , CA ⊥AB ,则∠B =____度,∠CAD =____度.DCBA三、证明题12.(2630-2005浙江省湖州市)如图,在平行四边形ABCD 中,∠B ,∠D 的平分线分别交对边于点E 、F ,交四边形的对角线AC 于点G 、H .求证:AH =CG .ABCD E FHG四、解答题 13.(832)平行四边形ABCD 的两条对角线AC ,BD 相交于O .ODCBA(1) 图中有哪些三角形全等? 有哪些相等的线段?(2) 若平行四边形ABCD 的周长是20cm ,△AOD 的周长比△ABO 的周长大6cm.求AB ,AD 的长.14.(2810)平行四边形ABCD 中,∠ADC 的邻补角的平分线交BC 的延长线于E ,延长ED 交BA 的延长线于F ,试判断△FBE 的形状.GFE DCBA15.(2811)(1) 如图,平行四边形ABCD 中,AB =5cm , BC =3cm , ∠D 与∠C 的平分线分别交AB 于F ,E , 求AE , EF , BF 的长?FE DBAC(2) 上题中改变BC 的长度,其他条件保持不变,能否使点E ,F 重合,点E ,F 重合时BC 长多少?求AE ,BE 的长.(3) 由(1),(2)题,你想到了什么?请写下来与你同伴交流.16.(2812)如图,平行四边形ABCD 的四个外角的平分线分别两两交于E ,F . (1) 试判断∠AED , ∠BFC 的大小.(2) 线段AE , ED , BF , FC , EG , HF 中哪些相等?HG FE DCB A17.(2813)如图,BD 是平行四边形ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F . (1) 在图中,根据题意补全图形.(2) 试问:△ABE 与△CDF 能全等吗? 请说明理由.CBAD。
A BCD O图19-3 第十九章《四边形》提要:本章重点是四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.本章难点在于四边形的概念及四边形不稳定性的理解和应用.在前面学习三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思不容易理解,所以是难点.习题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A (平方米)与拉开长度b (米)的关系式是: .2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形:(1)第4个图形中有白色地面砖 块;(2)第n 个图形中有白色地面砖 块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________.4.在正方形ABCD 所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD 为菱形,∠A =60°, 对角线BD 长度为10c m , 则此菱形的周长 c m .6.已知正方形的一条对角线长为8c m ,则其面积是__________c m 2.7.平行四边形ABCD 中,AB =6c m ,AC +BD =14c m ,则△AOC 的周长为_______.8.在平行四边形ABCD 中,∠A =70°,∠D =_________, ∠B =__________.9.等腰梯形ABCD 中,AD ∥BC ,∠A =120°,两底分别是15c m 和49c m ,则等腰梯形的腰长为______.10.用一块面积为450c m 2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条 c m .11.已知在平行四边形ABCE 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .12.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明(只需填写一种方法)13.如图19-3,正方形ABCD的对线AC、BD相交于点O.那么图中共有个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的拼合而成;(2)菱形可以由两个能够完全重合的拼合而成;(3)矩形可以由两个能够完全重合的拼合而成.15.矩形的两条对角线的夹角为60,较短的边长为12cm,则对角线长为cm.16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .17.平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为cm. 18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为m.192.20.如图19-5,l;(2)AB=CD;(3)AB BC;(4)AO=OC.二、选择题21.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是()A.②③B.②③④C.①③④⑤D.①②③④⑤22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是()23.四边形ABCD中,∠A︰∠B︰∠C︰∠D=2︰2︰1︰3,则这个四边形是()A.梯形B.等腰梯形C.直角梯形D.任意四边形24.要从一张长40c m,宽20c m的矩形纸片中剪出长为18c m,宽为12c m的矩形纸片则最多能剪出()A.1张B.2张C.3张D.4张25.如图19-7,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE︰EF︰FB为()A.1︰2︰3B.2︰1︰3C.3︰2︰1 D.3︰1︰226.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形.27.下列说法正确的是()A.任何一个具有对称中心的四边形一定是正方形或矩形;AD CBFE图19-7·图19-4 BC图19-5B.角既是轴对称图形又是中心对称图形;C.线段、圆、矩形、菱形、正方形都是中心对称图形;D.正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A、B、C、D在同一平面内,从①AB//CD;②AB=CD;③BC//AD;④BC=AD四个条件中任意选两个,能使四边形ABCD是平行四边形的选法有()A.①②B.②③C.①③D.③④29.已知ABCD是平行四边形,下列结论中不一定正确的是()A.AB=CD B.AC=BDC.当AC⊥BD时,它是菱形D.当∠ABC=90°时,它是矩形30.平行四边形的两邻边分别为6和8,那么其对角线应()A.大于2,B.小于14C.大于2且小于14 D.大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有()A.4种B.5种C.7种D.8种32.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有()A.1个B.2个C.3个D.4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是()A.矩形B.菱形C.正方形D.菱形、矩形或正方形35.如图19-8,直线a∥b,A是直线a上的一个定点,线段BC在直线b上移动,那么在移动过程中ABC∆的面积()A.变大B.变小C.不变D.无法确定36.如图19-10,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果∠BAF,=60则DAE∠等于()A.45D.6030C.15B.37.如图19-11,在ABC∆中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是()A.5 B.10 C.15 D.2038.已知四边形ABCD中,AC交BD于点O,如果只给条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“BCDBAD∠∠”,那么四边形ABCD一定是平行四边形;=(3)如果再加上条件“AO=OC”,那么四边形ABCD一定是平行四边形;(4)如果再加上条件“CAB=∠”,那么四边形ABCD一定是平行四边形DBA∠其中正确的说法是()A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)三、解答题39.如图19-12,已知四边形ABCD是等腰梯形,CD//BA,四边形AEBC是平行四边形.请说明:∠ABD =∠ABE.40.如图19-13,在△ABC中,点O是AC边上的一动点,过点O作直线MN//BC,设MN交∠BCA的平分线于点E ,交∠BCA 的外角平分线于点F .(1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论. 41.如图19-14,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由. 42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN⊥DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由. 43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ⊥AB 于F ,如果AB =6,EF =5,求梯形ABCD 的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:①画出的圆应符合比例要求; ②为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)45.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN . 46.如图 中,DB=CD , 70=∠C ,AE ⊥47.如图 中,G 是CD 上一点,BG 交(1)试说明DF=BG ; (2)试求AFD ∠的度数. 48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图(2)摆放成如图②的四边形, ; (3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是:.(图①) (图②) (图③) (图④)49.如图19-22,已知平行四边形ABCD ,AE 平分∠DAB 交DC 于E ,BF 平分∠ABC 交DC 于F ,DC =6c m ,AD =2c m ,求DE 、EF 、FC 的长.50.如图19-23,已知矩形ABCD 中,AC 与BD 相交于O ,DE 平分∠ADC 交BC 于E ,∠BDE =15°,试求∠COE 的度数。
永丰中学八年级数学《四边形》单元测试题班级 姓名 20120503一、选择题(每小题3分,共24分)1. 在四边形ABCD 中,O 是对角线的交点,能判定四边形ABCD 是正方形的条件是( )。
A 、CO AO =,DO BO =,BCAB =B 、BC AD //,C A ∠=∠C 、DO CO BO AO ===,BD AC ⊥ D 、BD AC =,CD AB //2.某花木场有一块等腰梯形ABCD 的空地,其各边的中点分别是E 、F 、G 、H ,测量得对角线AC=10米,现想用篱笆围成四边形EFGH 场地,则需篱笆总长度是( )A. 40米B. 30米C.20米D.10米3.在梯形ABCD 中,AD ∥BC,对角线AC ⊥BD,且AC=10,BD=6,则该梯形的面积是( ) A. 30 B. 15 C.215D.60 4.如图,已知矩形ABCD,R 、P 分别是DC 、BC 上 的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立 的是( )A.线段EF 的长逐渐增大.B.线段EF 的长逐渐减少C.线段EF 的长不改变.D.线段EF 的长不能确定.5.在平行四边形、矩形、正方形、等腰梯形、直角梯形中,不是轴对称图形的有( ) A. 3个 B.2个 C.1个 D.0个6.菱形的周长为高的8倍,则它的一组邻角是( )A.30°和150°B.45°和135°C.60°和120°D.80°和100° 7.在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为( )A.512 B.2 C.25 D.513 8.如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( ) A .6个 B .5个 C .4个 D .3个 二、填空题(每小题3分,共24分)9. 一个矩形的对角线长10cm ,一边长6cm ,则其周长是 。
八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。
