高中物理法拉第电磁感应定律
- 格式:doc
- 大小:49.20 KB
- 文档页数:2
法拉第电磁感应定律的公式及使用条件
法拉第电磁感应定律的公式为:ε = -dφ/dt,其中ε为感应电
动势,dφ/dt为磁通量随时间的变化率。
使用条件:
1.该定律适用于闭合导线回路中的电磁感应现象。
2.导线回路必须处于磁场中,并磁通量相对于导线回路的面积发
生改变。
拓展:
1.法拉第电磁感应定律是电磁学中的重要定律之一,描述了磁场
和导体之间相互作用的规律。
该定律为电磁感应现象提供了理论基础,广泛应用于电动机、变压器等电磁设备的设计与工作原理中。
2.根据法拉第电磁感应定律,当导体相对于磁场的运动速度增大时,感应电动势也会增大,这就是电磁感应发电机工作原理的基础。
3.除了法拉第电磁感应定律外,还有安培法则和洛伦兹力定律等电磁学定律,它们共同构成了电磁学的基础理论。
深入理解这些定律对于探索电磁现象的规律和应用具有重要意义。
第二单元 法拉第电磁感应定律1、法拉第电磁感应定律(1)表述: 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式: E =k ·ΔΦ/Δt k 为比例常数, 当E 、ΔΦ、Δt 都取国际单位时,k =1,所以有E =ΔΦ/Δt 若线圈有n 匝,则相当于n 个相同的电动势ΔΦ/Δt 串联,所以整个线圈中的电动势为E =n ·ΔΦ/Δt 。
2、磁通量Φ、磁通量的变化量△Φ、磁通量的变化率tΔΔΦ的意义(1)磁通量Φ是穿过某一面积的磁感线的条数;磁通量的变化量△Φ=Φ1-Φ2表示磁通量变化的多少,并不涉及这种变化所经历的时间;磁通量的变化率tΔΔΦ表示磁通量变化的快慢。
(2)当磁通量很大时,磁通量的变化量△Φ可能很小。
同理,当磁通量的变化量△Φ很大时,若经历的时间很长,则磁通量的变化率也可能较小。
(3)磁通量Φ和磁通量的变化量△Φ的单位是wb ,磁通量变化率的单位是wb /s 。
(4)磁通量的变化量△Φ与电路中感应电动势大小没有必然关系,穿过电路的△Φ≠0是电路中存在感应电动势的前提;而磁通量的变化率与感应电动势的大小相联系,tΔΔΦ越大,电路中的感应电动势越大,反之亦然。
(5)磁通量的变化率tΔΔΦ,是Φ-t 图象上某点切线的斜率。
3、公式E=n tΔΔΦ与E=BLvsin θ的区别与联系(1)研究对象不同,E=n t ΔΔΦ的研究对象是一个回路,而E=BLvsin θ研究对象是磁场中运动的一段导体。
(2)物理意义不同;E=n tΔΔΦ求得是Δt 时间内的平均感应电动势,当Δt →0时,则E 为瞬时感应电动势;而E=BLvsin θ,如果v 是某时刻的瞬时速度,则E 也是该时刻的瞬时感应电动势;若v 为平均速度,则E 为平均感应电动势。
(3)E=ntΔΔΦ求得的电动势是整个回路的感应电动势,而不是回路中某部分导体的电动势。
整个回路的电动势为零,其回路中某段导体的感应电动势不一定为零。
第二章 电磁感应第2节 法拉第电磁感应定律一、电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体相当于电源. (2)在电磁感应现象中,只要闭合回路中有感应电流,这个回路就一定有感应电动势;回路断开时,虽然没有感应电流,但感应电动势依然存在.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =ΔΦΔt .若闭合导体回路是一个匝数为n 的线圈,则E =n ΔΦΔt .①若ΔΦ仅由磁场变化引起,则表达式可写为E =n ΔBΔt S .②若ΔΦ仅由回路的面积变化引起,则表达式可写为E =nB ΔSΔt .3、Φ、ΔΦ、ΔΦΔt的比较磁通量Φ 磁通量的变化量ΔΦ 磁通量的变化率ΔΦΔt物理 意义某时刻穿过磁场中某个面的磁感线条数在某一过程中穿过某个面的磁通量的变化量穿过某个面的磁通量变化的快慢大小 计算Φ=BS ⊥ΔΦ=⎩⎪⎨⎪⎧Φ2-Φ1B ·ΔS S ·ΔBΔΦΔt =⎩⎪⎨⎪⎧|Φ2-Φ1|ΔtB ·ΔSΔtΔB Δt ·S注意穿过某个面有方向相反的磁场时,则不能直接应用Φ=B ·S .应考虑相反方向的磁通量抵消以后所开始和转过180°时,平面都与磁场垂直,但穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S 而不既不表示磁通量的大小也不表示变化的多少.在Φt 图象中,可用图线的斜率表示剩余的磁通量 是零4、磁通量的变化率ΔΦΔt 是Φ-t 图像上某点切线的斜率大小.如图中A 点磁通量变化率大于B 点的磁通量变化率.二、导体切割磁感线时的感应电动势 1.垂直切割导体棒垂直于磁场运动,B 、l 、v 两两垂直时,如图甲,E =Bl v .2.不垂直切割导线的运动方向与导线本身垂直,但与磁感线方向夹角为 θ时,如图乙,则E =Bl v 1=Bl v sin_θ. 3、对公式E =Blv sin θ的理解(1)对 θ的理解:当B 、l 、v 三个量方向互相垂直时, θ=90°,感应电动势最大;当有任意两个量的方向互相平行时, θ=0°,感应电动势为零.(2)对l 的理解:式中的l 应理解为导线切割磁感线时的有效长度,如果导线不和磁场垂直,l 应是导线在与磁场垂直方向投影的长度;如果切割磁感线的导线是弯曲的,如图所示,则应取与B 和v 垂直的等效直线长度,即ab 的弦长.