1.2 数轴、相反数和绝对值(一)
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
1.2 数轴、相反数和绝对值知识点一 数轴★数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的定义包含三层含义:①数轴是一条向两方无限延伸的直线;②数轴有三要素:原点、正方向、单位长度;③注意“规定”二字,是说原点的位置、正方向的选取、单位长度大小的确定,都是根据实际需要人为规定的。
★数轴的画法画数轴时,通常按以下步骤进行一画:首先画一条直线(通常画成水平方向);二取:在这条直线上任取一点作为原点,用这点表示数0;三定:规定这条直线的一个方向为正方向(一般取从左到右的方向为正方形,并用箭头表示),相反的方向就是负方向;四选:适当地选取某一长度作为单位长度;五标:从原点向右,每隔一个单位长度取一点,依次标上1,2,3,……,从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,……。
例1 下列数轴正确的个数为( )A. 0B. 1C. 2D. 3知识点二 有理数与数轴上点的关系★一般地,任意一个有理数,都可以用数轴上的一个点来表示。
0用原点表示,正有理数用原点右边的点表示,负有理数用原点左边的点表示。
例2 如图,指出数轴上的点A 、B 、C 、D 、E 、O 分别表示什么数。
例3 用数轴上的点表示下列各数:21,4-,0,3,3-,21-知识点三 相反数的意义★代数意义:像2与2-,4与4-,2121-与这样,只有符号不同的两个数互为相反数,这就是说,其中一个数是另一个数的相反数,如44-与互为相反数,即4的相反数是4-,4-的相反数是4。
特别规定:0的相反数是0★几何意义:两个互为相反数的数在数轴上所表示的点在原点的两旁,到原点的距离相等。
例4 分别写出下列各数的相反数:2例5 下列说法正确的是( )A. 符号不同的两个数互为相反数B.互为相反数的两个数必是一个正数,一个负数C.π的相反数是14.3-D. 0.5与21-互为相反数 知识点四 绝对值的定义★在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a|.如:2-的绝对值记作2-,0的绝对值记作0绝对值表示两点之间的距离,它是非负数,即任何一个数的绝对值不可能是负数,它只能是正数或0★由绝对值的定义(代数意义)可知:(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0例6 求下列各数的绝对值:(1)83+;(2)5.0-;(3)0;(4)412-例7 若一个数的绝对值是2,则这个数是( )A. 2B. 2-C. 2或2-D.2121-或 知识点五 数轴上两点间的距离在数轴上,点21A A 、表示有理数21x x 、,我们把21x x 、叫做21A A 、的一维坐标。
1.2 数轴、相反数和绝对值第1课时数轴1.掌握数轴的三要素,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数.2.理解任何有理数都可以用数轴上唯一的一个点表示出来.3.初步理解数形结合的数学思想.重点数轴的概念及其画法.难点数轴的画法以及有理数与数轴上的点的对应关系.一、复习旧知,导入新知回忆:你能说说什么叫正数,什么叫负数,什么叫有理数吗?教师提问:(1)观察带有刻度的尺子,边缘上的点是如何表示数的呢?能不能用一条直线上的点来表示有理数呢?二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.到达三、师生互动,理解新知探究点一:认识数轴问题1:让机器人在一条直路上做走步取物试验.根据指令:它由O处出发,向西走A处,拿取物品,然后,返回O处将物品放入蓝中,再向东走2m到达B处取物.3m (1)在下面的直线上画出A,B两处的位置.______________________________________把向东走记作“+〞,向西走记作“-〞,在上面的直线上标出与A,B相对应的数.问题2:观察温度计,在温度计上有刻度,刻度上有度数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示 10℃;在0下5个刻度,表示-5℃.温度计可以看作表示正数、0、负数的直线吗?它和刚刚那个的图有什么共同点,有什么不同点?教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边),用这点表示0(相当于温度计上的0℃);定直上从原点向右正方向(箭所指的方向),那么从原点向左方向(相当于温度上0℃以上正,0℃以下);取适当的度作位度,在直上,从原点向右,每隔一个度位取一点,依次表示1,2,3,⋯从原点向左,每隔一个度位取一点,依次表示-1,-2,-3,⋯在此基上,出数的定,即:定了原点、正方向和位度的直叫做数.而提:在数上,一点P表示数-5,如果数上的原点不在原来位置,而改在另一位置,那么P的数是否是-5?如果位度改呢?如果直的正方向改呢?通上述提,向学生指出:数的三要素——原点、正方向和位度,缺一不可.探究点二:有理数与数上的点提:我能不能用条直表示任何有理数?(可列几个数)教指出:任何有理数都可以用数上的唯一的一个点来表示,但数上的点不一定都表示有理数,个以后再研究.思考:(1)如果你一些数,你能相地在数上找出它的准确位置?如果你数上的点,你能出它所表示的数?哪些数在原点的左,哪些数在原点的右,由此你会什么律?(3)如果a正数,那么数上表示a的点在原点的哪?到原点的距离是多少?-a呢?(小,交流):一般地,a是一个正数,数上表示a的点在原点的右,到原点的距离是a个位度;表示-a的点在原点的左,到原点的距离是a个位度.四、用迁移,运用新知1.数例1以下形中是数的是()A.B.C. D.解析:A中没有位度,;B中没有正方向,;C中足原点、正方向、位度,正确;D中没有原点,.方法:要判断一条直是不是数,要抓住它的三要素:原点、正方向和位度,三者缺一不可.2.出数上的点所表示的数例2本P8例1.方法:在确定数字,要真察点是在原点的左是右.于点A,D种情况,要注意它所表示的数是在哪两个整数之.3.在数上表示有理数例3本P8例2.方法:用数上的点表示数,首先由数的性符号确定数在原点的左是右,然后再根据数到原点的距离,确定位置.4.数上两点的距离例4数上的点A表示的数是+2,那么与点A相距5个位度的点表示的数是()A.5B.±5C.7D.7或-3解析:与点A相距5个位度的点表示的数有2个,分是7或-3.方法总结:解答此类问题要注意考虑两种情况,即要求的点在点的左侧或右侧.五、尝试练习,掌握新知 课本P9练习第1、2题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了数轴, 一条直线只有具备了原点、 正方向和单位长度才能成为数轴. 所有 的有理数都可以用数轴上的点表示出来. 数轴的引入,使我们能用直观图形来理解数的有关概念,这就是数形的结合,它是一种很重要的数学思想方法,我们应特别注意掌握.七、深化练习,稳固新知 课本P12习题第4题.第2课时 相反数1.在具体的情境中了解相反数,能求一个数的相反数.2.了解两个相反数在数轴上的特征,懂得相反数的对立统一的关系.重点理解相反数的概念和求一个数的相反数.难点相反数概念的理解.一、复习旧知,导入新知回忆:在数轴上表示+ 3的点在原点的 ______侧,在数轴上表示-3的点在原点的______侧;距原点 5个单位的点是 ______.(要求学生画数轴并描点)观察上述数轴上的点的特点,并找出还有哪些点具有同样的特点.+3与-3这样成对出现的数就是我们今天要学习的相反数.二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.三、师生互动,理解新知探究点一:相反数的意义11问题:首先,画一条数轴,然后在数轴上标出以下各点:2与-2,4与-4,2与- 2.请同学们观察:(1) 上述这三对数有什么特点?(2) 表示这三对数的数轴上的点有什么特点? (3) 请你再写出同样的几对点来?显然:(1)上面的这三对数中,每一对数数值相同,只有符号不同.(2)这三对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同.1.相反数的概念像以上这样,只有符号不同的两个数互为相反数,如2与-2互为相反数,即数是-2,-2的相反数是 2.说明:(1)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数互为2的相反相反数.如4与-4是互为相反数.(2)0的相反数是0.也只有0的相反数是它的本身.2.相反数的表示在一个数的前面添上“-〞号就成为原数的相反数.数表示为-a.在一个数的前面添上“+〞号仍与原数相同.假设a表示一个有理数,那么a的相反例如,+7=7,特别地,+0=0,-0=0.3.相反数的特性假设a、b互为相反数,那么a+b=0;反之假设a+b=0,那么a、b互为相反数.探究点二:多重符号的化简提出问题:a前面加“-〞表示a的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、答复.