A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。
第19章四边形测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.若一个正多边形的每个外角都等于45°,则它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.若一个多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有()A.7条B.8条C.9条D.10条4.如图2-G-1所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B 两点间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10 m,则A,B间的距离为()图2-G-1A.15 mB.20 mC.25 mD.30 m5.如图2-G-2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2-G-2A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC6.如图2-G-3所示,在▱ABCD中,CE⊥AB,E为垂足.若∠A=125°,则∠BCE图2-G-3A.55°B.35°C.30°D.25°二、填空题(本大题共6小题,每小题4分,共24分)7.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=__________.8.如果一个四边形三个内角度数之比为2∶1∶3,第四个内角为60°,那么这三个内角的度数分别为______________________.9.正八边形一个内角的度数为________.10.如图2-G-4所示,若▱ABCD与▱EBCF关于BC所在的直线对称,∠ABE=90°,则∠F=________.图2-G-411.如图2-G-5,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等________.图2-G-512.如图2-G-6,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC 的周长为10,则△DEF的周长为________.图2-G-6三、解答题(本大题共5小题,共52分)13.(6分)如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?14.(10分)如图2-G-7所示,△ABC的中线BD,CE相交于点O,F,G分别是BO,求证:四边形DEFG是平行四边形.图2-G-715.(10分)如图2-G-8,在▱ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.图2-G-816.(12分)如图2-G-9,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.图2-G-917.(14分)(1)如图2-G-10①,在△ABC中,D,E分别为AB,AC的中点.请说明DE与BC的数量关系;(不必说明理由)图2-G-10(2)如图2-G-10②,点O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接.如果点D,E,F,G能构成四边形,根据问题(1)的结论,判断四边形DEFG是否为平行四边形,请说明理由;(3)当点O移动到△ABC外时,(2)中的结论是否仍然成立?画出图形,不必说明理由.详答1.B[解析] 本题主要考查n边形的内角和公式(n-2)·180°,由(n-2)·180°=540°,得n =5.本题也用到方程的解题思想.2.B3.C [解析] 由题意求得该多边形的每一个外角为180°-150°=30°,所以这个多边形的边数为360°÷30°=12,所以从一个顶点出发引出的对角线有12-3=9(条).4.B5.D [解析] A 项,由“AB ∥DC ,AD ∥BC ”可知,四边形ABCD 的两组对边互相平行,所以该四边形是平行四边形.故本选项不符合题意;B 项,由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边分别相等,所以该四边形是平行四边形.故本选项不符合题意;C 项,由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,所以该四边形是平行四边形.故本选项不符合题意;D 项,由“AB ∥DC ,AD =BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .6.B [解析] 根据平行四边形的性质得∠B =180°-∠A =55°.在Rt △BCE 中,∠BCE =90°-∠B =35°.故选B.7.8 [解析] 由题意,得(n -2)·180°=360°×3,解得n =8.8.100°,50°,150° [解析] 设这三个内角的度数分别为2x ,x ,3x ,则有2x +x +3x =360°-60°,解得x =50°,则2x =100°,3x =150°. 故答案为100°,50°,150°.9.135° [解析] 正八边形的内角和为(8-2)×180°=1080°,每一个内角的度数为18×1080°=135°.10.45° [解析] 根据轴对称的性质,得∠EBC =∠ABC =45°,因为平行四边形的对角相等,所以∠F =∠EBC =45°.11.20 [解析] ∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD =BC ,AB =CD ,∴∠AEB =∠EBC .∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE ,∴AE +DE =AD =BC =6,∴AE =4,∴AB =CD =4,∴▱ABCD 的周长=4+4+6+6=20.12.5 [解析] ∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AC ,同理有EF =12AB ,DF =12BC ,∴△DEF 的周长=12(AC +BC +AB )=12×10=5.13.解:设每个内角的度数为x ,边数为n . 则x -(180°-x )=100°,解得x =140°. ∴(n -2)·180°=140°·n ,解得n =9. 即这个多边形的边数是9.14.证明:∵E ,D 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC .又∵F ,G 分别是OB ,OC 的中点, ∴FG 是△OBC 的中位线,∴FG ∥BC ,FG =12BC .∴DE ∥FG ,DE =FG ,∴四边形DEFG 是平行四边形.15.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ), ∴AE =CF .(2)∵△ABE ≌△CDF , ∴∠AEB =∠CFD , ∴∠AEF =∠CFE , ∴AE ∥CF . ∵AE =CF ,∴四边形AECF 是平行四边形.16.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =CB ,∠A =∠C ,AD ∥CB , ∴∠ADB =∠CBD .∵ED ⊥DB ,FB ⊥BD , ∴∠EDB =∠FBD =90°, ∴∠ADE =∠CBF ,在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,AD =CB ,∠A =∠C ,∴△AED ≌△CFB (ASA ). (2)作DH ⊥AB ,垂足为H ,在Rt △ADH 中,∠A =30°,∴AD =2DH . 在Rt △DEB 中,∠DEB =45°, ∴EB =2DH ,∴AD =EB . ∵△AED ≌△CFB , ∴DE =BF .∵∠EDB =∠DBF =90˚, ∴ED ∥BF ,∴四边形EBFD 为平行四边形, ∴FD =EB ,∴DA =DF .17.解:(1)根据三角形的中位线定理得DE =12BC .(2)四边形DEFG 是平行四边形.理由如下:∵D ,G 分别为AB ,AC 的中点, ∴DG 是△ABC 的中位线,∴DG ∥BC 且DG =12BC .∵E ,F 分别为OB ,OC 的中点, ∴EF 是△OBC 的中位线,∴EF ∥BC 且EF =12BC ,∴DG ∥EF 且DG =EF ,∴四边形DEFG 是平行四边形.(3)(2)中的结论仍然成立,如图所示.。
人教版八年级数学下册第十九章-一次函数单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是()A.1 B.2 C.3 D.42、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.3、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24、下列函数中,为一次函数的是()A.12yx=B.2y x C.1y=D.1y x=-+5、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0B.k<2 C.k>2 D.k≠26、下列各图中,不能表示y是x的函数的是()A.B.C.D.7、已知两个一次函数y1=ax+b与y2=bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()A.B.C.D.8、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,y甲表示甲的路程,y乙表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有()个A.1 B.2 C.3 D.410、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B 车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y (千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线23y x =-+,则它与x 轴的交点坐标为________,与坐标轴围成的三角形面积为_______.2、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).3、一次函数y =kx +b (k ≠0)中两个变量x 、y 的部分对应值如下表所示:那么关于x 的不等式kx +b ≥-1的解集是________.4、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:(1)m =______;(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.5、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;三、解答题(5小题,每小题10分,共计50分)y+4的图象分别与x轴、y轴交于点A、B,点C在线段1、在平面直角坐标系中,一次函数y=−43OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(不包括这两个三角形重合的情况).2、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.3、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:(1)当通讯时间为500分钟时,①方式收费元,②方式收费元;(2)②收费方式中y与x之间的函数关系式是;(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是(填①或②).4、已知一次函数y=−2y−6.(1)画出函数图象.(2)不等式−2y−6>0的解集是_______;不等式−2y−6<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.x+4的图象相交于点A.5、如图,函数y=2x和y=-23(1)求点A的坐标;x+4的解集.(2)根据图象,直接写出不等式2x≥-23---------参考答案-----------一、单选题1、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.