半导体温度计的设计与制作实验报告
- 格式:docx
- 大小:191.30 KB
- 文档页数:6
实验7.3 半导体温度计的设计温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关,温度与科研,生产,人们的生活,植物生长有密切的关系,因此对温度的研究就显得尤为重要。
半导体温度计是以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法为非电量的电测法,它可以将各种非电量,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
直流电桥是一种精密的电学测量仪器,可分为平衡电桥和非平衡电桥两类。
平衡电桥是通过调节电桥平衡,将待测电阻与标准电阻进行比较得到待测电阻的大小,如惠斯登电桥、开尔文电桥等都是平衡式直流电桥。
由于需要调节平衡,因此平衡电桥只能用于测量具有相对稳定状态的物理量。
随着测量技术的发展,电桥的应用不再局限于平衡电桥的范围,非平衡电桥在非电量的测量中已得到广泛应用。
实际工程和科学实验中,待测量往往是连续变化的,只要能把待测量同电阻值的变化联系起来,便可采用非平衡电桥来测量。
将各种电阻型传感器接入电桥回路,桥路的非平衡电压就能反映出桥臂电阻的微小变化,因此,通过测量非平衡电桥的输出电压就可以检测出待测量的变化,如温度、压力、湿度等。
本实验要求测试温度在20~70℃的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一个导体温度计。
这是一个比较典型的非平衡电桥应用实例,也是市场上各类半导体温度计的雏形,具有一定实用价值。
【实验目的】1.了解非平衡电桥的工作原理及其在非电量电测法中的应用。
2.理解以热敏电阻为检测元件的温度传感器的电路结构及电路参数的选择原则。
3.根据热敏电阻的伏安特性和电阻-温度特性,依据设计要求,掌握半导体温度计的设计方案以及温度计的定标。
【实验仪器】计算机仿真软件【实验原理】1.热敏电阻热敏电阻是一种阻值随温度改变发生显著变化的敏感元件。
与一般常用的金属电阻相比,它有大得多的电阻温度系数值。
半导体温度计的设计和制作实验(非平衡电桥)在温度不太低或不太高(如从-20o C到几百度)的情况下,通常可以用水银温度计来测一定的温度。
由于生产和科学实验的发展,需要精密和快速的温度测量,因而就需要灵敏度较高的温度计。
现在已有各种用途的温度计,半导体温度计就是其中的一种。
本实验的半导体温度计利用热敏电阻为传感器,利用非平衡电桥实现由电学量测量一些变化的非电量,这种思想现在应用范围扩展到很多领域,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
一、实验目的1.理解非平衡电桥的工作原理及其在非电量的电测法中的应用。
2.了解半导体温度计的基本原理并设计制作一台半导体温度计二、实验原理1.热敏电阻伏安特性曲线为测量热敏电阻的阻值,需了解热敏电阻的伏安特性。
由图1可知,在V-I 曲线的起始部分,因电流很太小,温度变化微小,曲线接近线性。
此时其阻值主要与外界温度有关。
图1 热敏电阻伏安特性曲线半导体温度计是利用热敏电阻的阻值随温度变化急剧的特性制作的,通过测量热敏电阻的阻值来确定温度的仪器。
应根据待测温度区间和热敏电阻的阻值选用合适电学元件和测温电路。
2.半导体温度计测温电路的原理非平衡电桥的工作原理图如下:图2 半导体温度计测温电路原理图图中G 是微安表, R T 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:TR R R R 321= (1) 若取R 1 = R 2,则R 3的数值即为R T 的数值。
平衡后的电桥若其中某一臂的电阻又发生改变,则平衡将受到破坏,微安表中将有电流流过,此为非平衡电桥。
由基尔霍夫方程组求出CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2)由此可见微安表中的电流大小直接反映了热敏电阻的阻值的大小程度。
由于热敏电阻的大小与环境温度是一一对应关系,因此可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。
实验报告:半导体温度计的设计与制作张贺PB07210001一、实验题目:半导体温度计的设计与制作二、实验目的:要求测试温度在20-70 C的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一台半导体温度计。