学生答复后教师引导:在一个数前面加上“-〞表示这个数的相反数,如果在这些数前面加上“+〞呢?学生讨论后答复.说明:(1)相反数的意义是简化多重符号的依据.如-(-1)是-1的相反数,而-1的相反数为+1,所以-(-1)=+1=1.多重符号化简的结果是由“-〞号的个数决定的.如果“-〞号是奇数个,那么结果为负;如果是偶数个,那么结果为正.可简写为“奇负偶正〞.归纳:化简一个数就是把多重符号化成单一符号,假设结果是“+〞号,一般省略不写.四、应用迁移,运用新知1.相反数的代数意义例1见课本P10例3.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.2.相反数的几何意义例2(1)数轴上离原点3个单位长度的点所表示的数是______,它们的关系为______.(2)在数轴上,假设点A和点B分别表示互为相反数的两个数,点A在点B的左侧,并且这两个数的距离是,那么A=______,B=______.解析:(1)左边距离原点3个单位长度的点所表示的数是-3;右边距离原点3个单位长度的点所表示的数是3,所以距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)因为点A和点B分别表示互为相反数的两个数,所以原点到点A与点B的距离相等,原点到点A和点B的距离都等于 6.4.因为点A在点B的左侧,所以这两点所表示的数分别是-,6.4.方法总结:此题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等.3.相反数与数轴相结合的问题例3如图,图中数轴(缺原点)的单位长度为1,点A,B表示的两数互为相反数,那么点C所表示的数为()A.2B.-4C.-1D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,所以点C所表示的数为- 1.方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等.4.多重符号的化简例4化简以下各数:(1)-(-8)=______;1-(+15)=______;8-[-(+6)]=______;3(4)+(+5)=______.解析:(1)-(-8)表示-8的相反数;11-(+158)表示158的相反数;先看括号内-(+6)表示+6的相反数,即-6,所以-[-(+6)]=-(-6);正数前面的“+〞号可以省略.13解:(1)8;(2)-158;(3)6;(4)5.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,假设有偶数个,那么结果为正;假设有奇数个,那么结果为负.五、尝试练习,掌握新知课本P10练习第1、2、3题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等.七、深化练习,稳固新知课本P12习题第1、2、5题.第3课时绝对值1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.重点正确理解绝对值的概念,能求一个数的绝对值.难点正确理解绝对值的几何意义和代数意义.一、复习旧知,导入新知回忆:(1)在数轴上分别标出-5,,0及它们的相反数所对应的点.(2)在数轴上找出与原点距离等于6的点.(3)相反数是怎样定义的?引导学生从代数与几何两方面的特点出发答复相反数的定义.从几何方面可以说在数轴上原点两旁,离原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、自主合作,感受新知回忆以前学的知识、阅读课文并结合生活实际,完成?探究在线·高效课堂?“预习导学〞局部.三、师生互动,理解新知探究点一:绝对值的代数与几何意义1问题1:在练习本上画一个数轴,并标出表示-4,2,0及它们的相反数的点.学生活动:一个学生板演,其他学生在练习本上画.提问:-4与4是相反数,它们只有符号不同,它们什么相同呢?学生活动:思考讨论.教师归纳:在数轴上标出到原点距离是4个单位长度的点,显然A点(表示4的点)到原点的距离是4,B点(表示-4的点)到原点距离同样是4个单位长度,两者相同,我们把这个距离叫+4与-4的绝对值.-4的绝对值是表示-4的点到原点的距离,-4的绝对值是4;4的绝对值是表示4的点到原点的距离,4的绝对值是4.11呢?(2)思考:a的绝对值呢?学生活动:(1)2的绝对值表示什么?-2呢?0教师小结归纳:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值,记作|a|.探究点二:绝对值的非负性思考:从上面结果中,你能发现什么规律?(小组讨论,合作学习).引导学生得出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.因为正数可用>0来表示,负数可用a <0来表示,所以上述三条可改写成:a(1)如果a>0,那么|a|=a,如果a<0,那么|a|=-a,如果a=0,那么|a|=0.上面这几个式子可合并写成:〔a>0〕|a|=0〔a=0〕a〔a<0〕由上面的几个式子可以看出,不管a取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a而言,总有:|a|≥0.这是一条非常重要的性质,这里的“非负〞就是“不是负数〞,而有可能是正数或者是0.上面的这几个式子还告诉咱们怎样求一个数的绝对值:如果求一个正数的绝对值,根据法那么,就直接写出结果即可.如果求一个负数的绝对值,根据法那么,就需要找它的相反数.而就“0〞而言,它的绝对值就是它本身.四、应用迁移,运用新知1.求一个数的绝对值例1见课本P11例4.例2-3的绝对值是()11A.3B.-3C.-3D.3解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是 3.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.利用绝对值求有理数2例3如果一个数的绝对值等于3,那么这个数是______.解析:因为2或-2的绝对值都等于332,所以绝对值等于32的数是32或-233.方法总结:绝对值等于某一个数(0除外)的值有两个,它们互为相反数.3.绝对值的非负性及应用例4假设|a-3|+|b-2021|=0,求a,b的值.解析:由绝对值的性质可得|a -3|≥0,|-2021|≥0.b解:由题意得 |a-3|≥0,|b-2021|≥0,又因为|a-3|+|b-2021|=0,所以|a-3|0,|b-2021|=0,所以a=3,b=2021.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.4.含绝对值的化简计算3例5化简:-5=______;|-1.5|=______;|-(-2)|=______.33;-|-1.5|=-;|-(-2)|=|2|=2.解析:-5=5方法总结:根据绝对值的意义解答.即假设>0,那么||=;假设a=0,那么||=0;假设a a a a a<0,那么|a|=-a.5.绝对值在实际问题中的应用例6第53届世乒赛于2021年4月26日至5月质量有严格的规定,下表是6个乒乓球质量检测的结果为正数).3日在苏州举办,此次比赛中对球的(单位:克,超过标准质量的克数记一号球二号球三号球四号球五号球六号球-0--请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)假设规定与标准质量误差不超过g的为优等品,超过g但不超过g的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0,正好等于标准的质量,五号球,|-0.08|=,比标准球轻克,二号球,|+0.1|=,比标准球重克;(2)一号球|-0.5|=,不合格,二号球|+0.1|=,优等品,三号球|0.2|=,合格品,四号球|0|=0,优等品,五号球|-0.08|=,优等品,六号球|-0.15|=,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.五、尝试练习,掌握新知课本P11~12练习第1~5题.?探究在线·高效课堂?“随堂演练〞局部.六、课堂小结,梳理新知通过本节课的学习,我们都学到了哪些数学知识和方法?本节课学习了绝对值的概念,了解了绝对值的非负性,并认识了绝对值的性质,即正数的绝对值是它本身;0的绝对值是0;负数的绝对值是它的相反数.互为相反数的两个数的绝对值相等.七、深化练习,稳固新知对爸爸的印象,从记事的时候,就有了,他留给我的印象就是沉默少言的,但是脸上却始终有微笑,不管家里遇到了什么样的困难,只要有爸爸在,一切都能够雨过天晴的,小时候,家里很穷,可是作为孩子的我们〔我和哥哥〕,却很幸福。
第二讲 数轴、相反数、绝对值知识点一:数轴1、数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。
2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的一个点来表示。
正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