【详解】解:由题意和图象可知,A、B港口相距400km,故①正确;∵甲船的速度是乙船的1.25倍,∴乙船的速度为:100÷1.25=80(km/h),∵乙船的速度为80km/h,S)÷100-1,∴400÷80=(400+BCS=200km,故②错误;解得:BC∵甲船4个小时行驶了400km,∴甲船的速度为:400÷4=100(km/h),故③正确;乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km),故④错误.故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2、D【解析】【分析】根据题意分析出托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当0<3x≤时, 1.5y=,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.3、A【解析】【分析】先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0∴y随x增大而减小,∵1<3,∴y1>y2.故选:A.本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m 、n 的取值范围成为解答本题的关键.4、D【解析】【分析】根据一次函数的定义即可求解.【详解】 A.12y x=不是一次函数, B.2y x 不是一次函数, C.1y =不是一次函数,D.1y x =-+是一次函数故选D .【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.5、C【解析】【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围.【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,∴>.k2故选C.【点睛】k>,y随x的增大而增本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b=+中,0k<,y随x的增大而减小.大,06、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.7、B【解析】【分析】先由一次函数y1=ax+b图象得到字母系数的符号,再与一次函数y2=bx+a的图象相比较看是否一致.【详解】解:A、∵一次函数y1=ax+b的图象经过一二四象限,∴a>0,b>0;由一次函数y2=bx+a图象可知,b<0,a>0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;C、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a>0,b>0,两结论矛盾,故错误;D、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a<0,b=0,两结论相矛盾,故错误.故选:B.【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+经过一、三、四象限;③当=+经过一、二、三象限;②当k>0,b<0时,函数y kx bk<0,b>0时,函数y kx b=+经过二、三、四象=+经过一、二、四象限;④当k<0,b<0时,函数y kx b限,解题的关键是掌握一次函数图像与系数的关系.8、B【解析】【分析】由一次函数的图象的走势结合一次函数与y 轴交于正半轴,可判断A ,B ,由图象可得:当x >4时,函数图象在x 轴的下方,可判断C ,先求解一次函数的解析式,再利用一次函数图象的平移可判断D ,从而可得答案.【详解】解:一次函数y =kx +b 的图象从左往右下降,所以y 随x 的增大而减小,故A 不符合题意; 一次函数y =kx +b , y 随x 的增大而减小,与y 轴交于正半轴,所以0,0,k b 故B 符合题意; 由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB 段为甲休息的时间即可判断③;设乙需要t 分钟追上甲,10006001006006040t t -=+-,求出t 即可判断④. 【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB 段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确; ∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t 分钟追上甲,10006001006006040t t -=+-, 解得t =7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C .【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.10、C【解析】【分析】分别求出两车相遇、B 车到达甲地、A 车到达乙地时间,分0≤x ≤45、45<x ≤43、43<x ≤2三段求出函数关系式,进而得到当x =43时,y =80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B 车到达甲地时间为120÷90=43小时,A 车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.二、填空题1、3,02⎛⎫⎪⎝⎭94【解析】【分析】先令y=0即可求出直线与x轴的交点坐标,再令x=0及可求出直线与y轴的交点坐标,由三角形的面积公式即可得出结论.【详解】解:∵令x=0,则y=3,令y=0,则x=32,∴直线y=−2x+3与x轴的交点坐标是(32,0);直线与两坐标轴围成的三角形的面积=12×32×3=94.故答案为:3,02⎛⎫⎪⎝⎭;94【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.3、x≤1【解析】【分析】由表格得到函数的增减性后,再得出1y=-时,对应的x的值即可.【详解】解:当1x =时,1y =-,根据表可以知道函数值y 随x 的增大而减小,∴不等式1kx b +≥-的解集是1x ≤.故答案为:1x ≤.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.4、 100 a =32+1.8b【解析】【分析】(1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;(2)由表格数据规律,得到华氏温度=摄氏温度95⨯+32,据此解题.【详解】解:(1)设华氏温度与摄氏温度满足的一次函数关系为:(0)y kx b k =+≠代入(10,50)(20,68)得10502068k b k b +=⎧⎨+=⎩ 9532k b ⎧=⎪⎨⎪=⎩ 9325y x ∴=+ 当212y =时,9322125m +=100m ∴=故答案为:100;(2)由(1)得,华氏温度=摄氏温度95⨯+32,若华氏温度为a ,摄氏温度为b ,则把摄氏温度转化为华氏温度的公式为:a = 95b +32,故答案为:a =32+1.8b .【点睛】本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.5、V =100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V 与h 的关系为V =100h ;故答案为:V =100h .【点睛】本题主要考查了列函数关系式,题目比较简单.三、解答题1、(1)C (0,32);(2)(﹣2,0)或(2,3)或(﹣65,35)【解析】【分析】(1)首先求出A (3,0),B (0,4),得出AB =5,设OC =x ,则BC =4﹣x ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解方程即可;(2)首先可证∠BEC =∠COD =90°,分当点D 与P 重合,当CQ =BC =52时,当PC =BE =2,yy =yy =32,∠yyy =∠yyy =90°时,再分别根据图形性质求出点P 的坐标即可.【详解】解:(1)∵ y =−43y +4,令y =0, 则y =4, 令y =0, 则y =3,∴ A (3,0),B (0,4),∴OA =3,OB =4,∵∠AOB =90°,由勾股定理得,AB =√yy 2+yy 2=5,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴AD =AB =5,∴OD =2,设OC =x ,则yy =yy =4−y ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解得x =32,∴C (0,32);(2)设yy 为y =yy +y ,∴{−2y +y =0y =32解得:{y =34y =32所以直线CD 的解析式为y =34y +32,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴∠ABO =∠CDO ,∵∠BCE =∠DCO ,∴∠BEC =∠COD =90°,①当点D 与P 重合时,OP =2,OC =32,yy =4−32=52, CP =√22+(32)2=52, 而∠yyy =∠yyy ,∠yyy =∠yyy , 则△CPQ ≌△CBE ,此时y ,y 重合,∴P (﹣2,0);yy =yy =yy =2,yy =yy =yy =32,②当CQ =BC =52时,则点Q 的纵坐标为﹣1时,如图,当△CPQ ≌△CEB 时,∴yy =yy =32,yy =yy =2,∠yyy =∠yyy =90°,∴12×(−y y)×52=12×32×2,解得:y y=−65,∴y y=34×(−65)+32=35,∴y(−65,35 );③当PQ=BE=2,yy=yy=32,∠yyy=∠yyy=90°时,如图,△yyy≌△yyy,∴y y=2,y y=34×2+32=3,∴点P(2,3),综上,点P的坐标为(﹣2,0)或(2,3)或(−65,35 ).【点睛】本题考查的是一次函数与坐标轴的交点坐标问题,轴对称的性质,勾股定理的应用,利用待定系数法求解一次函数的解析式,全等三角形的判定与性质,清晰的分类讨论是解(2)的关键.2、(1)PQ=5cm;(2)t=53;(3)S四边形APQB=30﹣5t+t2.【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=√yy2+yy2=√(5−y)2+(2y)2,∵t=2,∴PQ=√32+42=5cm,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=12yy⋅yy−12yy⋅yy=12×5×12−12×(5−y)×2y=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)80,100;(2)y 2=0.2x ;(3)②【解析】【分析】(1)根据题意由函数图象就可以得出①②收费;(2)根据题意设②中y 与x 的关系式为y 2=k 2x ,由待定系数法求出k 2值即可;(3)根据题意设①中y 与x 的关系式为y 1=k 1x +b ,再讨论当y 1>y 2,y 1=y 2,y 1<y 2时求出x 的取值就可以得出结论.【详解】解:(1)由函数图象,得:①方式收费80元,②方式收费100元,故答案为:80,100;(2)设②中y 与x 的关系式为y 2=k 2x ,由题意,得100=500k 2,∴k =0.2,∴函数解析式为:y 2=0.2x ;(3)设①中y 与x 的关系式为y 1=k 1x +b ,由函数图象,得:{y =30500y 1+y =80, 解得:{y 1=0.1y =30 , ∴y 1=0.1x +30,当y 1>y 2时,0.1x +30>0.2x ,解得:x<300,当y1=y2时,0.1x+30=0.2x,解得:x=300,当y1<y2时,0.1x+30<0.2x,x>300,∵200<300,∴方式②省钱.故答案为:②.【点睛】本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.4、(1)见解析;(2)x<-3;x>-3;(3)BC=3√5.【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y =-2x -6与x 轴交点B 的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =√yy 2+yy 2=3√5【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.5、 (1) (32,3);(2) x ≥32.【解析】【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得{y =2y ,y =−23y +4,解得{y =32,y =3.∴点A 的坐标为(32,3);(2)由图象得不等式2x ≥-23x +4的解集为x ≥32.【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.。
