离散数学第五版 模拟试题 及答案
- 格式:doc
- 大小:166.50 KB
- 文档页数:4
离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。
答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。
答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。
答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。
自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。
2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。
答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。
判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。
四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。
答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。
2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。
找出所有强连通分量。
答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。
一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。
2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。
3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。
4.幂集P(P(∅)) =________________。
5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。
6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。
7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。
8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。
9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。
10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。
二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。
2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。
2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。
3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。
4.证明:R是传递的⇔R*R⊆R。
5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。
离散数学第五版--模拟试题--及答案《离散数学》模拟试题3⼀、填空题(每⼩题2分,共20分)1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。
2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___,A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。
3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___,ρ(A)-ρ(B)=_____ _ _。
4. 已知命题公式RQPG→∧=)(,则G的析取范式为。
5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。
”符号化,其真值为。
⼆、单项选择题(选择⼀个正确答案的代号填⼊括号中,每⼩题4分,共16分。
)1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为().A.{1}B. {1, 3}C. {3,4}D. {1,2}2. 下列式⼦中正确的有()。
A. φ=0B. φ∈{φ}C. φ∈{a,b}D. φ∈φ3. 设集合X={x, y},则ρ(X)=()。
A. {{x},{y}}B. {φ,{x},{y}}C. {φ,{x},{y},{x, y}}D. {{x},{y},{x, y}}4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},则R不具备().三、计算题(共50分)1. (6分)设全集E=N,有下列⼦集:A={1,2,8,10},B={n|n2<50 ,n∈N},C={n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D))(3)B-(A∩C) (4)(~A∩B) ∪D2. (6分)设集合A={a, b, c},A上⼆元关系R1,R2,R3分别为:R1=A×A,R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别⽤定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。
离散数学第五版课后答案【篇一:离散数学课后答案(四)】txt>4.1习题参考答案-------------------------------------------------------------------------------- 1、根据结合律的定义在自然数集n中任取 a,b,c 三数,察看 (a。
b)。
c=a。
(b。
c) 是否成立?可以发现只有 b、c 满足结合律。
晓津观点:b)满足结合律,分析如下: a) 若有a,b,c∈n,则(a*b)*c =(a-b)-c a*(b*c) =a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。
b)同上,(a*b)*c=max(max(a,b),c) 即得到a,b,c中最大的数。
a*(b*c)=max(a,max(b,c))仍是得到a,b,c中最大的数。
此运算是可结合的。
c)同上,(a*b)*c=(a+2b)+2c 而a*(b*c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。
d)运用同样的分析可知其不是可结合的。
-------------------------------------------------------------------------------- 2、d)是不封闭的。
--------------------------------------------------------------------------------其不满足交换律、满足结合律、不满足幂等律、无零元、无单位元晓津补充证明如下:(1)a*b=pa+qb+r 而b*a=pb+qa+r 当p,q取值不等时,二式不相等。
因此*运算不满足交换律。
(2)设a,b,c∈r则(a*b)*c=p(pa+qb+r)+qc+r=p^2a+pab+pr+qc+r 而a*(b*c)=pa+q(pb+qc+r)+r=pa+qpb+q^2c+qr+r 二式不恒等,因此*运算是不满足结合律的。