考点一:数轴与有理数的对应关系例1 己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )。
A .a b >B .0ab <C .0b a ->D .0a b +>例2 如图,数轴上A 、B 两点分别对应实数a 、b 则下列结论正确的是( )A .0a b +>B .b a >C .0a b ->D .0a b ->例3 已知a 、b 、c 在数轴上的位置如图。
则在1a-,a -,c b -,c a +中,最大的一个是( )A .a -B .c b -C .c a +D .1a-例4 三个有理数c b a 、、在数轴上的位置如图所示,则( ) A .111c a c b a b >>--- B .111b c c a b a>>--- C .111c a b a b c >>--- D .111a b a c b c>>---考点二:寻找、判断数轴上的点例5 如图,数轴上的A 、B 、C 三点所表示的数分别是c b a 、、,其中BC AB =,如果|a |>|b |>|c |,那么该数轴的原点O 的位置应该在( )b B A a1A 、点A 的左边B 、点A 与点B 之间C 、点B 与点C 之间D 、点B 与点C 之间或点C 的右边例6 如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=。
试问:数轴上的原点在哪一点上?例7在数轴上,坐标是整数的点称为“整点”。
1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。
1.2 数轴、相反数和绝对值1.2.1 数轴要点感知1 在直线上取一点O ,这个点叫做______;通常把直线上从原点向右的方向规定为______,从原点向左的方向规定为________;选取适当的长度为________.像这样,规定了_____、______和________的直线叫做数轴. 预习练习1-1 下列各图中,所画数轴正确的是( )要点感知2 数轴上原点右边的点表示______数,左边的点表示______数,任何有理数都可以用_____上唯一的一个点来表示.预习练习2-1 如图,在数轴上点A 表示( )A.-2B.2C.±2D.02-2 在下面数轴上,A ,B ,C ,D ,E 各点分别表示什么数?知识点1 数轴的概念 1.下列说法正确的是( )A.规定了正方向和单位长度的射线叫做数轴B.规定了原点、单位长度的线段叫做数轴C.有正方向和单位长度的直线叫做数轴D.规定了原点、正方向和单位长度的直线叫做数轴 知识点2 在数轴上表示有理数2.在数轴上,表示-2.75的点最可能是( )A.E 点B.F 点C.G 点D.H 点3.指出数轴上A ,B ,C ,D 各点分别表示的有理数.4.在数轴上表示出下列各有理数:-0.7,-3,-213,0,112,2.知识点3 数轴上的点与有理数之间的关系 5.下列四个有理数中,在原点左边的是( )A.-2 014B.0C.15.8D.1 20006.数轴上原点及原点左边的点表示( )A.正数B.负数C.非正数D.非负数7.在数轴上距原点2 013个单位长度的点表示的数是( )A.2 013B.-2 013C.2 013或-2 013D.1 006.5或-1 006.58.下列说法中正确的是( )A.所有的有理数都可以用数轴上的点来表示B.数轴表示-2的点有两个C.数轴上的点表示的数不是正数就是负数D.数轴上原点两边的点可以表示同一个数9.在数轴上,-1和1之间的有理数有( )A.1个B.2个C.3个D.无数个10.在数轴上,在原点的左边,距原点6个单位长度的点表示的数为_______.11.写出距离原点小于或等于4个单位的所有整数,并在数轴上表示出来.12.下列所画数轴正确的个数有( )A.0个B.1个C.2个D.3个13.(2012·新疆)如图,点M表示的数是( )A.2.5B.-1.5C.-2.5D.1.514.下列语句中,错误的是( )A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度1的长度的确定,可根据需要任意选取D.数轴上,与原点的距离等于8的点有两个15.如图,在数轴上表示到原点的距离为3个单位的点有( )A.D点B.A点C.A点和D点D.B点和C点16.若数轴上的点A表示+3,点B表示-4.2,点C表示-1,则点A和点B中离点C较远的是_____.17.(2012·泰州)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是________.18.如图,点A表示的数是-4.(1)在数轴上表示出原点O;(2)指出点B表示的数;(3)在数轴上找一点C,使它与B点的距离为2个单位长度,那么C点表示什么数.19.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)在数轴上标出A,B,C三点;(2)写出A,B,C三点表示的数;(3)根据点C在数轴上的位置,C点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?挑战自我20.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250米到小明家,后又向东走350米到小兵家,再向西行800米到小颖家,最后又回到学校.(1)以学校为原点,向东为正方向,用一个单位长度表示100米,你能在数轴上表示出小明、小兵、小颖三人家的位置吗?(2)小明家距离小颖家多远?(3)这次家访,老师共行了多少千米的路程?21.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是____________;②从-2到2有5个整数,分别是_______________________;③从-3到3有______个整数,分别是___________________;④从-200到200有_______个整数.(2)根据以上事实,请直接写出:从-2.9到2.9有______个整数,从-10.1到10.1有______个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,直接写出线段AB能盖住的整数点的个数.参考答案课前预习要点感知1原点正方向负方向单位长度原点正方向单位长度预习练习1-1 D要点感知2正负数轴预习练习2-1 A2-2 A,B,C,D,E各点分别表示-3,-1.5,0,0.5,3.当堂训练1.D2.D3.点A表示0,点B表示1.5,点C表示-2,点D表示3.4.5.A6.C7.C8.A9.D 10.-611.距原点小于或者等于4个单位的所有整数是:-4,-3,-2,-1,0,1,2,3,4.在数轴上表示为:课后作业12.B 13.C 14.B 15.C 16.点A 17.218.(1)原点在点A的右侧距A点4个单位长度.在数轴上表示略.(2)点B表示3.(3)C点表示1或5.19. (1)如图所示:(2)A点表示4,B点表示6,C点表示-4.(3)向左爬行4个单位长度.20.(1)如图所示.(2)小明家距离小颖家450米.(3)这次家访,老师共行了250+350+800+200=1 600(米).21.(1)①-1,0,1 ②-2,-1,0,1,2 ③7-3,-2,-1,0,1,2,3 ④401(2)5 21(3)1 000个或1 001个.1.2.2 相反数要点感知1如果两个数只有______不同,那么其中的一个数叫做另一个数的相反数,也称这两个数_________. 预习练习1-1下列各组数中,互为相反数的是( )A.-4和14B.4和-4C.-4和-14D.14和4要点感知2数a的相反数记做_____.一个正数的相反数是______,一个负数的相反数是______,0的相反数是____.表示互为相反数的两个数的点,在数轴上分别位于原点的______,并且与原点的距离______.预习练习2-1 (2013·济南)-6的相反数是( )A.-16B.16C.-6D.6要点感知3 把多重符号化成单一符号由“-”的个数来定,若“-”个数为偶数个时,化简结果为_____;若“-”个数为奇数个时,化简结果为_____.预习练习3-1 化简-(-3)的结果是______.知识点1 相反数的意义1.下列各组数中互为相反数的是( )A.2与-3B.-3与-13C.2 014与-2 013D.-0.25与142.(2013·恩施)-13的相反数是( )A.13B.-13C.3D.-33.如图所示,表示互为相反数的两个数的点是( )A.A和CB.A和DC.B和CD.B和D4.下列说法中:①-2是相反数;②2是相反数;③-2是2的相反数;④-2和2互为相反数.其中正确的有( )A.1个B.2个C.3个D.4个5.下列判断正确的是( )A.符号不同的两个数互为相反数B.互为相反数的两个数一定是一正一负C.相反数等于本身的数只有零D.在数轴上和原点距离相等的两个点表示的数不互为相反数6.如图,数轴上表示数-2的相反数的点是______.7.写出下列各数的相反数,并在数轴上表示出来:2,-1,-3.5,12,-212.知识点2 多重符号的化简8.-(+2)的相反数是( )A.2B.12C.-12D.-29.化简下列各数:(1)-(+4);(2)-(-6);(3)-(+3.9);(4)-(-3 4 ).10.