要求作为温度计用的微安表的全部量程均能有效的利用,即当温度为20 r时,微安表指示为零;而温度为70 r时,微安表指示为满刻度。
要求长时间的测量时,微安表的读数应稳定不变。
三、实验原理:1.半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,它可以将各种非电量转变成电学量,然后用电学仪器来进行测量。
2.半导体温度计测温电路原理:I G 0 时,电电(1)R2 R T当电桥某一臂改变时平衡将受到破坏,G中有读数,可据此求出R T,即G的读数大小直接反映热敏电阻阻值,从而反映温度。
取 R i R2。
I G 0时,要求R T处于下限,即R a R TI O由于 I T I G,V CD 1丁R3 R T。
由于R i R 2, R 3 ,整理后有,R TI 为工作时测量温度量程的下限; R T 2为上限,此时I T 达到最大。
四、实验仪器:热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、多 挡开关、导线、多用表、恒温水浴等。
五、实验步骤与数据处理:1. 在实验前,在坐标纸上绘出热敏电阻的电阻一温度曲线T( C) 15.0 20.0 25.030.035.0 40.0 45.0 R() 3175 2597 212811077T( C) 50.055.060.065.0 70.0 75.0R()9488426R1R2R3RT 2R GR I R 2 R i R 2R 3 R T 2 R 3 R T 2VCD(2)2V CD 1可2RT2RT1 RT 22 R GRT1 RT2RT1 RT2(3)R()T( C)选取V CD1V, 已知R G3999 ,I G 50 A。
半导体温度计的设计实验步骤引言:半导体温度计是一种通过半导体材料的电阻随温度变化而变化来测量温度的仪器。
它具有响应速度快、精确度高、体积小等优点,广泛应用于工业控制、医疗设备、消费电子等领域。
本文将介绍半导体温度计的设计实验步骤。
一、准备实验材料和仪器1. 半导体材料:选择一种适合的半导体材料作为温度敏感元件,常见的有硅、锗等。
2. 电阻计:用于测量半导体材料的电阻值。
3. 温度控制器:用于控制实验室的温度,保证实验环境的稳定性。
4. 多用电表:用于测量电阻计和温度控制器的输出电压。
二、搭建实验电路1. 将半导体材料连接到电路中,一般采用电桥电路或电压分压电路。
2. 使用导线将电阻计和温度控制器与电路连接,确保电路的通电和测量正常。
三、调试实验电路1. 将温度控制器设定为一个固定的温度值,例如25摄氏度。
2. 使用多用电表分别测量半导体材料的电阻值、电阻计的输出电压和温度控制器的输出电压,并记录下来。
3. 将温度控制器的设定温度逐步增加,如30摄氏度、35摄氏度等,重复步骤2。
四、绘制温度与电阻的关系曲线1. 将实验数据整理成表格或图表,其中横轴表示温度,纵轴表示电阻值。
2. 使用拟合曲线的方法,将实验数据拟合成一条曲线。
常用的拟合方法有线性拟合、多项式拟合等。
五、验证实验结果1. 将温度控制器设定为一个新的温度值,如40摄氏度。
2. 使用实验得到的拟合曲线,计算出对应的电阻值。
3. 使用电阻计测量半导体材料的实际电阻值,并与计算结果进行比较。
六、分析实验结果1. 比较实际测量值和计算值的差异,并分析可能的原因。
2. 讨论实验结果的可靠性和精确度,提出改进的建议。
七、总结半导体温度计的设计实验步骤主要包括准备实验材料和仪器、搭建实验电路、调试实验电路、绘制温度与电阻的关系曲线、验证实验结果和分析实验结果。
通过实验得到的温度与电阻的关系曲线可以用于后续的温度测量和控制工作。
半导体温度计作为一种常用的温度测量仪器,在工业和科研领域具有广泛的应用前景。
13半导体温度计的设计与制作实验报告:半导体温度计的设计与制作张贺 PB07210001一、实验题目:半导体温度计的设计与制作二、实验目的:要求测试温度在20-70℃的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一台半导体温度计。
要求作为温度计用的微安表的全部量程均能有效的利用,即当温度为20℃时,微安表指示为零;而温度为70℃时,微安表指示为满刻度。
要求长时间的测量时,微安表的读数应稳定不变。
三、实验原理:1.半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,它可以将各种非电量转变成电学量,然后用电学仪器来进行测量。