北京语言大学网络教育学院《离散数学》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3[B] 8[C]9[D]272、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则( )。
[A] 3,8 [B]{}3 [C]{}8 [D]{}3,83、若X 是Y 的子集,则一定有( )。
[A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X∩Y=X4、下列关系中是等价关系的是( )。
[A]不等关系 [B]空关系 [C]全关系 [D]偏序关系5、对于一个从集合A 到集合B 的映射,下列表述中错误的是( )。
[A]对A 的每个元素都要有象 [B] 对A 的每个元素都只有一个象 [C]对B 的每个元素都有原象 [D] 对B 的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A 到A 的双射共有( )。
[A]3个 [B]6个 [C]8个 [D]9个8、一个连通图G具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边仅一次回到该结点()。
[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点[D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是()。
第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分 考试时限:120 分钟一、选择题(每题2分,共20分)1. 下述命题公式中,是重言式的为( )(A ))()(q p q p ∨→∧ (B )q p ∨))()((p q q p →∨→⇔(C )q q p ∧→⌝)((D )q q p →⌝∧)(2. 对任意集合A,B,C,下列结论正确的是( )(A )若A ⊆B,B ∈C,则A ⊆C ; (B )若A ∈B,B⊆C,则A ⊆C ; (C )若A ⊆B,B ∈C,则A ∈C ; (D )若A ∈B,B ⊆C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系,,则由R 产生的S S ⨯上一个划分共有( )个分块。
(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是一棵树当且仅当G 中( )(A )有些边是割边 (B )每条边都是割边(C )所有边都不是割边 (D )图中存在一条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平面图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下面命题公式中真值为1的是( )(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=<V,E>中,结点总度数与边数的关系是( )(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公用一个电源,则至少需有五插头的接线板数( )(A )7 (B )8 (C )9 (D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为( )(A )11 (B )14 (C )17(D )15二、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。
离散数学(第五版)清华大学出版社第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2(1)p:2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命可编辑范本题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的运算?A. 并集B. 交集C. 差集D. 乘法2. 命题逻辑中,下列哪个命题是真命题?A. (P ∧ ¬P) → QB. (P ∨ Q) ∧ ¬(P ∧ Q)C. P → (Q → P)D. (P → Q) ∧ (Q → R) → (P → R)3. 函数f: A → B,如果f是单射,那么下列哪个选项是正确的?A. A中不同的元素在B中可能有相同的像B. B中每个元素都有原像C. A中不同的元素在B中有不同的像D. B中不同的元素在A中有不同的原像4. 在图论中,下列哪个选项不是图的基本术语?A. 顶点B. 边C. 邻接D. 矩阵5. 组合数学中,从n个不同元素中取出k个元素的组合数记作C(n, k),下列哪个选项是错误的?A. C(n, k) = C(n, n-k)B. C(n, 0) = 1C. C(n, 1) = nD. C(n, k) = C(k, n)6. 关系R是A×B上的二元关系,下列哪个选项不是关系R的性质?A. 自反性B. 对称性C. 传递性D. 可数性7. 在命题逻辑中,下列哪个命题等价于P ∨ (Q ∧ R)?A. (P ∨ Q) ∧ (P ∨ R)B. (P ∧ Q) ∨ (P ∧ R)C. (P ∨ Q) ∨ RD. (P ∨ Q) ∧ R8. 集合{1, 2, 3}的幂集含有多少个元素?A. 3B. 6C. 8D. 99. 在图论中,下列哪个选项不是树的性质?A. 无环B. 至少有两个顶点C. 任意两个顶点都由唯一路径连接D. 至少有一个环10. 在集合论中,下列哪个选项是正确的?A. 空集是任何集合的子集B. 任何集合都是其自身的超集C. 空集是任何非空集合的真子集D. 空集是其自身的并集二、简答题(每题10分,共30分)11. 简述命题逻辑中的德摩根定律,并给出一个例子。
离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。
答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。
若命题P和Q等价,则记作P⇔Q。
蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。
若命题P蕴含Q,则记作P→Q。
2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。
答案:设x属于A∩B,即x同时属于A和B。
根据并集的定义,若元素属于A或B,则它属于A∪B。
因此,x属于A∪B。
由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。
3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。
在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。
4. 描述有限自动机的组成部分及其功能。
答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。
输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。
5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。
在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。
确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。
从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。