(2013·义乌)在2,-2,8,6这四个数中,互为相反数的是( )A.-2与2B.2与8C.-2与6D.6与811.如图,数轴单位长度为1,如果点A,B到原点的距离相等,那么点A,B表示数( )A.-4和4B.-3和3C.-2.5和2.5D.-2和212.已知x的相反数是-57,则x是( )A.-57B.±57C.57D.-7513.化简-{-[-…-(-2 013)]},在2 013前面有2 012个负号,则化简的结果为( )A.2 013B.-2 013C.2 012D.-2 01214.一个数在数轴上所对应的点向左移2 014个单位后,得到它的相反数对应的点,则这个数是( )A.2 014B.-2 014C.1 007D.-1 00715.相反数等于本身的数是_____.16.若a=3.5,则-a=______;若-x=-(-10),则x=_____;若m=-m,则m=______.17.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:-6,-534,+38,-2.8,7,+5.18.若a和b互为相反数,表示数a的点在表示数b的点的左侧,且两点的距离是8.4,求a和b这两个数.19.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A,B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D,B表示的数是互为相反数,那么点C表示的数是正数还是负数,图中表示的5个点中,哪一个点离原点的距离最近?挑战自我20.数轴上点A表示的数为-5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求B,C两点对应的数分别是什么?21.(1)小李在做题时,画了一条数轴,在数轴上原有一点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?(2)如图是具有互为相反数的三角形数阵,当最下面一行的两个数为多少时,这两个数以及它们上面的数的总个数为2 013个?参考答案课前预习要点感知1符号互为相反数预习练习1-1 B要点感知2-a 负数正数0 两侧相等预习练习2-1 D要点感知3 正 负 预习练习3-1 3 当堂训练1.D2.A3.C4.B5.C6.点P7.各数的相反数分别是-2,1,3.5,-21,221.在数轴上表示略. 8.A9.(1)-4. (2)6. (3) -3.9. (4)43. 课后作业10.A 11.C 12.C 13.A 14.C 15.0 16.-3.5 -100 17.各数的相反数分别为:6,543,-83,2.8,-7,-5.在数轴上表示略. 18.a=-4.2,b=4.2.19.(1)因为点A ,B 表示的数是互为相反数,原点就应该是线段AB 的中点,即在C 点右边一格,C 点表示数-1; (2)如果点D ,B 表示的数是互为相反数,那么原点在线段BD 的中点,即C 点左边半格,点C 表示的数是正数; 在图中表示的5个点中,点C 离原点的距离最近.20.因为点A 表示的数为-5,点B 到点A 的距离为4,所以点B 表示的数为-9或-1.又因为B ,C 两点所表示的数互为相反数,所以当点B 表示-9时,点C 表示9;当点B 表示-1时,点C 表示的数为1. 21.(1)向右平移6个单位长度. (2)-1 007,1 007.1.2.3 绝对值要点感知1 正数的绝对值是____;负数的绝对值是_______;0的绝对值是______.互为相反数的两个数的绝对值_____.预习练习1-1 (2013·临沂)-2的绝对值是( ) A.2 B.-2 C.12 D.-12要点感知2 一个数的绝对值等于数轴上表示这个数的点与原点的_____.一般地,数a 的绝对值记做|a|.当a 是正数时,|a|=____;当a=0时,|a|=_____;当a 是负数时,|a|=____,即|a|是一个_______. 预习练习2-1 数轴上一个点到原点的距离为2.3,则这个点表示的数的绝对值是_______. 2-2 求下列各数的绝对值:-32,6,-3,0,54.知识点1 绝对值的意义1.在数轴上表示-2的点到原点的距离等于( ) A.2 B.-2 C.±2 D.42.如图,点A ,B ,C ,D 所表示的数中,绝对值相等的两个点是( )A.点A 和点CB.点B 和点CC.点A 和点DD.点B 和点D 3.(2013·娄底)|-2 013|的值是( )A.12013 B.-12013C.2 013D.-2 013知识点2 绝对值的计算4.(2013·盘锦)-|-2|的值为( ) A.-2 B.2 C.12 D.-125.下列各式中,错误的是( )A.|-11|=11B.-|11|=-|-11|C.|-11|=|11|D.-|-11|=116.计算:|-3.7|=_____,-(-3.7)=______,-|-3.7|=______,-|+3.7|=______.7.计算:(1)|-21|+|-6|; (2)|-2 014|-|+2 013|; (3)|+223|×|-9|; (4)|-34|÷|-178|.知识点3 绝对值的性质 8.若|a|=8,则a 的值是( ) A.-8 B.8 C.±8 D.±189.在有理数中,绝对值等于它本身的数有( ) A.一个 B.两个 C.三个 D.无数个 10.下面关于绝对值的说法正确的是( )A.一个数的绝对值一定是正数B.一个数的相反数的绝对值一定是正数C.一个数的绝对值的相反数一定是负数D.一个数的绝对值一定是非负数11.(1)①正数:|+5|=____,|12|=_____;②负数:|-7|=______,|-15|=______;③零:|0|=_____; (2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是______,即|a|____0. 12.若|a|+|b|=0,则a=____,b=_____.13.(2013·宁波)-5的绝对值为( ) A.-5 B.5 C.-15 D.1514.(2012·东营)13的相反数是( ) A.13 B.-13C.3D.-3 15.(2012·丽水)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A.-4B.-2C.0D.416.(2013·菏泽)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB=BC ,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在( )A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点C 的右边17.如果|x|=712,那么x=____,|-x|=_____. 如果|-2.5|=|-a|,那么a=____.18.按规定,食品包装袋上都应标明袋内装食品有多少克,下表是几种饼干的检验结果,“+”和“-”号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_______.19.化简:(1)-|-3|;(2)-|-(-7.5)|.20.已知x=-30,y=-4,求|x|-3|y|.21.在数轴上表示下列各数:(1)|-113|;(2)|0|;(3)绝对值是1.2的负数;(4)绝对值是412的有理数.挑战自我22.已知|a-2|+|b-3|+|c-4|=0,求式子a+b+c的值.23.已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c的相反数的位置;(3)根据数轴化简:①|a|=______,②|b|=_____,③|c|=______,④|-a|=_____,⑤|-b|=_____,⑥|-c|=_____;(4)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.参考答案课前预习要点感知1 它本身 它的相反数 0 相等 预习练习1-1 A要点感知2 距离a 0 -a 非负数预习练习2-1 2.3 2-2它们的绝对值分别为:23,6,3,0,45. 当堂训练1.A2.C3.C4.A5.D6.3.7 3.7 -3.7 -3.77.(1)原式=21+6=27.(2)原式=2 014-2 013=1. (3)原式=223×9=24. (4)原式=34÷178=25.8.C 9.D 10.D 11.(1)5 12 7 15 0(2)非负数 ≥ 12.0 0 课后作业13.B 14.B 15.B 16.C 17.±721 721±2.5 18.酥脆 19.(1)原式=-3.(2)原式=-7.5.20.|x|-3|y|=30-3×4=18. 21.(1)|-131|=131; (2)|0|=0;(3)绝对值是1.2的负数是-1.2; (4)绝对值是421的有理数是±421.在数轴表示为:22.由题意,得a=2,b=3,c=4,所以a+b+c=2+3+4=9.23.(1)a 为负,b 为正,c 为正. (2)图略.(3)①-a ②b ③c ④-a ⑤b ⑥c (4)a=-5.5,b=2.5,c=5.。