2017-2018学年(新课标)沪科版八年级数学下册第19章四边形单元测试卷一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD。
(B)∠A=∠C,∠B=∠D。
(C)AB=AD,BC=CD。
(D)AB=CD,AD=BC。
2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为( )A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是( )A.6B.7C.8D.98菱形的周长是它的高的4√2倍,则菱形中较大的一个角是( )A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是( )A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG的周长是( )A.8B.9C.10D.12二、填空题(每题5分,共20分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
12、对角线长为2的正方形的周长为___________,面积为__________。
八年级数学四边形测试题 姓名之杨若古兰创作(考试时间:90分钟 满分:100分)一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形.2、如图⑴已知O 是平行四边形ABCD 的对角线交点,AC =24,BD =38,AD =14,那么△OBC 的周长等于_____.3、在平行四边形ABCD 中,∠C=∠B+∠D,则∠A=___,∠D =___.4、一个平行四边形的周长为70cm ,两边的差是10cm ,则平行四边形各边长为____cm.5、已知菱形的一条对角线长为12cm ,面积为30cm2,则这个菱形的另一条对角线长为__________cm.6、菱形ABCD 中,∠A=60o ,对角线BD 长为7cm ,则此菱形周长_____cm.7、如果一个正方形的对角线长为,那么它的面积______.8、如图(2)矩形ABCD 的两条对角线订交于O,∠AOB=60o,AB =8,则矩形对角线的长___.9、如图(3),等腰梯形ABCD 中,AD∥BC,AB∥DE,BC =8,AB =6,AD =5则△CDE 周长___.10、正方形的对称轴有___条11、如图(4),BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需添加的一个条件是______12、要从一张长为40cm ,宽为20cm 的矩形纸片中,剪出长为AB C O ⑴ A B CO ⑵ A BD ⑶ A D B CF E ⑷18cm,宽为12cm的矩形纸片,最多能剪出______张.二、选择题:(每小题3分,共18分)13、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可所以()A、1:2:3:4B、1:2:2:1C、2:2:1:1D、2:1:2:114、菱形和矩形必定都具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角线互相平分且相等15、以下命题中的假命题是()A、等腰梯形在同一底边上的两个底角相等B、对角线相等的四边形是等腰梯形C、等腰梯形是轴对称图形D、等腰梯形的对角线相等16、四边形ABCD的对角线AC、BD交于点O,能判定它是正方形的是()A、AO=OC,OB=ODB、AO=BO=CO=DO,AC⊥BDC、AO=OC,OB=OD,AC⊥BDD、AO=OC=OB=OD17、给出以下四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形.其中准确命题的个数为()A、1个B、2个C、3个D、4个18、以下矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是()C D三、解答题(58分)19、(8分)如图:在□ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25o,求∠C、∠B的度数.ABCD中,AD∥BC,AB=DC,∠D=120o,对角线CA平分∠BCD,且梯形的周长20,求AC.ABCD中,E为CD边上的一点,F为BC的耽误线上一点,CE=CF.⑴△BCE与△DCF全等吗?说明理由;⑵若∠BEC=60o,求∠EFD.22、证实题:(8分)如图,△ABC中∠ACB=90o,点D、E分别是AC,AB的中点,点F在BC的耽误线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.中点ABDCFE60oABDCFE23、(8分)已知:如图所示,△ABC 中,E 、F 、D 分别是AB 、AC 、BC 上的点,且DE∥AC,DF∥AB,要使四边形AEDF 是菱形,在不改变图形的前提下,你需添加的一个条件是_______________试证实:这个多边形是菱形.24、利用题(8分)某村要挖一条长1500米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,渠底宽为1.2米,腰与渠底的夹角为135o ,问挖此渠需挖出土多少方?25、(10分)观察下图⑴正方形A 中含有_____个小方格,即A 的面积为____个单位面积.⑵正方形B 中含有_____个小方格,即B 的面积为____个单位面积.⑶正方形C 中含有_____个小方格,即C 的面积为____个单位面积.⑷你从中得到的规律是:_______________________.25、附加题(10已知:如图,在直角梯形ABCD AD =24cm ,BC =26cm ,动点P 从A 点开始沿动,动点Q 从C 点开始沿CB 边向B 以、Q 分别AB DC F E从A 、C 同时出发,当其一点到端点时,另一点也随之停止活动,设活动时间为t 秒,t 分别为什么值时,四边形PQCD 是平行四边形?等腰梯形?八年级数学单元测试答案 一、⑴相等;⑵45;⑶∠A=120o ,∠D=60o ;⑷22.5,12.5;⑸5;⑹28;⑺1;⑻16;⑼15;⑽4;⑾略;⑿3.二、⒀D;⒁C;⒂B;⒃B;⒄B;⒅B19、解:∠BAD=2∠DAE=2×25o=50o (2分)又∵□ABCD ∴∠C=∠BAD=50o (4分)∴AD∥BC∴∠B=180o -∠BAD (6分)=180o -50o =130o (8分) 20、解:∵AD∥BC ∴∠1=∠2 又∠2=∠3 ∴∠1=∠3 AD =DC (2分)又AB =DC 得AB =AD =DC =在△ADC 中∵∠D=120o∠1=∠3=又∠BCD=2∠3=60o∴∠B=∠BCD=60o (4分)∠BAD=180o -∠B-∠2=90o∠2=30o则BC =2AB =2x (6分)AB =4 BC =8 在Rt△ABC 中AC =(8分)21、⑴△BCE≌△DCF (1分) 理由:由于四边形ABCD 是正方形∴BC=CD ,∠BCD=90o A P DD Q C A DB 1 2 3∴∠BCE =∠DCF又CE =CF ∴△BCE≌△DCF(4分) ⑵∵CE =CF∴∠CEF =∠CFE∵∠FCE =90o∴∠CFE =又∵△BCE≌△DCF ∴∠CFD=∠BEC=60o (6分) ∴∠EFD=∠CFD-∠CFE=60o -45o =15o (8分)22、证实:∵D、E 分别是AC 、AB 的中点 ∴DE∥BC (1分) ∵∠ACB=90o∴CE=AB =AE (3分)∵∠A=∠ECA ∴∠CDF=∠A (4分)∴∠CDF=∠ECA ∴DF∥CE (7分)∴四边形DECF 是平行四边形 (8分)23、答条件AE =AF (或AD 平分角BAC ,等) (3分) 证实:∵DE∥AC DF∥AB∴四边形AEDF 是平行四边形 (6分)又AE =AF∴四边形AEDF 是菱形(8分)24、如图所示设等腰梯形ABCD 为渠道横断面,分别作DE⊥AB,CF⊥AB (2分)垂足为E 、F 则CD =1.2米,DE =CF =0.8米∠ADC=∠BCD =135o (4分)AB∥CD ∠A+∠ADC=180o∴∠A=45o =∠B 又DE⊥AB CF⊥AB ∴∠EDA=∠A ∠BCF=∠B又∵四边形CDEF 是矩形 ∴EF=CD =1.2米 (6分)A D C E FS梯形ABCD=∴所挖土方为1.6×1500=2400(立方米)(8分)(解析:解决本题的关键是数学建模,求梯形面积时,留意作辅助线,把梯形成绩向三角形和矩形转化)25、①4,4 (2分)②9,9 (4分)③13,13 (6分)④在直角三角形中两直角边的平方和等于斜边的平方(10分)26、解由于AD∥BC,所以,只需QC=PD,则四边形PQCD就是平行四边形,此时有3t=24-t.(3分)解之,得t=6(秒)(4分)当t=6秒时,四边形PQCD平行四边形. (5分)同理,只需PQ=CD,PD≠QC,四边形PQCD为等腰梯形.过P、D分别作BC的垂线交BC于E、F,则由等腰梯形的性质可知,EF=PD,QE=FC=26-24=2,所以2,解得.(10分)所以当t=7秒时,四边形PQCD是等腰梯形.。
人教版数学八年级下册 第十九章能力提优测试卷一、选择题 1.函数中的自变量x 的取值范围是( )A .B .x≥1C .D .2.若正比例函数的图象经过点(2,4),则这个图象也必经过点( ) A.(2,1) B.(-1,-2) C.(1,-2) D.(4,2)3.已知y -1与x 成正比,当x=2时,y=9;那么当y=-15时,x 的值为( ) A .4 B .-4 C .6 D .-64.已知一次函数y=(k+1)x+b 的图象如图所示,则k 的取值范围是( ) A.k<0 B.k<-1 C.k<1 D.k>-15.某航空公司规定,旅客乘机所携带行李的质量x (单位:kg )与其运费)y (单位:元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )A.20 kgB.25 kgC.28 kgD.30 kg6.已知一次函数和的图象都过点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( )A .2B .C .D .37.若一次函数y=ax+b (a 、b 为常数且a≠0)满足下表,则方程ax+b=0的解是( )A.x=1B.x=-1C.x=2D.x=38.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx -3m+6将四边形ABCD 分成面积相等的两部分,则m 的值为( )A .B .-1C .2D .9.如图所示,直线与直线交于点P (-2,3),不等式的解集是( )12y -=x 21x ≠21x >21x≥m x +=32y n x +-=21y 37273121A.x>-2 B.x≥-2 C.x<-2 D.x≤-210.在某电视节目中,甲和乙进行无人驾驶汽车运送货物表演,甲操控的快车和乙操控的慢车分别从A、B两地同时出发,相向而行.快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a,b的值分别为( )A. 39,26B. 39,26.4C. 38,26D. 38,26.4二、填空题1.函数y=(k+1)x+k²-1中,当后满足_______时,它是一次函数.2.将一次函数y= 3x的图象向上平移2个单位,所得图象的函数表达式为_________________.3.若点(-1,y₁)与(2,y₂)在一次函数y=- 2x+1的图象上,则y₁____y₂.(填>、<或=).4.如图,已知一次函数y= 3x-1和y= -x+3的图象交于点P,则二元一次方程组的解是_____________.5.某商店今年6月初销售纯净水的数量如下表所示:观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量为________瓶.6.如果一次函数y=kx+b(k≠0)的图象与x轴的交点坐标为(-2,0),如图所示,则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x= -2;③kx+b >0的解集是x>-2;④b<0.其中正确的说法有_____.(只填你认为正确说法的序号)7.如图所示,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l’的函数解析式为_________.8.已知动点P以2 cm/s的速度沿图①所示的边框按B→C→D→E→F→A的路径运动(点P异于A、B两点),记△ABP的面积为y(单位:cm²),y与运动时间t(单位:s)的关系如图②所示,若AB=6 cm,则m=__________.三、解答题1.如图所示,已知点A的坐标为(1,3),点B的坐标为(3,1).