重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。
若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。
若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。
答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。
《离散数学》期末考试考点及模拟题答案一、考试题型及分值各种题型所占的比例:填空题10%,判断题10%,选择题20%,其它题型60%新出试卷按照如下各种题型所占的比例:填空题20%,判断题15%,选择题30%,其它题型35%二、考点1.命题逻辑熟练掌握命题及其表示;掌握常用联结词(「、八、V、f、)的使用;熟练掌握命题公式的符号化;熟练掌握使用真值表判别命题等价的方法;掌握使用等价公式判别命题等价的方法;掌握重言式与蕴含式的概念及其判别方法;了解其他联结词的使用;了解对偶的概念;掌握求命题范式的方法;熟练掌握命题演算推理的基本理论.2.谓词逻辑熟练掌握谓词的概念及其表示;熟练掌握量词的使用;掌握使用谓词公式翻译命题的方法;掌握变元的约束;掌握谓词演算中等价式与蕴含式的判别;了解前束范式的求法;熟练掌握谓词演算推理的基本理论.3.集合与关系熟练掌握集合的概念和表示法;掌握集合的基本运算;掌握序偶与笛卡尔积的概念;熟练掌握关系及其表示;掌握关系的基本性质;了解复合关系和逆关系的概念;掌握关系的闭包运算;了解集合的划分和覆盖;掌握等价关系与等价类的概念;了解相容关系的概念;掌握各种序关系的概念.4.函数熟练掌握函数的概念;掌握逆函数和复合函数的概念;了解基数的概念;了解可数集与不可数集;了解基数的比较.5.代数结构掌握代数系统的概念;掌握n元运算及其性质;掌握半群、群与子群的概念;了解阿贝尔群和循环群的概念;了解陪集与拉格朗日定理;了解同构与同态的概念;了解环与域的概念.6.图论掌握图的基本概念;掌握路与回路的概念;熟练掌握图的矩阵表示;掌握欧拉图和哈密顿图的概念;掌握平面图的概念;了解对偶图与着色;熟练掌握树与生成树的概念;了解根树及其应用.(一)参考教材与网上资料复习(二)随堂练习或作业题在在新出试卷里有较大比例提高三、模拟试卷附后(请参考学习资料,找到或者做出解答)一、考试对象计算机学科中计算机科学与技术、软件工程等专业本科生二、考试的性质、目的离散数学是随着计算机科学的发展而逐渐形成的一门学科,是近代数学的一个分支在计算机科学中,它主要应用于数据结构、操作系统、编译原理、数据库理论、形式语言与自动机、程序理论、编码理论、人工智能、数字系统逻辑设计等方面它是计算机科学各专业重要的专业基础课.本课程教学的目标是:①使学生掌握离散数学的基本理论和基本知识,为学习有关课程以及今后工作打好基础.②培养和提高学生的抽象思维与逻辑推理能力.四、考试方式及时间:考试方式:闭卷考试时间:120分钟五、课程综合评定办法1期末闭卷考试:占总成绩60%.2、平时成绩(作业、考勤情况等):占总成绩40%3、试题难易程度:基础试题:中等难度试题:较难试题:难度较大的试题 =4: 3: 2: 1六、考试教材《离散数学》左孝凌、李为^、刘永才编著,上海科学技术文献出版社附:模拟试卷华南理工大学网络教育学院2012 - 2013学年度第一学期期末考试《离散数学》试卷(模拟卷)教学中心:专业层次:学号:姓名:座号:注意事项:1.本试卷共五大题,满分100分,考试时间120分钟,闭卷;2.考前请将以上各项信息填写清楚;3.所有答案直接做在试卷上,做在草稿纸上无效;4.考试结束,试卷、草稿纸一并交回.一.判断题(每题2分,共10分)1、设A, B都是合式公式,则A A B F「B也是合式公式.(J)2. P f Q o「P v Q ,(v)3、对谓词公式(V x) (P (y) V Q (x,y)) △R (x,y)中的自由变元进行代入后得到公lllllll !lllll式(V x) (P (z) V Q (x,z)) △R (x,y) . (x)4.对任意集合 A、B、C,有(A—B) —C = (A—C) - (B—C). (j)5. 一个结点到另一个结点可达或相互可达. (X )二.单项选择题(每题2分,共20分)1.设:。
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
a 离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.一、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f gd eb c图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)二、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→F)→C, B→(A∧S)B→Eb)x(P(x)→Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
离散数学考试(试题及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。
则根据题意应有:A C D,(B∧C),C D必须同时成立。
因此(A C D)∧(B∧C)∧(C D)(A∨(C∧D)∨(C∧D))∧(B∨C)∧(C∨D)(A∨(C∧D)∨(C∧D))∧((B∧C)∨(B∧D)∨C∨(C∧D))(A∧B∧C)∨(A∧B∧D)∨(A∧C)∨(A∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)F∨F∨(A∧C)∨F∨F∨(C∧D∧B)∨F∨F∨(C∧D∧B)∨F∨(C∧D)∨F(A∧C)∨(B∧C∧D)∨(C∧D∧B)∨(C∧D)(A∧C)∨(B∧C∧D)∨(C∧D)T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x (S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x(S(x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A B⌝(B A)。
证明:A B x(x∈A→x∈B)∧x(x∈B∧x A)x(x A∨x∈B)∧x(x∈B∧x A) ⌝x(x∈A∧x B)∧⌝x(x B∨x∈A)⌝x(x∈A∧x B)∨⌝x(x∈A∨x B)⌝(x(x∈A∧x B)∧x(x∈A∨x B))⌝(x(x∈A∧x B)∧x(x∈B→x∈A))⌝(B A)。
《离散数学》模拟试题3
一、填空题(每小题2分,共20分)
1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。
2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___,
A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。
3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___,
ρ(A)-ρ(B)=_____ _ _。
4. 已知命题公式R
Q
P
G→
∧
⌝
=)
(,则G的析取范式为。
5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。
”符号化
,其真值为。
二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。
)
1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为().