(3)对v 的理解①公式中的v 应理解为导线和磁场间的相对速度,当导线不动而磁场运动时,也有电磁感应现象产生.②公式E =Bl v 一般用于导线各部分切割磁感线速度相同的情况,若导线各部分切割磁感线的速度不同,可取其平均速度求电动势.如图所示,导体棒在磁场中绕A 点在纸面内以角速度ω匀速转动,磁感应强度为B ,平均切割速度v =12v C =ωl 2,则E =Bl v =12Bωl 2.4.公式E =Bl v sin θ与E =n ΔΦΔt的对比E =n ΔΦΔtE =Bl v sin θ区别研究对象 整个闭合回路 回路中做切割磁感线运动的那部分导体 适用范围 各种电磁感应现象 只适用于导体切割磁感线运动的情况计算结果 Δt 内的平均感应电动势某一时刻的瞬时感应电动势联系E =Bl v sin θ是由E =n ΔΦΔt 在一定条件下推导出来的,该公式可看做法拉第电磁感应定律的一个推论【例题1】 如图所示,半径为r 的金属圆环,其电阻为R ,绕通过某直径的轴OO ′以角速度ω匀速转动,匀强磁场的磁感应强度为B .从金属圆环的平面与磁场方向平行时开始计时,求金属圆环由图示位置分别转过30°角和由30°角转到330°角的过程中,金属圆环中产生的感应电动势各是多大?[思路点拨] (1)确定磁感线穿过圆环的有效面积; (2)了解磁通量正负号的含义; (3)确定不同角度转过的时间. [答案] 3Bωr 2 35Bωr 2[解析] 初始位置时穿过金属圆环的磁通量Φ1=0;由图示位置转过30°角时,金属圆环在垂直于磁场方向上的投影面积为S 2=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ2=BS 2=12B πr 2;由图示位置转过330°角时,金属圆环在垂直于磁场方向上的投影面积为S 3=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ3=-BS 3=-12B πr 2.所以金属圆环在转过30°角和由30°角转到330°角的过程中磁通量的变化量分别为 ΔΦ1=Φ2-Φ1=12B πr 2,ΔΦ2=Φ3-Φ2=-B πr 2,又Δt 1= θ1ω=π6ω=π6ω,Δt 2= θ2ω=5π3ω=5π3ω.此过程中产生的感应电动势分别为 E 1=ΔΦ1Δt 1=12B πr 2π6ω=3Bωr 2,E 2=|ΔΦ2Δt 2|=B πr 25π3ω=35Bωr 2.[例2] 如图所示,有一半径为R 的圆形匀强磁场区域,磁感应强度为B ,一条足够长的直导线以速度v 进入磁场.从直导线进入磁场至匀速离开磁场区域的过程中,求:(1)感应电动势的最大值为多少?(2)在这一过程中感应电动势随时间变化的规律如何?(3)从开始运动至经过圆心的过程中直导线中的平均感应电动势为多少? [思路点拨] (1)求瞬时感应电动势选择E =Bl v . (2)求平均感应电动势选择E =n ΔΦΔt .(3)应用E =Bl v 时找准导线的有效长度. [答案] (1)2BR v (2)2B v 2R v t -v 2t 2(3)12πBR v[解析] (1)由E =Bl v 可知,当直导线切割磁感线的有效长度l 最大时,E 最大,l 最大为2R ,所以感应电动势的最大值E =2BR v .(2)对于E 随t 变化的规律应求的是瞬时感应电动势,由几何关系可求出直导线切割磁感线的有效长度l 随时间t 变化的情况为l =2R 2-(R -v t )2,所以E =2B v 2R v t -v 2t 2.(3)从开始运动至经过圆心的过程中直导线的平均感应电动势E =ΔΦΔt =12πBR 2R v=12πBR v .1.(多选)单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则O ~D 过程中( )A .线圈中O 时刻感应电动势最大B .线圈中D 时刻感应电动势为零C .线圈中D 时刻感应电动势最大D .线圈中O 至D 时间内平均感应电动势为0.4 V2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在Δt 时间内,磁感应强度的方向不变,大小由B 均匀增大到2B ,在此过程中,线圈中产生的感应电动势为( )A.na 2B 2ΔtB.a 2B 2ΔtC.na 2B ΔtD.2na 2B Δt3.(多选)关于感应电动势的大小,下列说法不正确的是( ) A .穿过闭合电路的磁通量最大时,其感应电动势一定最大 B .穿过闭合电路的磁通量为零时,其感应电动势一定为零C .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定为零D .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定不为零 4.如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水平速度v 0抛出,运动过程中棒的方向不变,不计空气阻力,那么金属棒内产生的感应电动势将( )A .越来越大B .越来越小C .保持不变D .