(1)写出经过A、B两点的直线的函数表达式;(2)指出该函数的两个性质.2.如图所示,在边长为20 cm的正方形跑道ABCD的一边BC上,有一个微型电动玩具P从B点开始以每秒1cm的速度匀速向C点运动,连接AP,设电动玩具运动的时间为xs,四边形APCD的面积为y cm².(1)写出y与x之间的关系式,你能求出x的范围吗?(2)当x为何值时,四边形APCD的面积为350cm²?(3)当电动玩具P由B向C运动时,四边形APCD的面积越来越大,还是越来越小?3.某汽车租赁公司对某款汽车的租赁方式按时段计费,该公司要求租赁方必须在9天内(包括9天)将所租汽车归还,租赁费用y(单位:元)随时间x(单位:天)的变化图象为折线OA-AB-BC.如图所示.(1)当租赁时间不超过3天时,每日租金为__________元;(2)当6≤x≤9时,求y与x的函数解析式;(3)甲、乙两人租赁该款汽车各一辆,两人租赁时间一共为9天,甲租的天数少于3天,乙比甲多支付费用720元,请问乙租这款汽车多长时间?4.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C;乙先乘景区观光车到景点B,在B处停留一段时间后,再步行到景点C;甲、乙两人同时到达景点C.甲、乙两人距景点C的路程y(单位:米)与甲出发的时间x(单位:分)之间的函数图象如图所示:(1)甲步行的速度为_______米/分,乙步行的速度为_____米/分;(2)求乙乘景区观光车时y与x之间的函数关系式;(3)问甲出发多长时间与乙在途中相遇,请直接写出结果.5.为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A、B城往C、D两乡运肥料的平均费用如下表,现C乡需要肥料240吨.D乡需要肥料260吨.(1)求A城和B城各有多少吨肥料;(2)设从B城运往D乡肥料x吨,总运费为y元,求y与x之间的函数关系,并写出自变量x 的取值范围;(3)由于更换车型,使B 城运往D 乡的运费每吨减少a 元(a>0),其余路线运费不变,若总运费最小值不少于10 040元,求a 的最大整数值.第十九章能力提优测试卷 1.D 函数中,2x -1≥0,解得.2.B 设正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,4).∴将点(2,4)代入y=kx 可得k=2.∴函数解析式为y= 2x ,将选项中各点代入,可以判断(-1,-2)在函数图象上.故选B . 3.B 根据题意设y -1=kx(k≠0),把x=2,y=9代入得9-1= 2k ,解得k=4,所以y -1= 4x ,即y=4x+1,当y=-15时,4x+1=-15,解得x= -4.4.B 观察图象知y 随x 的增大而减小.∴k+1<0,解得k<-1. 5.A 设y 与x 的函数关系式为y=kx+b(k≠0), 由题意可知解得所以函数关系式为y= 30x -600,当y=0时,30x -600=0,解得x=20.故旅客可携带的免费行李的最大质量为20 kg .6.B 把A (-2,0)分别代入一次函数m 32y +=x 和,得,n=-1.故B 、C 两点的坐标分别为(0,4/3),(0,-1) ,则又∵OA=l -2l =2.∴△ABC的面积为×BCx OA=,故选B .7.A 由表格可得,当y=0时,x=1.∴方程ax+b=0的解是x=1. 8.B 如图,∵A(0,0),B(10,0),C(12,6),D(2,6), ∴AB= 10-0= 10,CD= 12-2= 10,∴ AB= CD, 又一点C 、D 的纵坐标相同. AB△CD, ∴四边形ABCD 是平行四边形,∵12÷2=6.6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线 y=mx -3m+6将四边形ABCD 分成面积相等的两部分,21x ≥nx +-=21y 34m =213723721=⨯⨯∴直线y=mx -3m+6经过点P ,∴6m -3m+6=3,解得m= -1.故选B .9.A 由题图可知,当x>-2时,,所以不等式的解集是x>-2.10.B 根据图象信息知,速度和为24÷(30-18)=2(米/秒),由题意得b -24/3=0.3(米/秒),解得b= 26.4,因此慢车速度为0.8(米/秒),快车速度为2-0.8=1.2(米/秒),快车返回追至两车距离为24米的时间为( 26.4 - 24)÷(1.2-0.8)=6(秒),因此a= 33+6= 39.故选B . 二、 1.k≠-1解析:函数y= (k+1)x+k ²-1中,当k 满足k≠-1时,它是一次函数. 2.y= 3x+2解析:将正比例函数y=3x 的图象向上平移2个单位后所得图象的函数解 析式为y= 3x+2. 3.>解析:∵点(-1,y 1)与(2,y 2)在一次函数y= - 2x+1的图象上,∴y 1=-2x(-1)+1=3,y 2=-2x2+1=-3,∴y 1>y 2.4.解析:根据题意可知,二元一次方程组的解就是一次函数y=3x -1和y= -x+3的图象的交点P 的坐标,所以二元一次方程组的解是.5. 150解析:这是一个一次函数模型,设y=kx+b(k≠0),有解得∴ y=5x+115,当 x=7时,y=150.∴预测今年6月7日该商店销售纯净水的数量为150瓶. 6.①②④解析:由题图可知k<0.①y 随x 的增大而减小,故①正确;②图象与z 轴交于点(-2,0),故关于x 的方程kx+b=0的解为x=-2,故②正确;③不等式kx+b>0的解集是x<-2,故③错误;④直线与y 轴负半轴相交.b<0,故④正确.综上所述,说法正确的是①②④.2256x 23-->+x 2256x 23-->+x ⎩⎨⎧==21x y ⎩⎨⎧+-=-=3,13y x y x ⎩⎨⎧+-=-=3,13y x y x ⎩⎨⎧==21x y ⎩⎨⎧=+=+,1252.120k b k b ⎩⎨⎧==.115,5k b7.解析:设直线l 和八个正方形的最上面交点为A ,过点A 作AB ⊥y 轴于点B ,作AC ⊥x 轴于点C ,如图,∵正方形的边长为1.∴OB=3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分, ∴这两部分面积分别是4.∴三角形ABO 面积是5,∴.∴AB=5,∴.∴, 由此可知直线l经过点.设直线l 的解析式为y=kx(k ≠0),则,,∴直线l 的解析式为,∴直线l 向右平移3个单位长度后所得直线l 的解析式为,即,故答案为.8.13解析:由题图得,点P 在BC 上移动了3s ,故BC=2x3=6(cm).点P 在CD 上移动了2s .故CD=2x2=4(cm).点P 在DE 上移动了2s ,故DE=2x2=4(cm). 由EF=AB -CD=6-4=2(cm)可得点P 在EF 上移动了1s . 由AF= BC+DE= 6+4=10( cm)可得点P 在FA 上移动了5s .综上,点P 走完全程的时间为7+1+5= 13(s).故m= 13. 三、1.解:(1)设经过A 、B 两点的一次函数表达式为y=kx+b(k≠0),有解得故经过A 、B 两点的直线的函数表达式为y= -x+4.(2)答案不唯一,如:①函数y 的值随x 的增大而减小;②函数的图象与x 轴的交点为(4,0);③函数的图象与y 轴的交点为(0,4);⑧函数的图象经过第一、二、四象限;⑤函数的图象与坐标轴围成等腰直角三角形;……2.解析:(1)y 电动玩具运动的时间为x s ,则BP=x cm . 则y=×( 20+20-x)×20,即y=400-10x(0≤x<20).(2)把y= 350代入y=400-10x 得400-10x= 350,解得x=5.1027109y -=x 5OB.AB 21=310AB =310OC =⎪⎭⎫⎝⎛3310,k 3103=109k =x109y =)3(109y -=x 1027109y -=x 1027109y -=x ⎩⎨⎧+=+=,31,k 3b k b ⎩⎨⎧=-=.4,1b k 21(3)当电动玩具P由B向C运动时,梯形的上底长越来越小,或者根据一次函数中k<0时,y随x的增大而减小,可得四边形APCD的面积越来越小.3.解析:(1)由函数图象得450÷3=150(元).故填150.(2)设6sx≤9时,函数的解析式为y=kx+b(k≠0),由函数图象,得解得∴y与x的函数关系式为y=210x-450(6≤x≤9).(3)设乙租这款汽车n(6<n<9)天,甲租用的时间为(9-a)天,由题意得甲的租金为150(9-a),乙的租金为210a-450,210a-450-150(9-a)=720,解得a=7.故乙租这款汽车的时间是7天.4.解析:(1)甲步行的速度为5 400÷90= 60(米/分);乙步行的速度为(5 400-3 000)÷( 90-60)= 80(米/分).故答案为60:80.(2)根据题意,设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(△≠O),将(20,0),(30,3 000)代入得解得∴乙乘景区观光车时y与x之间的函数关系式为y=300x-6000(20≤x≤30).(3)设甲的函数解析式为y=mx(m≠0),将(90,5400)代入得m=60.∴y= 60x.由得x= 25,即甲出发25分钟与乙第一次相遇;在y= 60x中,令y=3 000,得x= 50,此时甲与乙第二次相遇,故甲出发25分钟和50分钟与乙两次在途中相遇.5.解析:(1)设A城有肥料a吨,B城有肥料b吨,根据题意,得解得故A城和B城分别有200吨和300吨肥料.(2)设从B城运往D乡x吨肥料,则从B城运往C乡(300-x)吨肥料,从A城运往D乡(260-x)吨肥料,则从A城运往C乡(x- 60)吨肥料,根据题意,得总运费y= 20(x-60)+25( 260-x) +15(300-x)+30x= 10x+9 800.由题意得∴60≤x≤ 260.∴与x的函数关系式为,= 10x+9 800,自变量x的取值范围是60≤x≤260.(3)从B城运往D乡x吨肥料,由于B城运往D乡的运费每吨减少a(a>0)元,所以y= 20(x- 60)+25( 260-x) +15( 300-x)+(30-a)x=(10-a)x+9 800( 60≤x≤260).若C、D两乡的总运费最小值不少于10 040元,若10-a≥0,即0<a≤10,则x= 60时,y最小值=60(10-a)+9 800,由题意知y≥10 040,∴( 10-a) x60+9 800≥10 040,⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≥-.0,0300,0260,060xxxx解得0<a≤6.若10-a<0,即a>10,则x=260时,y 最小值=260(10-a )+9 800,由题意知260(10-a) +9 800≥10 040,解得(不合题意,舍去).综上所述.0<a≤6.故若总运费最小值不少于10 040元,则a 的最大整数值为6.1319a。
2、能判定四边形ABCD 为平行四边形的题设是( ).(A )AB ∥CD ,AD=BC; (B )∠A=∠B ,∠C=∠D; (C )AB=CD ,AD=BC; (D )AB=AD ,CB=CD4、菱形ABCD 的对角线长分别为6cm 和8cm ,则菱形的面积为( )A.12,B.24C.36D.485.下列说法不正确的是( )(A )对角线相等且互相平分的四边形是矩形;(B )对角线互相垂直平分的四边形是菱形;(C )对角线垂直的菱形是正方形;(D )底边上的两角相等的梯形是等腰梯形6、如图1,在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠( )A.55 B.35 C.25 D.30二、填空题(每题5分,共30分)7、顺次连结任意四边形各边中点所得到的四边形一定是__10、如图4,把一张矩形纸片ABCD 沿EF折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .则△EFG 形状为12.如图6,AC 是正方形ABCD 的对角线,AE 平分∠BAC ,EF ⊥AC 交AC 于点F ,若BE=2,则CF 长为三、解答题(每题10分,共40分)13、(10分)已知:如图7,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。