2.半导体温度计测温电路原理:0=G I 时,TR R R R 321= (1)当电桥某一臂改变时平衡将受到破坏,G 中有读数,可据此求出T R ,即G 的读数大小直接反映热敏电阻阻值,从而反映温度。
取21R R =。
0=G I 时,要求T R 处于下限,即13T R R =。
由于G T I I >>,()T T CD R R I V +=3。
CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+=(2)由于21R R =,13T R R =,整理后有,⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛+-=212121212212T T T T G T T T GCD R R R R R R R R I V R(3)1T R 为工作时测量温度量程的下限;2T R 为上限,此时T I 达到最大。
四、实验仪器:热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、多挡开关、导线、多用表、恒温水浴等。
五、实验步骤与数据处理:1.在实验前,在坐标纸上绘出热敏电阻的电阻-温度曲线。
实验题目:半导体温度计的设计和制作实验目的:学用惠斯通电桥制作半导体温度计并用其测量温度。
实验原理:电路原理图及所用公式:实验步骤:1.根据(2)式算得R 1=R 2=4785.86Ω2.断开R 1,R 2连接,调整R 1,R 2。
3.根据地板图焊接电路。
4.用电阻箱代替热敏电阻,调节R 3,使R T 为20℃对应阻值时电表示数为0;调R 使使R T 为70℃对应阻值时电表满偏。
5.开关置2档,调R 4,使电表满偏。
6.从R -T 曲线(在下页)中读20℃~70℃每隔2.5℃对应阻值,读出R T 为上述阻值时微安表示数T 。
把表盘可读改为温度刻度并画出I-T 曲线。
6.用实际热敏电阻代替电阻箱并测出55.5℃水浴和34.5℃水浴对应电流值和温度。
(1)CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2))(2)21(221212121T T T T G T T T G CD R R R R R R R R I V R ++-+-=图表1:R-T曲线图表2:I-T曲线及其线性拟合线性回归方程:T=17.31755+0.97318I实验结果:在55.5℃水浴下测得电流值为40.3μA与从图表2中读到对应温度电流值:39.2μA相对误差为2.73%在35.4℃水浴下测得电流值为20.0μA与从图表2中读到对应温度电流值:19.5μA相对误差为2.5%误差分析:1. R1,R2, R3, R4难以调校准确,误差较大,有的电位器阻值自己会变,且在焊接和其它操作过程中阻值可能有变化。
2.电池电力可能已经不足。
3.测量温度可能在热敏电阻的非线性区间。
4.实验室温度等其它因素可能对元件性能产生影响。
思考题:为什么在测R1,R2时,需将开关置为1档,拔下E处接线,断开微安表?答:如果没有如上操作,将会有其它元件接入电路。
半导体温度计的设计和制备方法随着科技的进步,半导体温度计在温度测量及控制领域扮演着重要的角色。
它们被广泛应用于工业生产、研究实验和家用设备中。
本文将介绍半导体温度计的设计和制备方法,并讨论其工作原理和性能特点。
一、半导体温度计的工作原理半导体温度计基于材料的电阻特性随温度的变化而变化的原理。
常见的半导体材料有硅和砷化镓。
利用半导体材料的温度特性,可以通过测量其电阻来推断温度的变化。
半导体温度计通常采用负温度系数(NTC)电阻或正温度系数(PTC)电阻。
NTC温度计的电阻值随温度上升而下降,而PTC温度计的电阻值则相反。
根据具体应用需求,可以选择适合的电阻类型。
二、半导体温度计的设计方法1.选择适合的半导体材料:根据需要测量的温度范围和精度,选择合适的半导体材料。
硅是常用的材料,适用于较低温度范围;而砷化镓则适用于较高温度范围。
2.确定电阻类型:根据应用需求,选择合适的电阻类型,即NTC或PTC。
如果需要更高的精度和稳定性,可以考虑使用PTC温度计。
3.设计电路:根据选择的材料和类型,设计合适的电路。
在电路设计中,考虑电源电压、电流限制、电阻-温度曲线等因素,以确保温度计的准确性和可靠性。
4.温度校准:在制备完成后,进行温度校准以验证温度计的准确性。
可以使用标准温度源或比较型温度计进行校准。
校准后,进行相应的计算和调整,以修正任何测量误差。
三、半导体温度计的制备方法1.材料准备:准备所需的半导体材料和电路元件。
确保材料质量良好并符合应用需求。