方向不变,大小改变5、如图所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a6、如图所示,A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面向里.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( )A.I AI B =1 B.I AI B =2 C.I A I B =14D.I A I B =127、如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成 θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A .电路中感应电动势的大小为Bl vsin θB .电路中感应电流的大小为B v sin θrC .金属杆所受安培力的大小为B 2l v sin θrD .金属杆的热功率为B 2l v 2r sin θ8.(多选)如图所示,三角形金属导轨EOF 上放有一根金属杆AB ,在外力作用下,保持金属杆AB 和OF 垂直,以速度v 匀速向右移动.设导轨和金属杆AB 都是用粗细相同的同种材料制成的,金属杆AB 与导轨接触良好,则下列判断正确的是( )A .电路中的感应电动势大小不变B .电路中的感应电流大小不变C .电路中的感应电动势大小逐渐增大D .电路中的感应电流大小逐渐增大9.一个面积为S =4×10-2 m 2、匝数为n =100匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B 随时间t 变化的规律如图所示,则下列判断正确的是( )A .在开始的2 s 内穿过线圈的磁通量的变化率等于8 Wb/sB .在开始的2 s 内穿过线圈的磁通量的变化量等于零C .在开始的2 s 内线圈中产生的感应电动势的大小等于8 VD .在第3 s 末线圈中的感应电动势等于零10.(多选)如图所示,单匝线圈在匀强磁场中绕垂直于磁场的轴匀速转动,穿过线圈的磁通量Φ随时间t 的关系可用图像表示,则( )A .在t =0时刻,线圈中的磁通量最大,感应电动势也最大B .在t =1×10-2 s 时刻,感应电动势最大 C .在t =2×10-2 s 时刻,感应电动势为零D .在0~2×10-2 s 时间内,线圈中感应电动势的平均值为零11.如图所示,面积为0.2 m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面.已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4 Ω,求:(1)磁通量变化率及回路的感应电动势; (2)a 、b 两点间电压U ab .12.如图甲所示,轻质细线吊着一质量m =0.32 kg 、边长L =0.8 m 、匝数n =10的正方形线圈,总电阻为r =1 Ω,边长为L2的正方形磁场区域对称分布在线圈下边的两侧,磁场方向垂直纸面向里,大小随时间的变化关系如图乙所示,从t =0开始经t 0时间细线开始松弛,g 取10 m/s 2.求:(1)从t =0到t =t 0时间内线圈中产生的电动势; (2)从t =0到t =t 0时间内线圈的电功率; (3)t 0的值.1.【答案】:ABD【解析】:由法拉第电磁感应定律知线圈中O 至D 时间内的平均感应电动势E =ΔΦΔt =2×10-30.012 V =0.4V ,D 项正确;由感应电动势的物理意义知,感应电动势的大小与磁通量的大小Φ和磁通量的改变量ΔΦ均无必然联系,仅由磁通量的变化率ΔΦΔt 决定,而任何时刻磁通量的变化率ΔΦΔt 就是Φ-t 图像上该时刻切线的斜率,不难看出O 时刻处切线斜率最大,D 点处切线斜率最小为零,故A 、B 正确,C 错误.2.【答案】:A【解析】:正方形线圈内磁感应强度B 的变化率ΔB Δt =BΔt ,由法拉第电磁感应定律知,线圈中产生的感应电动势为E =nS ΔB Δt =n ·a 22·B Δt =na 2B2Δt,选项A 正确.3.【答案】:ABC【解析】:磁通量的大小与感应电动势的大小不存在内在的联系,故A 、B 错;当磁通量由不为零变为零时,闭合电路的磁通量发生改变,一定有感应电流产生,有感应电流就一定有感应电动势,故C 错,D 对.4.【答案】:C【解析】:由于导体棒中无感应电流,故棒只受重力作用,导体棒做平抛运动,水平速度v 0不变,即切割磁感线的速度不变,故感应电动势保持不变,C 正确.5、【答案】:C【解析】:金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误.转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误.