求证:∠CDF =∠ABE14、(10分)如图8,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H.求证:HC=HF.15、(10分)已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△AB外角∠CAM的平分线,CE⊥AN,垂足为点E,猜想四边形ADCE的形状,并给予证明.16、(10分)如图10,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形,一.选择及填空题(每题5分,共10分)1、如图11,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点E,交AB于点F,F为垂足,连接DE,则∠CDE=_________度2.如图12,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形.下列结论中不一定...正确的是().(A)AE=FC(B)AD=BC (C)∠AEB=∠CFD(D)BE=AF二、填空题(每题5分,共10分)3、如图13,已知:平行四边形ABCD中,∠的平分线CE交边AD于E,BCD∠的平分线BG交CE于F,交AD ABC于G.若AB=4cm,AD=6cm,则EG=_______ cm .4、将矩形纸片ABCD 按如图14所示的方式折叠,得到菱形AECF .若AB =9,则AC 的长为 _________《“四边形”综合测试题(一)》参考答案基础巩固一、选择题1、D2、C3、A4、B5、C.6、B二、填空题7、平行四边形 8、3. 9、45° 10、等腰三角形 11、23 12.2三、解答题13、证明:(1)∵ ABCD 是平行四边形,∴DC=AB ,DC ∥AB,∴∠DCF=∠BAE ,∵ AE=CF , ∴△ADF ≌△CBE ,∴∠CDF =∠ABE14、如图8,把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H .求证:HC=HF.解:证明:连结AH ,∵四边形ABCD ,AEFG 都是正方形.∴90B G ∠=∠=°,AG AB =,BC=GF ,又AH AH =.Rt Rt ()AGH ABH HL ∴△≌△,HG HB =∴,∴HC=HF.15、解:猜想四边形ADCE 是矩形。
人教版八年级数学第十九章四边形测试题人教版八年级数学第十九章四边形试题一、多项选择题(本大题共有10个子题,每个子题得3分,共计30分)1.□abcd中,∠a比∠b大40°,则∠c的度数为()a、60°b.70°c.100°d.110°2.□abcd的周长为40cm,△abc的周长为25cm,则对角线ac长为()a.5cmb.6cmc.8cmd.10cm3.在□ ABCD,∠ a=43°,交叉点a作为BC和CD的垂直线,则这两条垂直线的夹角为()a.113°b.115°c.137°d.90°4,如图所示,在□ ABCD,EF穿过对角线o的交点,ab=4,ad=3,of=1.3,则四边形bcef的周长为()deca.8.3b.9.6c.12.6d.13.6o5.下列命题:①一组对边平行,另一组对边相等的四边形ab是平行四边形;②对角线互相平分的四边形是平行四边形;f第4题图③在四边形abcd中,ab=ad,bc=dc,那么这个四边形abcd是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()a.0个b.1个c.3个d.4个6.四边形的三个内角的度数如下,其中平行四边形的度数为()a.88°、108°、88°b.88°、104°、108°c.88°、92°、92°d.88°、92°、88°7矩形具有一般平行四边形不一定具有的特征()a.对角相等b.对角线互相平分c.对角线相等d.对边相等8.如图,矩形abcd沿ae折叠,使d点落在bc边上的f点处,如果∠ BFA=30°,则∠ C EF等于20°b.30°c.45°d.60°9.菱形具有而一般平行四边形不一定具有的特征是()ea。
四边形制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日一、单项选择题〔每一小题4分,一共40分〕1、在四边形ABCD中,O是对角线的交点,能断定这个四边形是下方形的条件是( )A. AC=BD,AD CDB. AD∥BC,∠A=∠CC. AO=BO=OC=DO,AB=BCD. AO=CO,BO=DO,AB=BC2、矩形的四个内角平分线围成的四边形( )A. 一定是正方形B. 是矩形C. 菱形D. 只能是平行四边形3、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm 2,那么原来的正方形铁片的面积是( )A. 8cmB. 64cmC. 8cm 2D. 64cm 24、如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB 边上的点P处.假设∠CDE=48°,∠APD等于( )A. 42°B. 48°C. 52°D. 58°5、如图,□ABCD中,对角线AC和BD相交于点O,假如AC=12、BD=10、AB=m,那么m的取值范围是( )A. 1<m<11B. 2<m<22C. 10<m<12D. 5<m<66、如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,那么PE+PF 等于( )A. B. C. D.7、如以下图,延长方形ABCD的一边BC至E,使CE=AC,连结AE交CD于F,那么∠AFC的度数是( )A. 112.5°B. 120°C. 122.5°D. 135°8、如图,E是平行四边形内任一点,假设S □ABCD=8,那么图中阴影局部的面积是( )A. 3B. 4C. 5D. 69、如图,在□ABCD的面积是12,点E,F在AC上,且AE=EF=FC,那么△BEF的面积为( )A. 6B. 4C. 3D. 210、四边形ABCD的对角线AC、BD交于点O,设有以下论断:<1>AB=BC:<2>∠DAB=90°:<3>BO=DO,AO=CO:<4>矩形ABCD;<5>菱形ABCD;<6>下方形ABCD,那么以下推论中不正确的选项是( )A. B. C. D.二、填空题〔每一小题5分,一共20分〕11、如图,正方形ABCD边长为1,E、F、G、H分别为其各边的中点,那么图中阴影局部的面积为( )。
第19章矩形、菱形、正方形检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. (2018·四川凉山中考)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.172.下列命题中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相平分且相等的四边形是正方形3.(2018·陕西中考)如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN,若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.454.(2018·成都中考)如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则的长为()A.1B.2C.3D.45.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、DA、CD、BC的中点.若,,则图中阴影部分的面积为()A.3B.4C.6D.86.如图所示,将一圆形纸片对折后再对折,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A B C D7.如图,在菱形中,,∠,则对角线等于()A.20 B.15 C.10 D.58.如图,小亮用六块形状、大小完全相同的等腰梯形拼成一个四边形,则图中∠的度数是()A.B. C.D.9.(2018·山东威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF10.若正方形的对角线长为2 cm,则这个正方形的面积为()A.4B.2C.D.二、填空题(每小题3分,共21分)11.(2018·南京中考)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O 处,折痕为EF,若菱形ABCD的边长为 2 cm,∠A=120°,则EF=cm.12.(2018·山东潍坊中考)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形.(只需添加一个即可)13.已知菱形的边长为5,一条对角线长为8,则另一条对角线长为_________.14.如图,矩形的对角线,,则图中五个小矩形的周长之和为_______.15.(2018·北京中考)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.16.如图,在矩形ABCD中,对角线AC与BD相交于点O,且cm,则BD的长为________cm,BC的长为_______cm.17.(2017·江西中考)如图,在矩形ABCD中,点E,F分别是AB,CD的中点,连接DE和BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.三、解答题(共49分)18.(8分)(2018·南京中考)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P 是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.19.(8分)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接____________ ;(2)猜想:______________=_______________;(3)试证明你的猜想.ABDO第16题图20.(8分)如图,在正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,请找出图中和BE相等的线段,并说明你的结论.21.(8分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.22.(9分)已知:如图,在△ABC中,,M为底边BC上任意一点,过点M分别作AB、AC的平行线,交AC于点P,交AB于点Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.23.(8分)(2018·山东青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=时,四边形MENF是正方形(只写结论,不需证明)第19章矩形、菱形、正方形检测题参考答案1.C 解析:根据菱形的性质得到AB=BC=4,由∠B=60°得到△ABC是等边三角形,所以AC=4.则以AC为边长的正方形ACEF的周长为16.2.C 解析:两条对角线互相平分的四边形是平行四边形,A错;两条对角线互相平分且相等的四边形是矩形,B错;两条对角线互相垂直平分且相等的四边形是正方形,D错.故选C.3. C 解析:设AB=x,AM=y,则BM=MD=2x-y.在Rt△ABM中,根据勾股定理有BM2=AB2+AM2,即(2x-y)2=x2+y2,整理得3x=4y,所以x=43y,故AMMD=423yy y⨯-=53yy=35.4.B 解析:因为四边形ABCD是矩形,所以CD =AB=2.由于沿BD折叠后点C与点C′重合,所以=CD=2.5.B 解析:∵矩形ABCD的面积为,∴阴影部分的面积为,故选B.6.C7.D 解析:在菱形中,由∠= ,得∠.又∵,∴△是等边三角形,∴.8.A 解析:观察图形,在等腰梯形的一个上底角顶点处有三个上底角,因而等腰梯形上底角等于,所以.9.D 解析:本题综合考查了直角三角形、线段的垂直平分线的性质与菱形、正方形的判定方法等知识.因为EF垂直平分BC,所以BE=EC,BF=FC.又BE=BF,所以BE=EC=CF=FB,所以四边形BECF为菱形.如果BC=AC,那么∠ABC=90°÷2=45°,则∠EBF=90°,能证明四边形BECF为正方形.如果CF⊥BF,那么∠BFC=90°,能证明四边形BECF为正方形.如果BD=DF,那么BC=EF,能证明四边形BECF为正方形.当AC=BF时,可得AC=BE=EC=AE,此时∠ABC=30°,则∠EBF=60°,不能证明四边形BECF为正方形.点拨:判定一个四边形是正方形一般有两种方法:一是先证明它是矩形,再证明一组邻边相等或证明对角线互相垂直;二是先证明它是菱形,再证明有一个角是直角或证明对角线相等.10.B 解析:如图,正方形ABCD中,,则,即,所以,所以正方形的面积为2 ,故选B.11. 3解析:本题综合考查了菱形的性质、勾股定理和三角形中位线的性质.连接BD,AC.∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD.∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°-60°=30°.∵∠AOB=90°,∴AO=12AB=12×2=1(cm).由勾股定理得BO=3cm,∴DO=3cm.∵点A沿EF折叠后与O重合,∴EF⊥AC,EF平分AO.∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=12BD=12×(3+3)=3(cm).12.OA=OC或AD=BC或AD∥BC或AB=BC等(答案不唯一)解析:本题主要考查了菱形的判定方法,属于条件开放型题目.