2.制备电路:根据设计的电路方案,进行电路的制备。
可以采用传统的束流蚀刻或光刻工艺,将电路图案形成在材料上。
此外,还可以采用薄膜沉积工艺,将电阻材料沉积在半导体材料上。
3.封装保护:在制备完成后,对半导体温度计进行封装保护,以确保其工作稳定性和可靠性。
常见的封装材料有环氧树脂和硅胶。
封装材料的选择应考虑温度范围、压力要求和耐化学腐蚀性能。
4.温度校准和测试:在制备完成后,进行温度校准和测试以验证温度计的性能。
开放性实验实验报告半导体温度计的设计学院:浙江农林大学天目学院专业:工程技术系班级:汽车服务081班姓名:吴仲虎学号: 200808310225摘要:本文讨论了通过测量半导体热敏电阻的实验,测得实验数据用Origin 软件分析相关数据画出I-T 图像,了解热敏电阻的电阻——温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧的问题,同时完成半导体温度计的设计。
关键词:origin 软件 热敏电阻 惠斯通电桥 温度电流前言 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。
与一般常用的金属电阻相比,它有大得多的电阻温度系数值。
热敏电阻作为温度传感器具有用料省、成本低、体积小等的优点,它可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。
本实验的目的是:了解热敏电阻的电阻----温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。
一 实验仪器:二 实验原理热敏电阻的电阻值与温度的关系为TBAeR =其中,A 、B 是与半导体材料有关的常数;T 为绝对温度。
根据定义,电阻温度系数为dT dR R t 1=α其中,t R 是在温度为t 时的电阻值。
半导体材料做成的热敏电阻的基本特性是它的温度特性, 这种特性与半导体材料的导电机制密切相关。
温度越高, 载流子的数目越多, 导电能力越强, 电阻率也就越小。
由于半导体中载流子数目随温度升高而按指数规律迅速增加, 因此随着温度的升高, 热敏电阻的阻值将按指数规律迅速减小。
半导体温度计是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,为了实现这种方法,采用电学仪器来测量热敏电阻的阻值,还需要了解热敏电阻的伏安特性。
半导体温度计测温电路的原理图如右:图中G 是微安表, RT 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:r321R R R R若取R 1 = R 2,则R 3的数值即为R T 的数值。
3.5.3 半导体温度计的设计与制作(本文内容选自高等教育出版社《大学物理实验》)虽然热敏电阻对温度非常灵敏,但通常每个元件可适用的范围都不太宽,所以应根据所要测量的温度的上、下限和温度范围的高低选用具有合适阻值和B 值的元件以及相应的测温电路。
元件的B 值越高,其电阻温度系数越大,可测量的范围越窄。
表3.5.3-1给出了不同热敏电阻的适用范围和对应的B 值。
表3.5.3-1 不同热敏电阻的适用范围和对应的B 值由上表可知,测量低温采用B 小的元件,测量高温采用B 大的元件。
通常选用电阻值Ω=6210~10R ,因为电阻值太小灵敏度低,电阻值太大则会引起电绝缘和测量线路匹配困难。
在各种热敏电阻的测温电路中,以分压电路和桥式电路的应用最广。
本实验要求测试温度在20~70 ℃的范围内,选用合适的热敏电阻和非平衡电桥线路(或选用你认为更好的测温电路)来设计一半导体温度计。
实验原理半导体温度计就是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法为非电量的电测法,它可以将各种非电量,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
由于金属氧化物半导体的电阻值对温度的反应很灵敏(参见实验3.5.2),因此可以作为温敏传感器。
为实现非电量的电测法,采用电学仪器来测量热敏电阻的阻值,还需要了解热敏电阻的伏安特性。
由图3.5.3-1可知,在V-I 曲线的起始部分,曲线接近线性,这是因为电流小时在热敏电阻上消耗的功率不足以显著地改变热敏电阻的温度,因而符合欧姆定律。
此时,热敏电阻的阻值主要与外界温度有关,电流的影响可以忽略不计。