【知识与技能】1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数.3.使学生理解相反数的意义,给出一个数能求出它的相反数.4.借助数轴初步理解绝对值的概念,熟悉绝对值符号,理解绝对值的几何意义和作用;给出一个数,能求它的绝对值.【过程与方法】从一个学生熟悉的生活实例中抽象出“数轴”的概念,并通过各种师生活动加深学生对“数轴”和“用数轴上的点表示有理数”的理解;从一个学生熟悉的生活实例中抽象出“相反数”、“绝对值”的概念,通过各种师生活动加深学生对“相反数”和“绝对值”的理解;让学生在经历知识的获得过程中,体会数形结合的数学思想,为利用绝对值比较有理数的大小及以后的相关计算打下良好的基础.【情感态度】通过画数轴,增强学生学习的耐心和细心,认识到数轴在生活中的应用.感受在特定的条件下数与形是可以相互转化的,体会生活中的数学,增强学生学习数学的欲望.1.下列有关数轴的说法正确的是( )A .数轴是一条直线B .数轴是一条线段C .数轴是一条射线D .直线是数轴2.已知A 为数轴上表示-1的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( )A .-3B .3C .1D .1或-33.下列几组数中互为相反数的一组为( )A .-(-5)和+(+5)B .-(+6)与+(-6)C .+(-7)与-(+7)D .-(-8)与-(+8)4.-3.8是的相反数 , 的相反数是0.5.5.-5的绝对值是在 上表示-5的点到 的距离,-5的绝对值是 .6.绝对值是3的正数是 ,绝对值是3.2的负数是 .绝对值是0的有理数是 ,绝对值是343的有理数是 . 7.绝对值是2的数有 个,分别是 和 ;绝对值相等的两个数在数轴上的对应点之间的距离为4,则这两个数分别为 .8.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A ,H ,D ,E ,O 各点分别表示什么数?9.求下列各数的绝对值:-221,+154,-4.75,0.8. 10.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250m 到小明家,后又向东走350m 到小兵家,再向西行800m 到小颖家,最后又回到学校.(1)以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置.(2)小明家距离小颖家多远?。
第一章有理数 1.2 数轴、相反数和绝对值1. 下列各式中,不成立的是( )A.|-6|=6 B.-|6|=-6 C.|-6|=|6| D.-|-6|=62. 数轴是( )A.规定了原点,正方向和单位长度的一条直线 B.一条射线C.有原点、正方向的直线 D.有单位长度的直线3. 下列说法错误的是( )A.所有有理数都可以用数轴上的点表示B.在数轴上表示1的点和-1的点的距离是1C.数轴上原点表示的数是0D.在数轴上原点左边的点表示的数是负数4. 下列说法正确的是( )A.正数与负数互为相反数 B.符号不同的两数互为相反数C.0没有相反数 D.-a与a互为相反数5. 下列是四位同学画出的数轴,其中正确的是( )6. 如图,数轴上点M和点N表示的数分别是( )A.1.5和-2.5 B.2.5和-1.5 C.-1.5和2.5 D.1.5和2.5 7. a,b,c在数轴上的位置如图,a,b,c表示的数是( )A .a ,b ,c 都是负数B .a ,b ,c 都是正数C .a ,b 是正数,c 是负数D .a ,b 是负数,c 是正数8. 数轴上到原点的距离为2的点所表示的数是( )A .-2B .2C .±2D .不能确定9.化简-(-113)的结果是( ) A .113 B .-113 C .-34 D.3410. 下列说法中正确的是( )A .没有一个数的相反数是它本身B .整数的相反数必为整数C . -(+3)的相反数是-3D . +(-6)的相反数是-611. 一个数a 的相反数表示为______.12. 如图,数轴上点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是____.13. 若|x|=5,则x的值是14. -(-2)表示________的相反数,故其结果是____.15. 若a=-3,则-a=____;若-a=-(-5),则a=____.16. 在数轴上,把表示2的对应点移动5个单位后,得到的对应点所表示的数是17. 下列说法中:①若a=10,则-a=-10;②若a是负数,则-a 必是正数;③如果a是负数,则-a在原点的左边;④若a与b互为相反数,则a,b对应的点一定在原点的两侧.其中正确的是(填序号)18. 在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的数为____.19. 如图,小明不慎将墨水滴在数轴上,则被墨水盖住的整数有____个.20. 化简:(1)-(+4)=_______;+(-π)=_______;(2)-(-1.5)=_______;-[+(-5)]=____.21. 化简:(1)+[-(+0.3)](2)-[+(-212)]22. 若x +4与-6互为相反数,求x 的值.23. 如图,点A 表示-4,点B 表示-3.(1)标出数轴上的原点0;(2)指出点C表示的数;(3)有一点D(但不是点C),它到原点的距离等于点C到原点的距离,那么点D表示什么数?并标出点D.答案:1---10 DABDC CDCAB11. -a12. 213. ±514. -2 215. 3 -516. 7或-317. ①②18. -5或-119. 820. (1) -4 -π(2) 1.5 521. (1) 解:原式=-0.3(2) 解:原式=21222. 解:原式=x =223. 解:(1)(2)点C 表示的数是5(3)点D 表示-5,如图。
沪科版数学七年级上册《1.2 数轴、相反数和绝对值》教学设计1一. 教材分析《数轴、相反数和绝对值》是沪科版数学七年级上册的重要内容,本节课主要让学生通过数轴理解相反数和绝对值的概念,培养学生数形结合的数学思想。
教材首先介绍了数轴的定义和特点,然后引入相反数的概念,让学生通过数轴理解相反数的含义,接着讲解绝对值的定义和性质,最后通过例题和练习使学生熟练掌握相反数和绝对值的应用。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数的大小关系有一定的了解。
但他们对数轴、相反数和绝对值的概念可能还比较陌生,需要通过具体实例和练习来逐步理解和掌握。
此外,学生的数学基础和学习习惯参差不齐,因此在教学过程中要关注学生的个体差异,尽量让每个学生都能跟上教学进度。
三. 教学目标1.知识与技能目标:使学生理解数轴、相反数和绝对值的概念,掌握相反数和绝对值的性质和运算方法,能够运用相反数和绝对值解决实际问题。
2.过程与方法目标:通过数形结合的思想,培养学生运用数轴理解相反数和绝对值的能力,提高学生的数学思维水平。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生探究数学问题的热情,培养学生的团队合作精神。
四. 教学重难点1.教学重点:数轴、相反数和绝对值的概念及性质,相反数和绝对值的运算方法。
2.教学难点:数轴与相反数、绝对值的关系,如何在实际问题中运用相反数和绝对值。
五. 教学方法1.情境教学法:通过数轴直观地展示相反数和绝对值的概念,引导学生主动探究。
2.合作学习法:分组讨论和练习,培养学生的团队合作精神和沟通能力。
3.启发式教学法:教师提问引导学生思考,激发学生的学习兴趣和探究欲望。
4.巩固练习法:通过适量练习,使学生熟练掌握相反数和绝对值的应用。
六. 教学准备1.准备数轴图片和相关的教学PPT。
2.准备相反数和绝对值的练习题和测试题。
3.准备黑板和粉笔,以便进行板书。
七. 教学过程1.导入(5分钟)教师通过数轴图片引入本节课的主题,引导学生回顾有理数的大小关系,为新课的学习做好铺垫。