对角线互相垂直平分的四边形是菱形;四条边都相等的四边形是菱形;有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.13.6 解析:∵菱形的两条对角线互相垂直平分,∴根据勾股定理,可求得另一条对角线长的一半为3,则另一条对角线长为6.14.28 解析:由勾股定理得,又,,所以所以五个小矩形的周长之和为15. 20 解析:本题考查了矩形的性质、三角形中位线的性质和勾股定理.在Rt△ABC中,因为AB=5,BC=AD=12,由勾股定理可得AC=13.因为O是矩形ABCD的对角线AC的中点,M是AD的中点,所以OM==2.5,=6.5,,所以四边形ABOM的周长=AB+BO+OM+MA=5+6.5+2.5+6=20.16.4 解析:因为cm,所以cm.又因为,所以cm.,所以(cm).6解析:在Rt△ADE中,M为DE中点,故S△AEM=S△ADM,所以S△AEM=12S△AED,同理S△BNC=12S△BFC,S□DMNF=12S□BEDF,所以S阴影=12S矩形ABCD=12AB·BC=12×2×36.18.分析:本题考查了全等三角形和正方形的判定.(1)根据SAS定理可证明△ABD≌△CBD,从而得∠ADB=∠CDB.(2)先根据“有三个角是直角的四边形是矩形”证得四边形MPND是矩形,再根据“角平分线上的点到角两边的距离相等”得PM =PN ,从而证得矩形MPND 是正方形.证明:(1)∵ BD 平分∠ABC , ∴ ∠ABD =∠CBD . 又∵ BA =BC ,BD =BD , ∴ △ABD ≌△CBD . ∴ ∠ADB =∠CDB . (2)∵ PM ⊥AD ,PN ⊥CD , ∴ ∠PMD =∠PND =90°.又∵ ∠ADC =90°,∴ 四边形MPND 是矩形. 由(1)知∠ADB =∠CDB ,又PM ⊥AD ,PN ⊥CD , ∴ PM =PN .∴ 四边形MPND 是正方形.点拨:(1)证明三角形全等是证明角相等或线段相等的常用方法;(2)因为角平分线上的点到角两边的距离相等,所以遇到角平分线和两条垂线段时通常考虑这两条垂线段 相等.19.分析:观察图形可知应该是连接AF ,可通过证△ABF 和△ADE 全等来实现.解:(1)如图,连接AF. (2).(3)∵ 四边形ABCD 是菱形, ∴ , ∴ ∠∠, ∴ ∠∠.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB ∴ △ABF ≌△ADE ,∴.20.解:和BE 相等的线段是AF.理由如下: 因为四边形ABCD 是正方形, 所以,∠∠°.因为CE ⊥BF ,所以∠∠°.又因为∠∠°,所以∠∠.在△AFB 和△BEC 中,⎪⎩⎪⎨⎧∠=∠∠=∠=,,,ECB ABF A ABC BC AB 所以△≌△,所以.21.(1)证明:在矩形ABCD 中,,且,∴.(2)解:△ABF ≌△DEA .证明如下:在矩形ABCD 中,∵ BC ∥AD , ∴ ∠∠.∵ DE ⊥AG ,∴ ∠°. ∵ ∠°,∴ ∠∠.又∵,∴ △ABF ≌△DEA .22.分析:(1)根据平行四边形的性质可得对应角相等,对应边相等,从而不难求得其周长;(2)根据中位线的性质及菱形的判定说明. 解:(1)∵ AB ∥MP ,QM ∥AC , ∴ 四边形APMQ 是平行四边形,∠∠,∠∠.∵ ,∴ ∠∠, ∴ ∠∠,∠∠.∴,.∴ 四边形AQMP 的周长.(2)当点M 是BC 的中点时,四边形APMQ 是菱形,理由如下: ∵ 点M 是BC 的中点,AB ∥MP ,QM ∥AC , ∴ QM ,PM 是三角形ABC 的中位线. ∵,∴.又由(1)知四边形APMQ 是平行四边形,∴平行四边形APMQ是菱形.23.分析:本题考查了矩形的性质以及菱形和正方形的判定.(1)用SAS证明△ABM和△DCM全等.(2)先证四边形MENF是平行四边形,再证它的一组邻边ME和MF相等.(3)由(2)得四边形MENF是菱形,当它是正方形时,只需使∠BMC是直角,则有∠AMB+ ∠CMD=90°.又∵∠AMB=∠CMD,∴△AMB和△CMD都是等腰直角三角形.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.又∵MA=MD,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.理由:∵CF=FM,CN=NB,∴FN∥MB.同理可得:EN∥MC,∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴MB=MC.又∵ME=12MB,MF=12MC,∴ME=MF.∴平行四边形MENF是菱形. (3)解:2∶1.。
人教版八年级数学下册第十八章达标测试卷一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠A的度数为( )A.100°B.160°C.80°D.60°2.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为( )A.12 cm B.9 cm C.6 cm D.3 cm(第2题) (第3题)3.如图,在菱形ABCD中,下列结论错误的是( )A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠2 4.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为( )A.4 cm B.5 cm C.6 cm D.8 cm(第4题) (第5题)5.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF的周长为( )A.14 B.15 C.16 D.176.下列说法中,正确的个数有( )①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个7.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.8(第7题) (第8题)8.将五个边长都为2 cm的正方形按如图所示摆放,点A,B,C,D分别是四个正方形的中心,则图中四块阴影部分面积的和为( )A.2 cm2B.4 cm2C.6 cm2D.8 cm29.如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连接BG,DH,且BG∥DH,当AGAD=( )时,四边形BHDG为菱形.A.45B.35C.49D.38 (第9题) (第10题)10.如图是一个矩形的储物柜,它被分成4个大小不同的正方形①②③④和一个矩形⑤,若要计算⑤的周长,则只需要知道哪个小正方形的周长?你的选择是( )A.①B.②C.③D.④二、填空题(每题3分,共24分)11.如图,▱ABCD中,AC,BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.(第11题) (第12题)12.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件:____________,使四边形ABCD成为菱形(只需添加一个即可).13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC 的长为________cm.(第14题) (第15题)15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.16.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.17.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是__________.18.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分)19.如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.21.已知:如图,在▱ABCD中,延长CB至点E,延长AD至点F,使得DF=BE,连接EF与对角线AC交于点O.求证:OE=OF.22.在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.24.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).答案一、1.C 2.C 3.A 4.A 5.C 6.B 7.C 8.B 9.C 10.C 二、11.1412.OA =OC (答案不唯一) 13.三 14.26 15.(2+2)cm16.12517.30°或150°18.(3)n -1三、19.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠A =∠C . ∴∠F =∠E . ∵BE =DF ,∴AD +DF =CB +BE ,即AF =CE . 在△AGF 和△CHE 中,⎩⎨⎧∠A =∠C ,AF =CE ,∠F =∠E ,∴△AGF ≌△CHE (ASA). ∴AG =CH .20.(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =∠D =90°. ∴∠BAE +∠AEB =90°. ∵BH ⊥AE , ∴∠BHE =90°. ∴∠AEB +∠EBH =90°. ∴∠BAE =∠EBH .在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2, ∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得AF =AD 2+DF 2=52+32=34. 21.证明:连接AE ,CF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC . 又∵BE =DF ,∴AD +DF =BC +BE ,即AF =EC . 又∵AF ∥EC ,∴四边形AECF 为平行四边形. ∴OE =OF .22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE . ∵E 是AD 的中点, ∴AE =DE .在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE (AAS). ∴AF =BD .∵AD 是BC 边上的中线,∴DC=BD.∴AF=DC.(2)解:四边形ADCF是菱形.证明:由(1)得AF=DC,又∵AF∥BC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC上的中线,∴AD=12BC=DC.∴四边形ADCF是菱形.23.解:(1)四边形ADCE是菱形.理由:∵四边形BCED为平行四边形,∴CE∥BD,CE=BD,BC∥DE.∵D为AB的中点,∴AD=BD.∴CE=AD.又∵CE∥AD,∴四边形ADCE为平行四边形.∵BC∥DF,∴∠AFD=∠ACB=90°,即AC⊥DE.∴四边形ADCE为菱形.(2)在Rt△ABC中,∵AB=16,AC=12,∴BC=47.又易知BC=DE,∴DE=47.∴四边形ADCE的面积=12AC·DE=247.(3)当AC=BC时,四边形ADCE为正方形.证明:∵AC =BC ,D 为AB 的中点, ∴CD ⊥AB ,即∠ADC =90°. ∴四边形ADCE 为正方形. 24.(1)证明:如图①,连接BD .∵点E ,H 分别为边AB ,DA 的中点, ∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点, ∴FG ∥BD ,FG =12BD .∴EH ∥FG ,EH =FG .∴中点四边形EFGH 是平行四边形. (2)解:中点四边形EFGH 是菱形. 理由:如图②,连接AC ,BD . ∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD , 即∠BPD =∠APC . 在△APC 和△BPD 中,⎩⎨⎧PA =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD (SAS). ∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点, ∴EF =12AC ,FG =12BD .∴EF =FG .又由(1)中结论知中点四边形EFGH 是平行四边形, ∴中点四边形EFGH 是菱形. (3)解:中点四边形EFGH 是正方形.人教版八年级数学下册第十九章达标测试卷一、选择题(每题3分,共30分)1.函数y=1x-3+x-1的自变量x的取值范围是( )A.x≥1 B.x≥1且x≠3 C.x≠3D.1≤x≤32.下列图象中,表示y是x的函数的是( )3.