由转动切割产生感应电动势的公式得U bc =-12Bl 2ω,选项C 正确.6、【答案】:D【解析】:A 、B 两导线环的半径不同,它们所包围的面积不同,但穿过它们的磁场所在的区域面积是相等的,所以两导线环上的磁通量变化率是相等的,E =ΔΦΔt =ΔB Δt S 相同,得E A E B =1,I =E R ,R =ρlS (S 为导线的横截面积),l =2πr ,所以I A I B =r B r A ,代入数值得I A I B =r B r A =12.7、【答案】:B【解析】:由电磁感应定律可知电路中感应电动势为E =Bl v ,A 错误;感应电流的大小I =Bl v r l sin θ=B v sin θr ,B 正确;金属杆所受安培力的大小F =B B v sin θr ·l sin θ=B 2l v r ,C 错误;热功率P =(B v sin θr )2r l sin θ=B 2l v 2sin θr ,D 错误.8、【答案】:BC【解析】:设三角形金属导轨的夹角为θ,金属杆AB 由O 点经时间t 运动了v t 的距离,则E =B v t ·tan θ·v ,电路总长为l =v t +v t tan θ+v t cos θ=v t (1+tan θ+1cos θ),又因为R =ρl S ,所以I =ER =B v S sin θρ(1+sin θ+cos θ),I 与t 无关,是恒量,故选项B 正确.E 逐渐增大,故选项C 正确.9.【答案】:C【解析】:在开始的2 s 内,磁通量的变化量为ΔΦ=|-2-2|×4×10-2 Wb =0.16 Wb ,磁通量的变化率ΔΦΔt =0.08 Wb/s ,感应电动势大小为E =n ΔΦΔt=8 V ,故A 、B 错,C 对;第3 s 末虽然磁通量为零,但磁通量的变化率为0.08 Wb/s ,感应电动势不等于零,故D 错.10.【答案】:BC【解析】:由法拉第电磁感应定律知E ∝ΔΦΔt,故t =0及t =2×10-2 s 时刻,E =0,A 错,C 对.t =1×10-2s ,E 最大,B 对.0~2×10-2 s ,ΔΦ≠0,E ≠0,D 错. 11.【答案】:(1)0.04 Wb/s 4 V (2)2.4 V 【解析】:(1)由B =(2+0.2t )T 得ΔBΔt =0.2 T/s ,故ΔΦΔt =S ΔBΔt=0.04 Wb/s , E =n ΔΦΔt=4 V.(2)线圈相当于电源,U ab 是外电压,则 U ab =ER 1+R 2R 1=2.4 V .12.【答案】:(1)0.4 V (2)0.16 W (3)2 s 【解析】:(1)由法拉第电磁感应定律得 E =n ΔΦΔt =n ΔB Δt ×12×⎝⎛⎭⎫L 22=0.4 V .(2)I =Er =0.4 A ,P =I 2r =0.16 W.(3)分析线圈受力可知,当细线松驰时有 F 安=nB t 0I ·L 2=mg ,I =E r ,则B t 0=2mgrnEL =2 T.由图象知B t 0=1+0.5 t 0(T),解得t 0=2 s.。
法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。
、法拉第电磁感应定律。
2、自感现象和、自感现象和自感系数自感系数。
3、电磁感应现象的综合应用。
、电磁感应现象的综合应用。
一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。
的变化率成正比。
即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。
2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。
没有必然关系。
3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。
此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。
其中L 为导体有效切割磁感线长度。
为导体有效切割磁感线长度。
2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。
3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。
二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。
法拉第电磁感应定律法拉第电磁感应定律是电磁学的基础定律之一,它描述了导体中感应电动势与导体上的磁场变化之间的关系。
该定律由英国物理学家迈克尔·法拉第于1831年提出,经过实验证实并被广泛应用。
本文将介绍法拉第电磁感应定律的原理、公式以及实际应用。
一、定律原理法拉第电磁感应定律是指当导体中的磁通量发生变化时,导体中会感应出电动势和感应电流。
磁通量是一个衡量磁场穿过一个给定表面的大小的物理量。
当磁通量改变时,导体中的自由电子会受到磁力的作用而发生运动,从而产生电流。
这种现象被称为电磁感应。
二、定律公式根据法拉第电磁感应定律,感应电动势(ε)与磁通量变化速率(dΦ/dt)成正比。
其数学表达式如下:ε = -dΦ/dt其中,ε表示感应电动势,单位为伏特(V);dΦ/dt表示磁通量的变化速率,单位为韦伯/秒(Wb/s)。
根据右手定则,可以确定感应电动势的方向。
当磁场的变化导致磁通量增加时,感应电动势的方向与变化的磁场方向垂直且遵循右手定则;当磁通量减少时,感应电动势的方向与变化的磁场方向相反。
三、应用举例1. 电磁感应产生的电动势可用于发电机的工作原理。
发电机通过转动磁场与线圈之间的磁通量变化来产生感应电动势,最终转化为电能供应给电器设备。
2. 感应电动势也可以应用于感应加热。