七年级数学上册第1章有理数1. 2数轴、相反数和绝对值教案(新)沪科第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将数在数轴上表示出来,能说出数轴上的点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜测,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?o是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生感受到把实际问题抽象成数学问题的过程,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25C用正数表示;0℃用数表示;零下10C用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?〔5〕原点向右0. 5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线〔通常是水平的直线〕,在这条直线上任取一点0,叫做原点,用这点表示数0〔相当于温度计上的0C〕;第二步:规定这条直线的一个方向为正方向〔一般取从左到右的方向,用箭头表示出来〕.相反的方向就是负方向〔相当于温度计0C以上为正,0℃以下为负〕;第三步:适当地选取一条线段的长度作为单位长度,也就是在.的右面取一点表示1,0与1 之间的长就是单位长度〔相当于温度计上占1小格的单位长度〕.在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1, 2, 3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1, -2, -3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小确实定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,熟悉并掌握判断一条直线是不是数轴的依据. 三、例题讲解师:同学们,下而我们一起来做几个例题.【例1】判断以下图中所画的数轴是否正确;如果不正确,指出错在哪里. ft 4 1 । 1। 1 1 ।0 -3 -2-1 0 1 2 3〔1〕〔2〕12 '3 4 5~k ⑶〔4〕【分析】原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,〔1〕缺少单位长度;〔2〕缺少正方向;〔3〕缺少原点;〔4〕单位长度不一致.【例2】说出以下图所示的数轴上A, B, C, D各点表示的数.B AC D111 I I 1 I 1 ,-3.5 -3 -2 -1 0 1 2【答案】点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理, 点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2, -1, 0, -3, +3. 5;(2)-5,0,+5, 15, 20;(3)-1 500, -500, 0, 500, 1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适中选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的水平,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示以下各数的点:6与-6, -3与3, T. 5与1. 5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6, -3与3, -1. 5与1. 5有何特点.观察每组数所对应的两个点的位置关系有什么规律.学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0.说明:“互为相反数〞的含义是相反数是成对出现的,因而不能说“-6是相反数〞 .“0 的相反数是0〞是相反数定义的一局部.这是由于0既不是正数,也不是负数,它到原点的距离就是0, 0是唯一的相反数仍等于它本身的数.三、例题讲解教师出例如题.【例1】判断以下说法是否正确:(1)-5是5的相反数.()22) 5是-5的相反数.()(3)5与-5互为相反数.()(4)-5是相反数.()【答案】⑴J (2) V (3) V (4)X【例2】(1)分别写出5、-7、-3、+11. 2的相反数;(2)指出-2. 4是什么数的相反数.【答案】(1)5的相反数是-5. -7的相反数是7. -3的相反数是3. +11. 2的相反数是-11. 2.我们通常在一个数的前面添上,表示这个数的相反数.例如,-(-4)=4,-(+5. 5)=5. 5;同样,在一个数前而添上“+〞,表示这个数本身.例如,+(-4)二-4, + (+12)= 12.(2)-2. 4是2. 4的相反数.【例3】化简以下各数:(1)-(+10); (2) + (-0. 15); (3) + (+3); (4)-(-20).【答案】(1)-(+10)=-10; (2) + (-0. 15) =-0. 15; (3)+(+3) =+3=3; (4)-(-20) =20.四、稳固练习课本练习的第r3题.【答案】1. 5, -1, 3, 2. 6,-1. 2,0. 9,--.22.(1)2.8 -3.2 (2)4 -7 (3)-8 9 3. C五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数, 相反数是成对出现的.3.正号“ + 〞的功能是对一个数的符号予以确认;而负号“-〞的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个数的绝对值,会在一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的水平,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个己知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数〞的理解.教学过程一、复习导入师:同学们,我们先做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5, 3. 5, 0及它们的相反数所对应的点.2.在数轴上找出到原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发答复相反数的定义.从几何方面可以说在数轴上原点两旁,离原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点到原点的距离都是6,所以-6和6的绝对值都是6, 记作-6|= 61=6.同理可知-41 =4, 1+1. 71=1. 7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)I +2 F,=;(2)0二;(3)-3三, -0.2k.师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数〔正数〕的绝对值有什么特点,在原点左边的点表示的数〔负数〕的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:〔1〕一个正数的绝对值是它本身;〔2〕0的绝对值是0; 〔3〕一个负数的绝对值是它的相反数.即①假设a>0,那么@,@假设葭0,那么a|=-a;③假设a=0,那么a =0.3.绝对值的非负性.由绝对值的定义可知:不管有理数a取何值,它的绝对值总是正数或0〔通常也称非负数〕,绝对值具有非负性,即|a| 20.三、例题讲解【例1】求以下各数的绝对值:-7, -4.75, 10. 5.【答案】I案1=7; |-4. 75 =4. 75; 10. 51=10. 5【例2】计算:⑴0. 32|+ 0.3!;(2) 1-4. 2|-|4. 2|;分析求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.【答案】(1)0.62; (2)0.四、稳固练习课本练习的第r5题.3 1【答案】1 .略2. 3,1. 5,0,5, 0.02, - ,100 3. (1)17 (2)1 (3)0 (4)6 4.D4 61 15. 8, 8,一,一4 4五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方而考虑,从几何方面看,一个数a 的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.。
专题1.2 数轴、绝对值和相反数一、单选题(共6小题)1.﹣的倒数的绝对值是()A.﹣2020 B.C.2020 D.﹣2.一个数的相反数是﹣2020,则这个数是()A.2020 B.﹣2020 C.D.3.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位长度,得到点C.若OC=OB,则a的值为()A.﹣3 B.﹣2 C.﹣1 D.24.在数轴上,点A、B在原点O的异侧,分别表示有理数a、5,将点A向左平移4个单位长度,得到点C,若CO=BO,则a的值为()A.﹣1 B.1 C.﹣3 D.35.如图,点A、B、C、O在数轴上表示的数分别为a、b、c、0,且OA+OB=OC,则下列结论中:其中正确的有()①abc>0.②a(b+c)=0③a﹣c=b.④++=﹣1,A.①③④B.①②④C.②③④D.①②③④6.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒二、填空题(共8小题)7.|﹣|的相反数是﹣,|﹣|的倒数是.8.计算:(﹣2019)°+|﹣1|﹣()﹣1=.9.有理数a,b,c在数轴上的位置如图所示,则|c﹣b|+|a|=﹣﹣.10.实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为﹣.11.已知实数x,y,z满足关系式(x﹣4)2,则代数式(5x+3y﹣3z)2019的末位数字是.12.已知|x|=3,|y|=2,且|x﹣y|=y﹣x,则x﹣y=﹣﹣.13.在数轴上点A对应的数为﹣2,点B是数轴上的一个动点,当动点B到原点的距离与到点A的距离之和为6时,则点B对应的数为﹣.14.