半导体温度计测温电路的原理图如图3.5.3-2所示(仅供参考),图中G是微安计,R T为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件TR R R R 321=,若取R 1=R 2,则R 3的数值即为R T 的数值。
★ 地空学院 杨柳春 PB05007302 ★实验3.5.2实验目的:本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。
学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。
实验原理:1. 半导体热敏电阻的电阻——温度特性某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式下式:T B T e R R ∞= (1)式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。
金属的电阻与温度的关系满足(2):)](1[1212t t a R R t t -+= (2)式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。
根据定义,电阻的温度系数可由式(3)来决定:dtdR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图R —T (a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。
由式(1)和式(2)及图R —T 可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点:(1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。
(2) 热敏电阻的阻值随温度的增加而减小,因此温度系数是负的(2T B a ∝)。
金属的温度系数是正的(dt dR a /∝)。
热敏电阻的温度系数约为-(30~60)×10-4K -1,金属的温度系数为14104--⨯K (铜),两者相比,热敏电阻的温度系数几乎大几十倍。
所以,半导体电阻对温度变化的反应比金属电阻林敏得多。
1. 惠斯通电桥的工作原理半导体热敏电阻和金属电阻的阻值范围,一般在1~106Ω,需要较精确测量时常用电桥法,惠斯通电桥是应用很广泛的一种仪器。
惠斯通电桥的原理,如图电桥原理示意图(a )所示。
实验题目:半导体温度计的设计与制作实验目的:进一步理解热敏电阻的伏安特性和惠斯通电桥测电阻的原理,学习非电学量的电测法,了解实验中的替代原理的应用,同时提高组装、焊接电路的操作能力。
实验器材:热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、导线、万用表、恒温水浴实验原理:半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
一般使用金属氧化物半导体作温度传感器。
热敏电阻的伏安特性曲线和测温电路原理图如下:图一:热敏电阻的伏安特性曲线和测温电路原理图当取伏安特性曲线的a 段时,近似认为符合欧姆定律。
当I G 使G 满偏时,近似认为V CD =I T(R 3+R T )。
由基尔霍夫方程组解得: )(2)21(221212121T T T T G T T T G CD R R RR R R R R I V R ++-+-=由上式可以确定R 1(=R 2),其中R 3的确定是在下限温度电阻R T1下,使电桥平衡,从而有R 3=R T1、R 2=R 1。
由下表可以知道,R 3=R T1=2277Ω,R T2=462Ω。
作出R-T 曲线并计算得:R 1=R 2=4545Ω。
T (℃) 15.0 20.0 25.0 30.0 35.0 40.0 45.0 R (Ω) 3143 2576 2140 1822 1508 1285 1082 T (℃) 50.0 55.0 60.0 65.0 70.0 75.0 R G =3913ΩI G =50uA U CD =1VR (Ω)924782670577496433表一:热敏电阻的R-T 关系和基本实验条件实验内容:(1)在坐标纸上绘出热敏电阻的电阻-温度曲线,确定所设计的半导体温度计的下限温度(20℃)所对应的电阻值R T1和上限温度(70℃)所对应的电阻值R T2。
再由热敏电阻的伏安特性曲线确定最大工作电流I T。
传感器实验报告--半导体温度传感器设计摘要:本实验旨在设计并测试一种基于半导体材料的温度传感器。
在实验中,我们制作了一个基于硅片的氧化物热敏电阻(RTD),并对其进行了测试。