感应加热是通过变化的磁场产生的感应电流在导体中产生焦耳热,实现对物体进行加热的过程。
这种方法广泛用于工业领域中的加热处理、熔化金属等。
3. 感应电动势还可以实现非接触的测量。
例如,非接触式转速传感器利用感应电动势来实现对机械设备转速的测量。
四、实验验证1831年,法拉第进行了一系列实验来验证他提出的电磁感应定律。
其中最著名的实验是在一个充满磁铁的线圈中将另一个线圈移动。
当第一个线圈移动时,第二个线圈中就会感应出电流。
这一实验结果验证了法拉第的理论,为电磁感应定律的确认提供了强有力的证据。
五、应用发展法拉第电磁感应定律为电磁学的发展奠定了基础。
法拉第电磁感应定律『夯实基础知识』 1、法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
公式: tnE ∆∆ϕ=,其中n 为线圈的匝数。
法拉第电磁感应定律的理解 (1)tn ∆∆ϕ=E 的两种基本形式:①当线圈面积S 不变,垂直于线圈平面的磁场B 发生变化时,t B S nE ∆∆=;②当磁场B 不变,垂直于磁场的线圈面积S 发生变化时,tSB n E ∆∆=。
(2)感应电动势的大小取决于穿过电路的磁通量的变化率t∆∆ϕ,与φ的大小及△φ的大小没有必然联系。
(3)若t ∆∆ϕ为恒定(如:面积S 不变,磁场B 均匀变化,k tB=∆∆,或磁场B 不变,面积S 均匀变化,'=∆∆k tS),则感应电动势恒定。
若t ∆∆ϕ为变化量,则感应电动势E 也为变化量,t nE ∆∆ϕ=计算的是△t 时间内平均感应电动势,当△t→0时,tn E ∆∆ϕ=的极限值才等于瞬时感应电动势。
2、磁通量ϕ、磁通量的变化ϕ∆、磁通量的变化率t∆∆ϕ(1)磁通量ϕ是指穿过某面积的磁感线的条数,计算式为θϕsin BS =,其中θ为磁场B 与线圈平面S 的夹角。
(2)磁通量的变化ϕ∆指线圈中末状态的磁通量2ϕ与初状态的磁通量1ϕ之差,12ϕϕϕ-=∆,计算磁通量以及磁通量变化时,要注意磁通量的正负。
(3)磁通量的变化率。
磁通量的变化率t∆∆ϕ是描述磁通量变化快慢的物理量。
表示回路中平均感应电动势的大小,是t -ϕ图象上某点切线的斜率。
t∆∆ϕ与ϕ∆以及ϕ没有必然联系。
3、对公式E =Blv 的研究 (1)公式的推导取长度为1的导体棒ab ,强度垂直于磁场方向放在磁感强度为B 的匀强磁场中,当棒以速度v 做垂直切割磁感线运动时,棒中自由电子就将受到洛仑兹力f b =evB 的作用,这将使的a 、b 两端分别积累起正、负电荷而在棒中形成电场,于是自由电子除受f b 作用外又将受到电场力f c =eE ,开始a 、b 两端积累的电荷少,电场弱,f c 小,棒两端积累的电荷继续增加,直至电场力与洛仑兹力平衡:f c =f B 。
高中物理知识点总结-法拉第电磁感应定律.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.。
法拉第电磁感应定律法拉第电磁感应定律是描述变化磁场引起感应电动势和感应电流产生的物理规律。
该定律由英国物理学家迈克尔·法拉第于1831年发现并提出。
它在电磁学、电动机、发电机和变压器等领域有着广泛的应用。
本文将对法拉第电磁感应定律的原理、应用和相关实验进行详细介绍。
一、法拉第电磁感应定律的原理法拉第电磁感应定律主要包括两个方面的内容:磁通量的变化引起感应电动势,感应电动势的大小与磁通量变化率成正比。
下面将对这两个方面进行详细阐述。
1. 磁通量的变化引起感应电动势当磁场的磁通量通过一个线圈时,如果磁场的强度发生变化,即磁通量发生变化,线圈中就会产生感应电动势。
感应电动势的方向由勒沃瓦定律决定,即感应电动势的方向使得通过线圈的电流的磁场的方向抵消原磁场的变化。
如果磁通量的变化率为Φ/t,线圈的匝数为N,根据法拉第电磁感应定律可得感应电动势:ε = -NΦ/t其中,ε表示感应电动势,N表示线圈的匝数,Φ表示磁通量,t表示时间。
2. 感应电动势的大小与磁通量变化率成正比当磁通量变化率较大时,所产生的感应电动势也相应增大。
根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。
即感应电动势的大小为Φ/t的导数。
当磁通量以一定的速率改变时,线圈中产生的感应电动势也以相同的速率改变。
二、法拉第电磁感应定律的应用法拉第电磁感应定律在许多领域有着广泛的应用,尤其是在发电、电动机和变压器等设备中。
1. 发电机发电机是运用法拉第电磁感应定律制造的。
利用机械能驱动导线在磁场中运动,使得磁通量发生变化,从而产生感应电动势。
通过外部电路连接,感应电动势驱动电子流动,最终转化为电能。
2. 变压器变压器是利用法拉第电磁感应定律制造的。
变压器通过磁场感应来实现电能的传递和变换。
当交流电通过变压器的一侧线圈时,由于电流的改变引起磁场的改变,从而在另一侧线圈中感应出电动势,实现电能的输送和变压。
3. 电磁感应传感器电磁感应传感器是利用法拉第电磁感应定律制造的。
第1页(共22页)2023年高考物理热点复习:法拉第电磁感应定律
自感现象【2023高考课标解读】
1.能应用法拉第电磁感应定律E =n
ΔΦΔt
和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.