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是P A、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变以上①②③④结论中正确的是(填上所有正确结论的序号)三、解答题(共6小题)15.计算:(1);(2)(a+2b+c)(a﹣2b+c)﹣2ac.16.已知|a﹣2|+(b+)2=0,求3ab2﹣3[ab2﹣2(ab﹣ab2)+2ab]的值.17.计算:18.化简求值:7a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a,b满足|a+2|+(b﹣)2=0.19.已知忠华家、桂枝家、文兴家及学校在一条南北向的大街旁.一天,放学后他们三人从学校出发,先向南走250米达到桂枝家(记为点A),然后再向南走250米到文兴家(记为点B),从文兴家向北走1000米到达忠华家(记为点C).(1)以学校为原点,以向北方向为正方向,用1个单位长度表示实际距离250米画出一条数轴,在数轴上用字母表示出忠华家、桂枝家、文兴家的位置.(2)忠华家在学校的哪个方向,到学校的距离是多少米?(3)如果以向南方向为正方向建立数轴,对确定忠华家相对于学校的位置有影响吗?说明理由.20.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒人b个单位长度的速度沿数轴运动,a,b满足|a﹣5|+(b﹣6)2=0.(1)请真接与出a=,b=;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为1,点P为线段ON的中点若MP=MA,求t的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.专题1.2 数轴、绝对值和相反数参考答案一、单选题(共6小题)1.【分析】直接利用倒数以及绝对值的性质分别分析得出答案.【解答】解:﹣的倒数为:﹣2020,﹣2020的绝对值是:2020.故选:C.【点评】此题主要考查了倒数和绝对值,正确掌握相关定义是解题关键.【知识点】倒数、绝对值2.【分析】直接利用相反数的定义得出答案.【解答】解:∵一个数的相反数是﹣2020,∴这个数是:2020.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.【知识点】相反数3.【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【解答】解:由题意知:A点表示的数为a,B点表示的数为3,C点表示的数为a﹣1.因为CO=BO,所以|a﹣1|=3,解得a=﹣2或4∵a<0,∴a=﹣2.故选:B.【点评】本题考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.【知识点】数轴4.【分析】根据CO=BO可得点C表示的数为﹣5,据此可得a=﹣5+4=﹣1.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣5,∴a=﹣5+4=﹣1.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.【知识点】数轴5.【分析】根据图示,可得c<a<0,b>0,|a|+|b|=|c|,据此逐项判定即可.【解答】解:∵c<a<0,b>0,∴abc>0,∴选项①符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)>0,∴选项②不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴﹣a+b=﹣c,∴a﹣c=b,∴选项③符合题意.∵++=﹣1+1﹣1=﹣1,∴选项④符合题意.∴正确的有①③④.故选:A.【点评】考查了数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.【知识点】数轴、绝对值6.【分析】分0≤t≤5与5≤t≤10两种情况进行讨论,根据PB=2列方程,求解即可.【解答】解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.【点评】此题主要考查了一元一次方程的应用以及数轴上点的位置关系,根据P点位置的不同正确进行分类讨论,进而列出方程是解题的关键.【知识点】一元一次方程的应用、数轴二、填空题(共8小题)7.【分析】直接利用绝对值、相反数和倒数的定义分别分析得出答案.【解答】解:|﹣|=的相反数是:﹣,|﹣|=的倒数是:.故答案为:﹣,.【点评】此题主要考查了绝对值、相反数和倒数的定义,正确掌握相关定义是解题关键.【知识点】绝对值、相反数、倒数8.【分析】根据零指数幂的意义以及负整数的意义即可求出答案.【解答】解:原式=1+1﹣2=0,故答案为:0【点评】本题考查实数运算,解题的关键是熟练运用零指数幂的意义以及负整数幂的意义,本题属于基础题型.【知识点】绝对值、有理数的减法、负整数指数幂9.【分析】由图可知a、b、c的取值范围为a<0,0<c<b,则所求式子即可化简.【解答】解:由图可知:a<0,0<c<b,∴|c﹣b|+|a|=b﹣c﹣a,故答案为b﹣c﹣a.【点评】本题考查数轴和绝对值的运算;熟练掌握数轴上表示的点的特点,能够根据数的范围去掉绝对值符号进行运算是解题的关键.【知识点】数轴、绝对值10.【分析】由数轴可得﹣1<n<0<1<m,根据数的范围去掉绝对值符号运算即可.【解答】解:由数轴可得﹣1<n<0<1<m,∴|n﹣m|﹣m=m﹣n﹣m=﹣n,故答案为﹣n.【点评】本题考查数轴和绝对值;熟练掌握数轴上点的特点,能够准确进行绝对值运算是解题的关键.. 【知识点】绝对值、实数与数轴11.【分析】由非负数的性质得x﹣4=0,x+y﹣z=0,再代入求得5x+3y﹣3z的值,得出(5x+3y﹣3z)2019的末位数字.【解答】解:∵(x﹣4)2+|x+y﹣z|=0,∴x﹣4=0,x+y﹣z=0,∴x=4,y﹣z=﹣4,∴5x+3y﹣3z=5×4+3×(﹣4)=8,∵81=8,82=64,83=512,84=4096,85=32768…,末位数字是8、4、2、6、8、4、2、6、8、…依次循环,2019÷4=504…3,∴82019的末尾数字为2.故答案为:2.【点评】本题考查了非负数的性质,解决本题的关键是熟记非负数的性质.【知识点】非负数的性质:绝对值、非负数的性质:偶次方、尾数特征12.【分析】根据绝对值的意义得到y=2,x=﹣3或y=﹣2,y=﹣3,然后计算x﹣y的值.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2,∵|x﹣y|=y﹣x≥0,∴y=2,x=﹣3或y=﹣2,y=﹣3,∴当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,即x﹣y的值为﹣1或﹣5.故答案为﹣1或﹣5.【点评】本题考查了代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.也考查了绝对值的意义.【知识点】绝对值、代数式求值13.【分析】分情况分别求出AB、OB,利用方程求解即可.【解答】解:设点B表示的数为b,①当点B在点A的左侧时,则有﹣2﹣b﹣b=6,解得,b=﹣4,②当点B在OA之间时,AB+AO=2≠6,因此此时不存在,③当点B在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:﹣4或2.【点评】考查数轴表示数的意义,掌握数轴上两点之间距离的计算方法是正确解答的关键.【知识点】数轴14.【分析】①根据非负数的和为0,各项都为0;②应考虑到A、B、P三点之间的位置关系的多种可能,确定当|P A|﹣|PB|=2时P的位置解题;③④利用中点性质转化线段之间的倍分关系得出.【解答】解:①∵|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,∴a=﹣2,b=1,∴点A在数轴上对应的数为﹣2,点B对应的数为1,且AB=1﹣(﹣2)=3,故①正确;②设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,P在A、B之间,∴x﹣(﹣2)﹣(1﹣x)=2,x=0.5,故②正确;③设点P在数轴上对应的数为x,∵|PM|+|PN|=|PB|+|P A|=(|PB|+|P A|)=(1﹣x﹣x﹣2)=﹣,∴③不正确,④|PN|﹣|PM|的值不变,值为;∵|PN|﹣|PM|=|PB|﹣|P A|=(|PB|﹣|P A|)=|AB|=,∴|PN|﹣|PM|=,∴④正确.故答案为:①②④.【点评】本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.【知识点】非负数的性质:偶次方、非负数的性质:绝对值、数轴三、解答题(共6小题)15.【分析】(1)分别根据幂的定义,负整数指数幂的运算法则,绝对值的定义以及任何非0数的0次幂等于1计算即可;(2)根据平方差公式和完全平方公式化简即可.【解答】解:(1)原式=﹣1+4﹣3+1=1(2)原式=(a+c)2﹣(2b)2﹣2ac=a2+2ac+c2﹣4b2﹣2ac=a2﹣4b2+c2.