实验结果表明,在20℃至100℃范围内,该传感器的响应稳定可靠,测量精度较高。
关键词:半导体、温度传感器、热敏电阻、硅片、测量精度。
1. 实验目的本实验的目的是设计并测试一种基于半导体材料的温度传感器,掌握温度传感器的基本工作原理和性能指标,以及热敏电阻和半导体材料的特性。
2. 实验原理温度传感器是将温度信号转换成一种电信号的装置。
传感器的主要部分是敏感元件,其工作原理多种多样。
半导体温度传感器是通过测量半导体材料电阻随温度变化而变化来实现的。
由于半导体材料的特性,其电阻与温度呈正比变化。
因此,半导体温度传感器常常采用热敏电阻作为敏感元件,即所谓的热敏电阻温度传感器(RTD)。
热敏电阻是一种电阻随温度变化的电阻器,其特性为随着温度的上升或下降,电阻值增大或减小。
这种特性使得热敏电阻器成为测量高温或低温物体温度的一种有效方法。
热敏电阻材料主要有铂、镍、铁、铜、铬等,其中最常用的是铂材料。
半导体材料的电阻值也会随着温度的变化而变化,但其变化特性与热敏电阻不同。
半导体热敏电阻材料的电阻随温度的上升呈指数增长,一般采用硅片做为基材。
原因是硅片的温度系数与热敏电阻的温度系数十分接近,而硅片具有良好的稳定性和可制造性。
3. 实验内容硅片、氧化物、导线、万用表等。
(1)准备材料:取一块硅片,尺寸约为10mm×10mm×0.2mm;并将其用氧化物处理。
(2)加工硅片:在硅片上刻上接触电极和导线,制成热敏电阻。
(3)测试热敏电阻:连接热敏电阻与仪器,进行温度切换测试,记录数据。
4. 实验结果根据实验数据,得到如下的温度电阻特性曲线:图1:温度电阻特性曲线可以看出,在20℃至100℃范围内,热敏电阻的响应稳定可靠,测量精度较高。
半导体温度计的设计和制作实验(非平衡电桥)在温度不太低或不太高(如从-20o C到几百度)的情况下,通常可以用水银温度计来测一定的温度。
由于生产和科学实验的发展,需要精密和快速的温度测量,因而就需要灵敏度较高的温度计。
现在已有各种用途的温度计,半导体温度计就是其中的一种。
本实验的半导体温度计利用热敏电阻为传感器,利用非平衡电桥实现由电学量测量一些变化的非电量,这种思想现在应用范围扩展到很多领域,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
一、实验目的1.理解非平衡电桥的工作原理及其在非电量的电测法中的应用。
2.了解半导体温度计的基本原理并设计制作一台半导体温度计二、实验原理1.热敏电阻伏安特性曲线为测量热敏电阻的阻值,需了解热敏电阻的伏安特性。
由图1可知,在V-I 曲线的起始部分,因电流很太小,温度变化微小,曲线接近线性。
此时其阻值主要与外界温度有关。
图1 热敏电阻伏安特性曲线半导体温度计是利用热敏电阻的阻值随温度变化急剧的特性制作的,通过测量热敏电阻的阻值来确定温度的仪器。
应根据待测温度区间和热敏电阻的阻值选用合适电学元件和测温电路。
2.半导体温度计测温电路的原理非平衡电桥的工作原理图如下:图2 半导体温度计测温电路原理图图中G 是微安表, R T 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:TR R R R 321= (1) 若取R 1 = R 2,则R 3的数值即为R T 的数值。
平衡后的电桥若其中某一臂的电阻又发生改变,则平衡将受到破坏,微安表中将有电流流过,此为非平衡电桥。
由基尔霍夫方程组求出CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2)由此可见微安表中的电流大小直接反映了热敏电阻的阻值的大小程度。
由于热敏电阻的大小与环境温度是一一对应关系,因此可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。
利用半导体材料测量温度的物理实验步骤半导体材料是一种在温度变化下电阻变化显著的材料,因此被广泛应用于温度测量领域。
本文将介绍利用半导体材料测量温度的物理实验步骤。
步骤一:材料准备首先,我们需要准备以下材料和装置:1. 半导体材料:例如硅(Si)或锗(Ge)等。
2. 恒温槽:用于控制实验环境的温度。
3. 电源:用于为电路提供稳定的电压。
4. 电流表:用于测量电路中通过的电流。
5. 电压表:用于测量电路中的电压。
6. 温度计:用于校准实验环境的温度。
步骤二:搭建实验电路1. 将半导体材料通过导线连接到电路中,并将其与电源和电流表相连。
确保连接稳定可靠。
2. 将电压表与半导体材料的两端相连,以测量电路中的电压。