【2023高考热点解读】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E =n ΔΦΔt
,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =E R +r .3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动
产生感应电动势E =Bl v -=12Bl 2ω(平均速度等于中点位置的线速度12
lω).二、自感、涡流、电磁阻尼和电磁驱动
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E =L ΔI Δt
.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流现象。
法拉第电磁感应定律法拉第电磁感应定律是关于电磁感应现象中电动势产生的定律。
它是英国物理学家迈克尔·法拉第在1831年通过实验观察到的。
法拉第电磁感应定律揭示了磁场变化引起的感应电流现象,为电磁学的发展做出了重要贡献。
法拉第电磁感应定律的表述为:“当一根导体在磁场中运动或磁场变化时,产生在导体两端的电动势的大小与导体在磁场中运动的速度或磁场变化速率成正比。
”根据法拉第电磁感应定律,可以得出以下三个定律:第一定律:当导体与磁场垂直时,导体中不会产生电动势。
第二定律:当导体与磁场夹角不为零时,导体中会产生感应电动势。
电动势的大小正比于导体在磁场中的速度。
第三定律:当导体与磁场夹角不为零时,导体中会产生感应电动势。
电动势的大小正比于导体所受磁场变化率。
法拉第电磁感应定律的应用非常广泛。
它为电磁感应现象的解释提供了基础,也为电能转换和电磁设备的设计提供了理论依据。
根据法拉第电磁感应定律,我们可以理解一些实际应用。
例如发电机的工作原理就是基于电磁感应定律的。
当磁场和导体的相对运动产生变化时,导体中就会产生感应电动势,从而产生电流。
这就是发电机将机械能转化为电能的原理。
另外,电磁感应定律还可以解释变压器的工作原理。
当交流电通过一个线圈时,会产生交变磁场。
而接近该线圈的另一个线圈中会感应出电动势,从而产生电流。
这个原理被应用于变压器的步进调压、信号传输和能量传输等领域。
同时,法拉第电磁感应定律也可以用于电磁感应的实验教学。
通过实验,学生可以观察到磁场变化对电动势的影响,进而理解电磁感应的基本原理。
在理论研究和工程应用中,法拉第电磁感应定律为我们解决问题提供了重要的参考。
通过对电磁感应现象的深入理解,人们能够更好地利用电磁力和电磁感应现象,使其为社会经济发展和科学研究带来更多的益处。
总之,法拉第电磁感应定律是电磁学中一项重要的定律,它揭示了磁场变化会引起感应电动势的规律。
这一定律为电磁学的研究和应用提供了理论基础,也在发电、变压器和实验教学等领域有广泛应用。
一、电磁感应现象1、磁通量:在匀强磁场中,磁感应强度B与垂直磁场的面积S的乘积,叫做穿过这个面的磁通量,即;一般情况下,当平面S不跟磁场方向垂直时,,为平面S在垂直于磁感线方向上的投影。
当磁感线与线圈平面平行时,磁通量为零。
2、产生感应电流的条件可归结为两点:①电路闭合;②通过回路的磁通量发生变化。
3、磁通量是双向标量。
若穿过面S的磁通量随时间变化,以、分别表示计时开始和结束时穿过面S的磁通量的大小,则当、中磁感线以同一方向穿过面S时,磁通量的改变;当、中磁感线从相反方向穿过面S时,磁通量的改变。
4、由于磁感线是闭合曲线,所以穿过任意闭合曲面的磁通量一定为零,即=0。
如穿过地球的磁通量为零。
二、法拉第电磁感应定律——感应电动势的大小1、法拉第电磁感应定律的数学表达式为,它指出感应电动势既不取决于磁通量φ的大小,也不取决于磁通量变化Δφ的大小,而是由磁通量变化的快慢等来决定的,由算出的是感应电动势的平均值,当线圈有相同的n匝时,相当于n个相同的电源串联,整个线圈的感应电动势由算出。
2、公式中涉及到的磁通量Δφ的变化情况在高中阶段一般有两种情况:①回路与磁场垂直的面积s不变,磁感应强度发生变化,则Δφ=ΔBS,此时,式中叫磁感应强度的变化率。
②磁感应强度B不变,回路与磁场垂直的面积发生变化,则Δφ=BΔS。
若遇到B和S都发生变化的情况,则。
3、回路中一部分导体做切割磁感线运动时感应电动势的表达式为,式中v取平均速度或瞬时速度,分别对应于平均电动势或瞬时电动势。