【点评】本题主要考查了有理数的混合运算、完全平方公式和平方差公式的应用,熟记公式是解答本题的关键.【知识点】零指数幂、负整数指数幂、完全平方公式、绝对值、平方差公式16.【分析】首先去括号,然后再合并同类项,化简后,再代入a、b的值可得答案.【解答】解:原式=3ab2﹣3ab2+6(ab﹣ab2)﹣6ab=6ab﹣6ab2﹣6ab=﹣6ab2,∵|a﹣2|+(b+)2=0,∴a=2,b=﹣,∴原式=﹣6×2×=﹣3.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.【知识点】整式的加减—化简求值、非负数的性质:绝对值、非负数的性质:偶次方17.【分析】根据有理数的乘方可得,原式=﹣4×(﹣)﹣8﹣=.【解答】解:原式=﹣4×(﹣)﹣8﹣==8.【点评】本题考查有理数的运算;熟练掌握有理数的乘方、乘法运算是解题的关键.【知识点】有理数的乘方、绝对值、有理数的乘法18.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=7a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣a2b﹣3ab2,∵|a+2|+(b﹣)2=0,∴a+2=0,b﹣=0,即a=﹣2,b=,当a=﹣2,b=时,原式=﹣(﹣2)2×﹣3×(﹣2)×()2=﹣2+=﹣.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.【知识点】整式的加减—化简求值、非负数的性质:偶次方、非负数的性质:绝对值19.【分析】(1)根据题意,确定原点、正方向和单位长度,借助数轴确定桂枝、文兴、忠华家的位置;(2)根据(1)中数轴,得出忠华家在学校的位置和距离;(3)重新画数轴,得出忠华家在学校的位置和距离.【解答】解:(1)因为学校是原点,向北方向为正方向,用1个单位长度表示250米.从学校出发南行250米到达桂枝家,所以点A在﹣1处,从A向南行250米到达文兴家,所以点B在﹣2处,从B向北行1000米到忠华家,所以点C在2处.(2)点C是2,所以忠华家在学校的北面,到学校的距离是500米;(3)如果以向南方向为正方向建立数轴,确定忠华家相对于学校的位置没有影响,如果以向南方向为正方向建立数轴,数轴如下:点C是﹣2,所以忠华家在学校的北面,到学校的距离是500米.【点评】本题主要考查了数轴,数形结合是解决此类问题的好办法.【知识点】数轴、正数和负数20.【分析】(1)根据非负数的性质解答;(2)分三种情况解答:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10﹣5t;②点M到达O返回时当(2<t≤4时),OM=5t﹣10,AM=20﹣5t;③点M到达O返回时,即t>4时,不成立;(3)分两种情况解答:当M在OA之间、当M在A右侧,根据两点间的距离公式列出方程并解答.【解答】解:(1)∵|a﹣5|+(b﹣6)2=0.∴a﹣5=0,b﹣6=0∴a=5,b=6故答案为:5,6.(2)①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10﹣5t,即3t+10﹣5t=5t,解得t=;②点M到达O返回时当(2<t≤4时),OM=5t﹣10,AM=20﹣5t,即3t+5t﹣10=20﹣5t,解得t=;③点M到达O返回时,即t>4时,不成立;(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=6t+20+11t+10+6t=142,解得t=4>2,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=6t+5t+11t+10+6t+5t=142,解得t=4,点M对应的数为20.答:此时点M对应的数为20.【点评】本题考查学生对数轴相关知识的掌握情况及利用一元一次解决实际问题的能力.本题涉及数轴即路程为题,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.【知识点】数轴、一元一次方程的应用、非负数的性质:绝对值、非负数的性质:偶次方。
1.2数轴、相反数与绝对值专题一绝对值的非负性1.小明、小亮、小花、小倩四人是一个学习小组的同窗,下面是该小组学习有理数的绝对值时进行的小组讨论:小明说:“﹣a的绝对值是它的相反数a”;小亮说:“若是有理数a的绝对值是它本身,那么a必然是正数”;小花说:“若是a为有理数,那么﹣|a|必然是负数”;小倩说:“你们说得都不对”.你以为这四位同窗中谁说错了?谁说对了?错的该如何更正?2.假设a、b、c都是有理数,且|a﹣1|+|b+2|+|c﹣4|=0,求a+|b|+c的值.3.探讨题(1)比较以下各式的大小:|﹣2|+|3| |﹣2+3|;|﹣3|+|﹣5| |(﹣3)+(﹣5)|;|0|+|﹣5| |0+(﹣5)|;…(2)通过(1)的比较,请你分析,归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(3)依照(2)中你得出的结论,求当|x|+5=|x﹣5|时,求x的取值范围.专题二数轴、相反数与绝对值的“大融合”4.已知有理数a与b互为相反数,有理数c到原点的距离为1,有理数d为绝对值最小的数,求式子2013(a+b)+c+2013d的值.5.如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G表示8.(1)点B表示的有理数是,表示原点的是点是.(2)图中的数轴上还有点M到点A,点G距离之和为13,那么如此的点M表示的有理数是.(3)假设将原点取在点D,那么点C表示的有理数是,现在点B与点表示的有理数互为相反数.6.一个有理数x在数轴上对应的点为A,将A点向左移动3个单位长度,再向左移动2个单位长度,取得点B,点B所对应的数和点A对应的数的绝对值相等,求点A的对应的数x是多少?【知识要点】1.规定了原点、正方向和单位长度的直线叫作数轴.任何有理数都能够用数轴上唯一的一个点来表示.2.若是两个数只有符号不同,那么其中的一个数叫作另一个数的相反数.0的相反数是0.3.一个数的绝对值等于数轴上表示那个数的点与原点的距离.正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.一样地,若是a表示一个数,那么:(1)当a(2)当a=0(3)当aa和-a中非负数的那一个.【温馨提示】(针对易错)1.画数轴时必需具有三要素:原点、正方向和单位长度.2.任何一个数都有相反数,两个互为相反数的绝对值相等.3.一个数的绝对值是一个非负数,在求一个数的绝对值时,不能只是去掉绝对值符号,必然要考虑绝对值符号内的式子表示的数是正数仍是负数.【方式技术】1.求一个数的相反数,在那个数的前面加上负号即可.2.求一个数的绝对值时,先分清那个数是正数、0仍是负数,再依照相应的情形“对号入座”,即去掉绝对值后是不是添上负号.3.几个非负数之和等于零,其中每一个数都等于零.参考答案1.解:小明、小亮、小花都说错了.只有小倩是对的.小明说错了,因为﹣a的绝对值应该分情形进行讨论,小亮说错了,因为﹣a的绝对值等于本身的数除正数还有0;小花说错了,因为﹣|﹣a|不必然是负数,还可能是0,即﹣|﹣a|≤0.故小倩是对的.2.解:因为|a﹣1|+|b+2|+|c﹣4|=0,因此|a﹣1|=0,|b+2|=0,|c﹣4|=0,因此a=1,b=﹣2,c=4,因此a+|b|+c=1+2+4=7.3.解:(1)因为|﹣2|+|3|=5,|﹣2+3|=1,因此|﹣2|+|3|>|﹣2+3|.因为|﹣3|+|﹣5|=8,|(﹣3)+(﹣5)|=8,因此|﹣3|+|﹣5|=|(﹣3)+(﹣5)|.因为|0|+|﹣5|=5,|0+(﹣5)|=5,因此|0|+|﹣5|=|0+(﹣5)|.故答案为>,=,=.(2)依照(1)中规律可得出:|a|+|b|≥|a+b|.(3)因为|﹣5|=5,因此|x|+5=|x|+|﹣5|=|x+(﹣5)|=|x﹣5|.因此x<0.即当|x|+5=|x﹣5|时,x<0.4.解:因为有理数a与b互为相反数,因此a+b=0.因为有理数c到原点的距离为1,因此c=1 或c=-1.因为有理数d为绝对值最小的数,因此d=0.因此当c=1时,原式=2013×0+1+0=1;当c=-1时,原式=2013×0+(-1)+0=-1.因此原式的值为1或-1.5.(1) ﹣2,C;(2) ﹣4.5或8.5;(3) ﹣2;F 【解析】(1)因为数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G表示8,因此AG=|8+4|=12,因此相邻两点之间的距离==2,因此点B表示的有理数是﹣4+2=﹣2,点C表示的有理数﹣2+2=0.故答案为﹣2,C;(2)设点M表示的有理数是m,那么|m+4|+|m﹣8|=13,因此m=﹣4.5或m=8.5.故答案为﹣4.5或8.5;(3)假设将原点取在点D,因为每两点之间距离为2,因此点C表示的有理数是﹣2.因为点B与点F在原点D的双侧且到原点的距离相等,因此现在点B与点F表示的有理数互为相反数.6.解:由题意得:点A对应的数为x,那么点B所对应的数x﹣3﹣2=x﹣5,又点B所对应的数和点A对应的数的绝对值相等,|x|=|x﹣5|,因此x=2.5.。