步骤三:校准温度与电阻的关系为了准确测量温度,我们需要先校准温度与电阻的关系。
进行如下操作:1. 将半导体材料浸入恒温槽中,并将温度保持在预设温度。
(如20°C)2. 记录此时电路中的电流和电压,并计算出电阻值。
3. 将温度逐步提高,重复上述步骤,并记录相应温度和电阻值。
步骤四:测量待测温度在完成温度与电阻的校准后,我们可以利用之前得到的关系式来测量待测温度。
按以下步骤操作:1. 将待测温度的半导体材料放入恒温槽中,等待温度稳定。
2. 通过实验电路传递一定的电流,并测量电路中的电压。
3. 利用之前校准得到的关系式,计算得到待测温度对应的电阻值。
步骤五:结果分析与讨论根据测量得到的电阻值,我们可以反推出待测温度。
同时,还可以在实验过程中对材料的温度特性进行进一步分析与讨论:1. 绘制温度与电阻的关系曲线,以展现材料的温度敏感性。
2. 分析材料的温度响应速度和灵敏度,以评估其适用范围。
3. 探索半导体材料温度变化的原理和机制,深入理解实验现象。
总结:本文介绍了利用半导体材料测量温度的物理实验步骤。
通过搭建实验电路、校准温度与电阻的关系以及测量待测温度,我们可以准确地获取实验结果。
在结果分析与讨论中,我们可以进一步了解半导体材料的温度特性,并拓展应用领域。
实验题目:半导体温度计的设计与制作实验目的:测试温度在20~70 ℃的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一半导体温度计。
实验原理:半导体温度计就是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
由于金属氧化物半导体的电阻值对温度的反应很灵敏,因此可以作为温敏传感器。
为实现非电量的电测法,采用电学仪器来测量热敏电阻的阻值,还需要了解热敏电阻的伏安特性。
由热敏电阻伏安特性曲线图可知,在V-I 曲线的起始部分,曲线接近线性.半导体温度计测温电路的原理图如上图所示。
图中G是微安计,R T 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件TR R R R 321=,若取R 1=R 2,则R 3的数值即为R T 的数值。
平衡后,若电桥某一臂的电阻又发生改变,则平衡将受到破坏,微安计中将有电流流过,若电桥电压,微安计内阻R G ,电桥各臂电阻R 1、R 2、R 3已定,就可以根据微安计的读数I G 的大小计算出R T 的大小来。
也就是说,微安计中的电流的大小直接反映了热敏电阻的阻值的大小,因此就可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。
当温度增加时,热敏电阻的电阻值就会减小,电桥出现不平衡,在微安计中就有电流流过。
当热敏电阻处在测温量程的上限温度电阻值R T2时,要求微安计的读数为满刻度。
此时,流入微安计中的电流I G 与加在电桥两端的电压V CD 和R 1、R 2有关,由于选取起始状态(I G =0时)是对称电桥,即 R 1=R 2,故I G 只与V CD 和R T2有关。
若流入热敏电阻R T 中的电流I T 比流入微安计内的电流I G 大得多(即G T I I >>),则加在电桥两端上的电压V CD 近似有 )(3R R I V T CD += (1)根据所选定的热敏电阻的最大工作电流(当R 3=R T2时),可由式(1)确定供电电池的个数。
实验报告:半导体温度计的设计与制作
一、实验题目:
半导体温度计的设计与制作
二、实验目的:
要求测试温度在20-70℃的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一台半导体温度计。
要求作为温度计用的微安表的全部量程均能有效的利用,即当温度为20℃时,微安表指示为零;而温度为70℃时,微安表指示为满刻度。
要求长时间的测量时,微安表的读数应稳定不变。
三、实验原理:
1.半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,它可以将各种非电量转变成电学量,然后用电学仪器来进行测量。
2.半导体温度计测温电路原理:
0=G I 时,
T
R R R R 3
21= (1) 当电桥某一臂改变时平衡将受到破坏,G 中有读数,可据此求出T R ,即G 的读数大小直接反映热敏电阻阻值,从而反映温度。
取21R R =。
0=G I 时,要求T R 处于下限,即13T R R =。
由于G T I I >>,()T T CD R R I V +=3。
CD T T G T T G V R R R R R R R R R R R R R R R I 2