4、在切割磁感线情况中,遇到切割导线的长度改变,或导线的各部分切割速度不等的复杂情况,感应电动势的根本算法仍是,但式中的ΔΦ要理解时间内导线切割到的磁感线的条数。
三、疑难辨析:1、对于法拉第电磁感应定律E=应从以下几个方面进行理解:①它是定量描述电磁感应现象的普遍规律,不管是什么原因,用什么方式所产生的电磁感应现象,其感应电动势的大小均可由它进行计算。
法拉第电磁感应定律法拉第电磁感应定律是电磁学中的基本定律之一,描述了变化磁场引起的感应电动势。
此定律由英国科学家迈克尔·法拉第于1831年提出,并推动了现代电磁学的发展。
本文将介绍法拉第电磁感应定律的内容,以及相关的应用和实验。
一、法拉第电磁感应定律的表述根据法拉第电磁感应定律,当一个导体被置于变化的磁场中时,导体中就会产生感应电动势,从而产生感应电流。
其数学表达方式可以用以下公式表示:ε = -dΦ/dt在上述公式中,ε代表感应电动势,单位为伏特(V);dΦ/dt代表磁通量随时间的变化率,单位为韦伯/秒(Wb/s)。
根据法拉第电磁感应定律,当磁场的变化率为正时,感应电动势的极性为负;当磁场的变化率为负时,感应电动势的极性为正。
二、法拉第电磁感应定律的实验验证为了验证法拉第电磁感应定律,科学家们进行了一系列的实验。
其中最著名的实验之一是法拉第实验,即用一个螺线管绕制的线圈将磁场感应到另一个线圈中。
通过改变输入线圈的电流或改变磁场的强度,可以观察到输出线圈中产生的感应电动势的变化。
除了法拉第实验,还有许多其他实验证实了该定律。
比如,当磁铁快速穿过线圈时,线圈中就会产生感应电流;在发电机工作时,通过转动磁场可以产生电流等。
三、法拉第电磁感应定律的应用法拉第电磁感应定律在许多领域都有广泛的应用。
以下是其中一些常见的应用:1. 电磁感应发电:根据法拉第电磁感应定律,通过改变磁场的强度或导体回路的面积,可以产生感应电动势,从而实现发电。
这种原理被广泛应用于发电机和发电厂。
2. 变压器:变压器是电力输送和转换中常用的设备,其工作原理也基于法拉第电磁感应定律。
变压器通过交流电产生变化的磁场,从而在输入线圈和输出线圈之间产生感应电动势和电流,从而实现电压和电流的转换。
3. 感应加热:法拉第电磁感应定律的另一个应用是感应加热。
通过在导体附近放置一个变化磁场的线圈,可以感应出感应电流,并使导体发热。
这种原理被广泛应用于感应炉、感应焊接等工艺中。
法拉第电磁感应定律1. 简介法拉第电磁感应定律是描述电磁感应现象的重要定律。
它由英国科学家迈克尔·法拉第于1831年提出,是电磁学的基础定律之一。
该定律描述了当磁通量发生变化时,导体中会产生与磁通量变化方向相反的感应电动势。
2. 法拉第电磁感应定律的表述法拉第电磁感应定律可以通过以下公式进行表述:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。
公式中的负号表示感应电动势的方向与磁通量变化方向相反。
3. 定律的解释与应用根据法拉第电磁感应定律,当磁通量发生变化时,导体中会产生感应电动势。
这个电动势可以通过导体两端的电压差进行测量,从而实现能量的转化和传输。
因此,法拉第电磁感应定律是发电机和变压器等电磁设备的基础原理。
3.1 发电机发电机是利用法拉第电磁感应定律产生电能的设备。
当导体与磁场相互作用时,磁通量会发生变化,从而产生感应电动势。
通过不断旋转导体或磁场,可以不断改变磁通量,进而产生稳定的感应电动势。
这种感应电动势可以通过电路连接到负载上,实现电能的输出。
3.2 变压器变压器是利用法拉第电磁感应定律改变电压的设备。
变压器由两个绕组组成,分别是主绕组和副绕组。
当主绕组中的交流电流发生变化时,产生的磁场也会发生变化,从而改变副绕组中的磁通量。
根据法拉第电磁感应定律,这种变化的磁通量会在副绕组中产生感应电动势,从而改变副绕组中的电压。
3.3 感应炉感应炉是利用法拉第电磁感应定律产生热能的设备。
感应炉通过感应加热的原理,将交流电源的电能转化为高频电磁场的能量。
当导体置于高频电磁场中时,导体中的自由电子受到电磁力的作用,产生热能。
这种热能可以用于金属加热、熔炼等工业应用中。
4. 应用举例法拉第电磁感应定律在实际工程中有着广泛的应用。
以下是一些常见的应用举例:•发电机:将机械能转化为电能,供给家庭和工业使用。
•变压器:调节电能的电压,以适应不同场合的需要。
•感应炉:用于金属加热、熔炼等工业应用。
法拉第电磁感应定律『夯实基础知识』1、法拉第电磁感应定律:量的变化率成正比。