A.{1}
B. {1, 3}
C. {3,4}
D. {1,2}
2. 下列式子中正确的有()。
A. φ=0
B. φ∈{φ}
C. φ∈{a,b}
D. φ∈φ
3. 设集合X={x, y},则ρ(X)=()。
A. {{x},{y}}
B. {φ,{x},{y}}
C. {φ,{x},{y},{x, y}}
D. {{x},{y},{x, y}}
4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},
则R不具备().
三、计算题(共50分)
1. (6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50 ,n∈N},C=
{n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D))
(3)B-(A∩C) (4)(~A∩B) ∪D
2. (6分)设集合A={a, b, c},A上二元关系R1,R2,R3分别为:R1=A×A,
R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别用
定义和矩阵运算求R1·R2 ,
2
2
R,R
1
·R2 ·R3 , (R1·R2 ·R3 )-1 。
3.(6分)化简等价式(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R).
4.(8分) 设集合A={1,2,3},R为A上的二元关系,且 M R=
写出R的关系表达式,画出R的关系图并说明R的性质.
5. (10分)设公式G的真值表如下.
试叙述如何根据真值表求G的
主析取范式和主合取范式,并
写出G的主析取范式和主合取范式.
1 0 0 1 1 0 1 0 0
6. (8分) 设解释I 为:
(1) 定义域D ={-2,3,6}; (2) F (x ): x ≤3 G (x ): x >5
在解释I 下求公式 ∃ x (F(x)∨G(x))的真值.
7. (6分) 试用克鲁斯卡尔算法求下图所示权图中的最优支撑树.要求画出
其最优支撑树,并求出权和.
四、证明题(每小题8分,共16分)
1. 设A ,B ,C 为三个任意集合,试证明: ( 8分) (1)(A -B )-C =(A -C )-(B -C ) (2)A ∪(B ∩C )=A ∪((B -A )∩(A ∪C )) (3)(A ∪(B -A ))-C =(A -C )∪(B -C ) (4)((A ∪B ∪C )∩(A ∪B ))-((A ∪(B -C ))∩A )=B -A
2. 证明下面的等价式: ( 8分) (1)(⌝ P ∧(⌝ Q ∧R ))∨(Q ∧R )∨(P ∧R )=R (2)(P ∧(Q ∧S ))∨(⌝ P ∧(Q ∧S ))=(Q ∧S ) (3)P → (Q → R )=(P ∧Q )→ R
(4)⌝( P ↔Q )=(P ∧⌝ Q )∨(⌝P ∧Q )
《离散数学》模拟试题3参考答案
一、填空题
1. {φ,{φ},{1},{φ,1},{φ,2},{1,2},A}
2. {a ,b ,c ,d ,e };{a };{b ,c };φ
3. {3};{{3},{1,3},{2,3},{1,2,3}} 4 R Q P ∨⌝∨. 5. P ↔Q ,1
二、单项选择题
1. C
2. B
3. C
4. B
三、计算题
1. (1)A ;(2){1};(3)B ;(4){2,4,8,9,16,32}
2. R 1 ·R 2 =={(a ,a ),(a ,b ),(b ,a ),(b ,b ),(c ,a ),(c ,b )};
2
2
R ={( a ,a ),(a ,b )};
R 1·R 2 ·R 3 = {( a ,a ),(b ,a ),(c ,a )};
(R1·R2 ·R3)-1 = {( a,a),(a,b),(a,c)};
3.解:
(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R)
=(﹁P∧(﹁Q∧R))∨((Q∨P)∧R)
=((﹁P∧﹁Q)∧R))∨((Q∨P)∧R)
=((﹁P∧﹁Q)∨(Q∨P))∧R
=(﹁(P∨Q)∨(P∨Q))∧R
=1∧R
=R
4.解:
R={(1,1),(2,1),(2,2),(3,1) }
其关系图如下:
R是反对称的和传递的.