如果函数y=kx+b(k,b是常数)的图象不经过第三象限,那么k,b应满足的条件是( )A.k≤0且b≥0 B.k<0且b≥0C.k≤0且b>0 D.k<0且b>04.把直线y=x向上平移3个单位长度,下列在该平移后的直线上的点是( ) A.(2,2) B.(2,3) C.(2,4) D.(2,5) 5.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x6.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab ≠0)的图象可能是( )7.某学习小组做了一个实验:从100 m高的楼顶随手放下一个苹果,测得有关数据如下:下落时间t/s 1 2 3 4下落高度h/m 5 20 45 80则下列说法错误的是( )A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5 s8.若直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是( )A.m>-1 B.m<1C.-1<m<1 D.-1≤m≤19.双胞胎兄弟小明和小亮在同一班读书,周五16:00放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自离学校的路程s(米)与用去的时间t(分)之间的关系如图所示,根据图象提供的有关信息,下列说法中错误的是( )A.兄弟俩的家离学校1 000米B.他们同时到家,用时30分C.小明的速度为50米/分D.小亮中间停留了一段时间后,再以80米/分的速度骑回家10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿着A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )二、填空题(每题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.13.图中直线是由直线l向上平移1个单位长度、向左平移2个单位长度得到的,则直线l对应的函数解析式为__________.(第13题) (第16题) (第18题)14.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集是__________.15.若一次函数y=-x+a与一次函数y=x+b的图象的交点坐标为(m,8),则a +b=________.16.某天,某巡逻艇凌晨1:00出发巡逻,预计准点到达指定区域,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(n mile)与所用时间t(h)的函数图象,则该巡逻艇原计划准点到达的时刻是__________.17.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是__________.18.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为__________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.21.如图,在平面直角坐标系中,已知点A(6,0),点B(x,y)在第一象限内,且x+y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;(2)画出(1)中所求函数的图象.22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是________元;(2)当x>2时,求y与x之间的函数解析式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?23.为了落实党的“精准扶贫”政策,A,B两城决定向C,D两乡运送肥料以支持农村生产,已知A,B两城分别有肥料210吨和290吨,从A城往C,D两乡运送肥料的费用分别为20元/吨和25元/吨;从B城往C,D两乡运送肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡的肥料有x吨.①用含x的代数式完成下表:C乡(吨) D乡(吨)A城xB城②设总运费为y元,写出y与x的函数关系式,并求出最少总运费.(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时A城运往C乡的肥料有多少吨时总运费最少?24.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数解析式;(2)老王要购买第十六层的一套楼房,若他一次性付清所有房款,请帮他计算哪种优惠方案更合算.答案一、1.B 2.D 3.A 4.D 5.C 6.A7.B8.C 9.C 10.B 二、11.-12 12.-2 13.y =x -2 14.x ≥12 15.1616.7:00 17.m <-2 18.x >3三、19.解:(1)设一次函数的解析式为y =kx +b .将点(-2,1)和(1,4)的坐标代入解析式中得: ⎩⎨⎧-2k +b =1,k +b =4,解得⎩⎨⎧k =1,b =3. ∴一次函数的解析式是y =x +3. (2)当x =3时,y =3+3=6.20.解:将点(1,0),(0,2)的坐标分别代入y =kx +b ,得⎩⎨⎧k +b =0,b =2,解得⎩⎨⎧k =-2,b =2.∴这个函数的解析式为y =-2x +2. (1)把x =-2代入y =-2x +2, 得y =6;把x =3代入y =-2x +2, 得y =-4.∴y 的取值范围是-4≤y <6. (2)∵点P (m ,n )在该函数的图象上, ∴n =-2m +2. ∵m -n =4,∴m -(-2m +2)=4, 解得m =2. ∴n =-2.∴点P 的坐标为(2,-2). 21.解:(1)过点B 作BC ⊥OA 于点C .∵点A 和点B 的坐标分别是(6,0),(x ,y ),且点B 在第一象限内, ∴S =12OA ·BC =12×6y =3y .∵x +y =8, ∴y =8-x .∴S =3(8-x )=24-3x .即所求函数解析式为S =-3x +24.由⎩⎨⎧x >0,-3x +24>0,解得0<x <8.(2)S =-3x +24(0<x <8)的图象如图所示.22.解:(1)7(2)设当x >2时,y 与x 之间的函数解析式为y =kx +b ,分别代入点(2,7),(4,10)的坐标,得⎩⎨⎧2k +b =7,4k +b =10,解得⎩⎨⎧k =32,b =4.∴y 与x 之间的函数解析式为y =32x +4(x >2).(3)∵18>2,∴把x =18代入y =32x +4,得y =32×18+4=31.答:这位乘客需付出租车车费31元. 23.解:(1)①210-x ;240-x ;50+x②y =20x +25(210-x )+15(240-x )+24(x +50)=4x +10 050. 因为y =4x +10 050是一次函数,k =4>0, 所以y 随x 的增大而增大.因为x ≥0,所以当x =0时,总运费最少,最少总运费是10 050元. (2)y =(20-a )x +25(210-x )+15(240-x )+24(x +50)=(4-a )x +10 050. 当0<a <4时,4-a >0,∴当x =0时,总运费最少是10 050元; 当4<a <6时,∵4-a <0,∴当x 最大时,总运费最少.即当x =210时,总运费最少.当a =4时,不管A 城运往C 乡的肥料有多少吨(不超过210吨),总运费都是10 050元.综上所述,当0<a <4时,A 城不向C 乡运送肥料时,总运费最少;当a =4时,不管A 城运往C 乡的肥料有多少吨(不超过210吨),总运费都是10 050元;当4<a <6时,当A 城运往C 乡的肥料有210吨时,总运费最少. 24.解:(1)当1≤x ≤8,x 取整数时,y =4 000-(8-x )×30=30x +3 760;当9≤x ≤23,x 取整数时,y =4 000+(x -8)×50=50x +3 600. ∴y =⎩⎨⎧30x +3 760(1≤x ≤8,x 取整数),50x +3 600(9≤x ≤23,x 取整数).(2)第十六层楼房的售价为50×16+3 600=4 400(元/m 2). 设按照方案一所交房款为:W 1=4 400×120×(1-8%)-a =(485 760-a )元, 设按照方案二所交房款为:W 2=4 400×120×(1-10%)=475 200(元).当W 1=W 2时,即485 760-a =475 200,解得a =10 560; 当W 1>W 2时,即485 760-a >475 200,解得a <10 560; 当W 1<W 2时,即485 760-a <475 200,解得a >10 560. ∴当0<a <10 560时,方案二更合算; 当a =10 560时,两种方案一样合算; 当a >10 560时,方案一更合算.。
人教版八年级数学(下)四边形测试题
班级 姓名 座号 成绩 .
一、选择题(每题3分,共24分)
1.能判定四边形ABCD 为平行四边形的题设是( ).
(A )AB ∥CD ,AD=BC; (B )∠A=∠B ,∠C=∠D; (C )AB=CD ,AD=BC; (D )AB=AD ,CB=CD
2.在□ABCD 中,∠A 的平分线交DC 于E ,若∠DEA=30°,则∠B =( )
A.100°
B.120°
C.135°
D.150°
3.顺次连结任意四边形各边中点所得四边形一定是 ( )
A .平行四边形
B .菱形
C .矩形
D .正方形
4.平行四边形一边长为12cm ,那么它的两条对角线的长度可能是( ).
(A )8cm 和14cm (B )10cm 和14cm (C )18cm 和20cm (D )10cm 和34cm
5中,AB=2,BC=3,∠B=60的面积为( ).
(A )6 (B (C )(D )3 6.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )
A .24
B .20
C .10
D .5
7.在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为( ) A.512 B.2 C.25 D.5
13 8.如图1,在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A = ∠,
则BCE =∠( )
A.55 B.35 C.25 D.30
二、填空题(每题4分,共32分)
9. 已知:平行四边形一边AB =12 cm,它的周长是60,则BC =______ cm,CD =______ cm.
10.平行四边形的一组对角度数之和为100°,则平行四边形中较大的角为 .
11.在平行四边形ABCD 中,若∠A-∠B=70°,则∠A=_______,∠B=_______,
12.在□ABCD 中,AC ⊥BD ,相交于O ,AC=6,BD=8,则AB=________,BC= _________.
13.若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为 _____________cm 2.
14.如图,已知□ABCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长是_____________ 。
15.如图△ABC 中,D 、E 分别是AB 、AC 边的中点,且DE=6cm ,则BC=__________.
16.如图3,若□ABCD 与□EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F = °
第14题图 第15题图 第16题图
三、解答题(共64分,其中17-20题每题10分,21-22题每题12分)
17(10分)如图, 在平行四边形ABCD 中,AE 平分∠BAD 交DC 于点E ,AD=5cm ,AB=8cm ,求EC 的长.
18(10分)如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.
19(10分)如图:已知在△ABC 中,AB=AC ,D 为BC 上任意一点,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,求证:DE+DF=AC
20(10分)如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.
21.(12分)已知:如图9,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,猜想四边形ADCE 的形状,并给予证明.
22.(12分)如图8,把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H .求证:HC=HF.。