电路中感应电动势的大小,跟穿过这一电路的磁通在电磁感应现象中,??,其中n公式:为线圈的匝数。
nE=t?法拉第电磁感应定律的理解??nE=发生变(1当线圈面积)S不变,垂直于线圈平面的磁场B的两种基本形式:①t?SS?BB?不变,垂直于磁场发生变化时,的线圈面积S。
;②化时,当磁场B nEE=n=t?t???的大小φφ,(2)感应电动势的大小取决于穿过电路的磁通量的变化率与的大小及△t?没有必然联系。
?B??均匀变化,B为恒定(如:面积S不变,磁场S,或磁场B(3不变,面积)若k?tt????S?)也为变化量,,则感应电动势恒定。
若为变化量,则感应电动势E均匀变化,?k?t?t?????的极限值才等于瞬时感△t时间内平均感应电动势,当△t→0时,计算的是nEE=n=t??t应电动势。
???、磁通量、磁通量的变化、磁通量的变化率2??t?B为磁场1)磁通量是指穿过某面积的磁感线的条数,计算式为,其中θ(???sinBS=S与线圈平面的夹角。
?,差量之磁磁通量与初状态的通量(2)磁通的变化圈指线中末状态的???12,计算磁通量以及磁通量变化时,要注意磁通量的正负。
???-=?12??是描述磁通量变化快慢的物理量。
表示回路中(3)磁通量的变化率。
磁通量的变化率t????图象上某点切线的斜率。
平均感应电动势的大小,是与以及没有必然联系。
???t?t?、对公式E =Blv的研究3 1)公式的推导(的匀强磁场中,当棒以,强度垂直于磁场方向放在磁感强度为B取长度为1的导体棒ab、af=evB的作用,这将使的棒中自由电子就将受到洛仑兹力速度v做垂直切割磁感线运动时,b作用外又将受到电场力f两端分别积累起正、负电荷而在棒中形成电场,于是自由电子除受b b、小,棒两端积累的电荷继续增加,直至电场b两端积累的电荷少,电场弱,=eEf,开始af cc棒形成一个感应电abf力与洛仑兹力平衡:f=f。
高二物理学案9(必修班)
二、法拉第电磁感应定律
一、知识梳理
一、感应电动势
闭合电路中由于磁通量的变化产生感应电流产生,产生感应电流的那部分电路相当于电源。
我们把电磁感应现象中产生的电动势叫做感应电动势。
画图举例:
二、法拉第电磁感应定律
1、磁通量、磁通量的变化、磁通量的变化率 磁通量:φ = BScos θ
磁通量的变化:Δφ=φ2—φ1
磁通量的变化率:Δφ/Δt
磁通量的变化率与磁通量、磁通量的变化无直接关系,三者间的关系类似于加速度与速度、速度变化的关系。
2、法拉第电磁感应定律
A 、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
B 、数学表达式:
t
E ∆∆=φ (单匝线圈) 对于多匝线圈有 t n
E ∆∆=φ
二、例题分析
例1、把一条形磁铁插入同一闭合线圈中,一次是迅速插入,一次是缓慢插入,两次初、末位置均相同,则在两次插入过程中 ( )
A.磁通量变化量相同
B.磁通量变化率相同
C.产生的感应电流相同
D.产生的感应电动势相同
例2、有一个1000匝的线圈,在0.4s 内穿过它的磁通量从0.02wb 增加到0.09wb ,求线圈中的感应电动势。
如果线圈的电阻是10Ω,把它从一个电阻为990Ω的电热器串联组成闭合电路时,通过电热器的电流是多大?
三、课后练习
1、关于电磁感应,下列说法中正确的是( )。
A 、穿过线圈的磁通量越大,感应电动势越大;
B 、穿过线圈的磁通量为零,感应电动势一定为零;
C 、穿过线圈的磁通量的变化越大,感应电动势越大;
D 、空过线圈的磁通量变化越快,感应电动势越大。
2、如图所示,将条形磁铁从相同的高度分别以速度v 和2v 插入线圈,电流表指针偏转角度较大的是:
A .以速度v 插入
B .以速度2v 插入
C .一样大
D .不能确定
3、桌面上放一个单匝线圈,线圈中心上方一定高度上有一竖立的条形磁铁,此时线圈内的磁通量为0.04Wb ,把条形磁铁竖放在线圈内的桌面上时,线圈内磁通量为0.12Wb 。
分别计算以下两个过程中线圈中感应电动势。
(1)把条形磁铁从图中位置在0.5s 内放到线圈内的桌面上。
(2)换用10匝的矩形线圈,线圈面积和原单匝线圈相同,把条形磁铁从图中位置在0.1s 内放到线圈内的桌面上。
【选做题】平行闭合线圈的匝数为n,所围面积为S ,总电阻为R ,在t ∆时间内穿过每匝线圈的磁通量变化为∆Φ,则通过导线某一截面的电荷量为( )
A 、
R ∆Φ B 、R nS
∆Φ C 、 tR ∆∆Φn D 、R ∆Φn。