5. 解:
将真值表中最后一列的1左侧的二进制数,所对应的极小项写出后,将其析取起来,就得到G的主析取范式.
于是,G=(﹁P∧﹁Q∧﹁R)∨(﹁P∧ Q∧﹁R)∨(﹁P∧ Q∧R)∨(P∧﹁ Q∧R).
将真值表中最后一列的0左侧的二进制数,所对应的极大项写出后,将其合取起来,就得到G的主合取范式.
于是,G=(P∨Q∨﹁R)∧(﹁P∨ Q∨R)∧(﹁P∨﹁Q∨R)∧(﹁P∨﹁ Q∨﹁R).
6. 解:
∃ x ( F(x) ∨G(x))
⇔ ( F(-2) ∨G(-2)) ∨ ( F(3) ∨G(3)) ∨ ( F(6) ∨G(6))
⇔(1∨0) ∨(1∨0) ∨(0∨1)
⇔ 1
7. 解:
下图的粗线条为该权图的最优支撑树,5条边.
权和为2+2+3+3+5=15.
四、证明题
1.(1)
左边=(A-B)∩~C=A∩~B∩~C
2
2
3
5
3
右边=(A∩~C)∩~(B∩~C)
=(A∩~C)∩(~B∪C)
=(A∩~C∩~B)∪(A∩~C∩C)
=(A∩~B∩~C)∪0
=A∩~B∩~C
=左边
(2)
左边=(A∪B)∩(A∪C)
右边=A∪((B∩~A)∩(A∪C))
=A∪((B∩~A∩A)∪(B∩~A∩C))
=A∪(B∩~A∩C)
=(A∪B)∩(A∪~A)∩(A∪C)
=(A∪B)∩(A∪C)
=左边
(3)
左边=(A∪(B∩~A))∩~C
=((A∪B)∩(A∪~A))∩~C
=(A∪B)∩~C
=(A∩~C)∪(B∩~C)
=(A-C) ∪(B-C)
=右边
(4)
左边=(A∪B)-A
=(A∪B)∩~A
=(A∩~A)∩(B∩~A)
=B-A
=右边
2.(1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)
=(⌝P∧(⌝Q∧R))∨((Q∨P)∧R)
=((⌝P∧⌝Q)∧R)∨((Q∨P)∧R)
=((⌝P∧⌝ Q)∨(Q∨P))∧R
=(⌝(P∨Q)∨(Q∨P))∧R
=1∧R
=R
(2)(P∧(Q∧S))∨(⌝P∧(Q∧S))
=((Q∧S)∧P)∨((Q∧S)∧⌝P)
=(Q∧S)∧(P∨⌝P)
=(Q∧S)∧1
=Q∧S
(3)P→ (Q→R)
=⌝ P∨(⌝ Q∨R)
=(⌝ P∨⌝ Q)∨R
=⌝(P∧Q)∨R
=(P∧Q)→ R
(4)⌝(P↔Q)
=⌝((P→ Q)∧(Q→P))
=⌝((⌝ P∨Q)∧(⌝ Q∨P))
=⌝(⌝ P∨Q)∨⌝(⌝ Q∨P)
=(⌝(⌝ P)∧⌝ Q)∨(⌝(⌝ Q)∧⌝P)
=(P∧⌝ Q)∨(Q∧⌝P)
=(P∧⌝ Q)∨(⌝P∧Q)。