323212
12
32
212++
+++-
+= (2)
)
(ΩR )
(C T ︒由于21R R =,13T R R =,整理后有,
⎪⎪⎭⎫ ⎝
⎛++-⎪⎪⎭⎫ ⎝⎛+-=
212121212212T T T T G T T T G
CD R R R R R R R R I V R (3)
1T R 为工作时测量温度量程的下限;2T R 为上限,此时T I 达到最大。
四、实验仪器:
热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、多挡开关、导线、多用表、恒温水浴等。
五、实验步骤与数据处理:
1.在实验前,在坐标纸上绘出热敏电阻的电阻-温度曲线。
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
400
800120016002000240028003200
得知Ω=︒2597)20(1C R T ,Ω=︒488)70(2C R T 。
选取V V CD 1=,已知Ω=3999G R ,A I G μ50=。
代入(3)计算得,
⎪⎪⎭⎫ ⎝
⎛++-⎪⎪⎭⎫ ⎝⎛+-=
212121212212T T T T G T T T G
CD R R R R R R R R I V R
⎪⎭
⎫ ⎝⎛Ω+ΩΩ⨯Ω+Ω⨯-⎪⎭⎫ ⎝⎛Ω+ΩΩ-⨯⨯⨯=
-48825974882597399924882597488211050126A V
Ω=00.4853
故Ω==00.485321R R ,Ω==259713T R R 。
2.根据底版配置图,焊接实际的底版。
3.开关拨到1挡,拔下E 处接线,断开微安表。
用万用表测R 1、R 2的阻值,调节两电阻,使万用表示数略小于计算得出的结果(Ω00.4853)。
4.将电阻箱接入接线柱A 和B ,用它代替热敏电阻,将开关拨到3挡,令电阻箱的阻值为Ω=25971T R ,调节电位器R 3,使电表指示为0。
令电阻箱的阻值为
Ω=4882T R ,调节电位器R ,使微安表满量程。
5.将开关拨到2挡,调节电位器R 4,使微安表满量程,这时24T R R =。
6.将开关拨到3挡,从上面的热敏电阻的电阻-温度特性曲线上读出温度20-70℃。
每隔 2.5℃读一个电阻值。
电阻箱逐次选择前面所取的电阻值,读出微安表的电流读数I 。
)
(A I μ
并将微安表表盘刻度改成温度的刻度:
作出对应的I -T 曲线:
15
20
25
30
35
40
45
50
55
60
65
70
75
80
-505101520253035404550
55
7.用实际热敏电阻代替电阻箱,整个部分就是经过定标的半导体温度计。
用此温度计测量两个恒温状态的温度(水浴31.9℃和54.5℃)。
读出半导体温度计和恒温水浴自身的温度,比较其结果。
)
(C T ︒
误差计算:
%57.1%1009.314.319.3111=⨯︒︒-︒=∆C C
C T T %92.0%1005.540.545.5422=⨯︒︒-︒=∆C
C
C T T 六、注意事项:
(1)用万用表检查R 1和R 2时,应使其阻值略小于4853.00Ω。
(2)用电烙铁焊接时,应注意不要使其接触到身体以及接线,以免发生意外。
(3)注意正确使用电烙铁,学会焊接,防止重焊,虚焊,漏焊,短路。
焊接时,S 1放在1挡,电流表“+”端与E 处要最后连接,以免损坏电表。
(4)调节R 1、R 2、R 3、R 4、R 后,注意不要再碰这些电阻器,以防止改变其电阻,影响实验结果。
(5)所要标定的温度点,应从热敏电阻的电阻-温度曲线上读取。
(6)校准温度时,必须找到设计时所用的那个热敏电阻,实验完毕后,焊下所有元件,仪器归位。
七、误差分析:
(1)实验仪器的系统误差,以及在实验中周围的环境所导致的实验仪器性能随机涨落所造成的误差。
(2)读取电表示数时,由于估读产生的误差。
(3)从热敏电阻的电阻-温度曲线上读取温度点时,由于估读而导致的误差。
八、思考题:
为什么在测R 1和R 2时,需将开关置于1挡,拔下E 处接线,断开微安表? 答:
开关置于1挡,在S 2处断开电路是为了防止电路中的电池的电压影响万用表的示数,在S 1处断开电路是为了防止测得的R 1的阻值为R 1与R 2+R 3+R 4的并联的总的阻值,R 2也是如此。
如果不拔下E处接线,断开微安表,如图一所示,所测得的R
1
的阻值实际上
为R
1与R
2
+R
g
的并联的总的阻值,而若拔下E处接线,如图二所示,测得的R
1
的
阻值即为R
1
实际的阻值,R2也是如此。
图一图二。