五年级奥数测试卷流水行船答案
- 格式:doc
- 大小:20.50 KB
- 文档页数:6
第九讲流水行船问题故事中飞机倒飞的情况真的会出现吗?学习完今天的课程,你就知道了.如同飞机在飞行的时候会受到风速的影响一样,当船在水中航行时,也会受到水速的影响,而具体是怎样的影响呢,我们今天就来研究一下.当船在水中航行时,如果水是静止不动的,那船的行驶速度就只由船本身决定,这个速度称为船的静水速度,即船本身的速度.大家可以设想一下,如果船本身停止运动,那么它还是会顺着水流前进,这时的速度等于水流的速度,我们可以把水流的速度简称为水速.当船顺水而行时,船的静水速度和水速会叠加起来,行驶速度会变快,此时的速度我们称之为顺水速度;相反的,如果船逆水而行,水速会抵消掉一部分船本身的速度,行驶速度会变慢,此时的速度我们称之为逆水速度.下面的两个基本公式就给出了对应的计算方法:顺水速度静水船速水速;=+逆水速度静水船速水速;=-很容易的,根据和差问题的计算方法,我们可以得到如下结论:()2=÷水速顺水速度-逆水速度;()2船速顺水速度+逆水速度.=÷这四个公式是流水行船问题中最基本的速度计算公式.下面我们就利用这四个公式,解决几个典型的流水行船问题.例题1.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【分析】能不能先把顺水速度和逆水速度算出来?一艘飞艇,顺风6小时行驶了900公里;在同样的风速下,逆风行驶600公里,也用了6小时.那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例题2. 甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水7小时后到达乙河,共航行133千米.这艘船在乙河逆水航行84千米,需要花多少小时?「分析」要求出船在乙河中航行84千米所用的时间,只需知道船在乙河行驶的速度,那么只需要知道船的静水速度就可以了.能通过船在甲河中的运动过程求出静水速度么?A 、B 两港相距120千米.甲船的静水速度是20千米/时,水流速度是4千米/时.那么甲船在两港间往返一次需要多少小时?在解答流水行船问题时,我们需要牢牢抓住水速对船速的影响.同一艘船在顺水航行与逆水航行中的速度不相同,所以我们在解题时应该把船在不同情况下的运动过程分开考虑. 对于有些问题,如果发现题目中条件不足,可以采用设具体数值的方法来解决.例题3. 轮船从A 城行驶到B 城需要3天,而从B 城回到A 城需要4天.请问:在A 城放出一个无动力的木筏,它漂到B 城需多少天?甲乙84千米 水流方向行驶方向133千米 水 流 方 向行 驶 方 向【分析】我们要求木筏从A城到B城的漂流时间,只需知道木筏漂流的速度即可.由于木筏是无动力的,也就是说木筏漂流的速度就等于水速.但现在只知道时间,不知道任何的速度或者距离,那该怎么办呢?一艘船在A、B两地往返航行,如果船顺水漂流,从A地到达B地需要60小时,而开船从B地到达A地需要30小时.那么这艘船从A地开到B地需要多长时间?对于有些复杂的流水行船问题,我们需要分段考虑.例题4.甲、乙两船分别从A港出发逆流而上驶向180千米外的B港,静水中甲船每小时航行15千米,乙船每小时航行12千米,水流速度是每小时3千米.乙船出发后两小时,甲船才出发,当甲船追上乙船的时候,甲已离开A港多少千米?若甲船到达B港之后立即返回,则甲、乙两船相遇地点离刚才甲船追上乙船的地点多少千米?「分析」乙船比甲船早两小时出发所行驶的距离,就是甲船追乙船时的路程差.练习4:A码头在B码头的上游,两个码头之间的距离是180千米.货船的静水速度是9千米/时,从A码头出发开往B码头;客船的静水速度是15千米/时,与货船同时出发,从B 码头开往A码头.水速是3千米/时.两船相遇后,货船马上掉头,与客船同时开向A码头.那么货船到达A码头的时间比客船晚几小时?下面我们来看看流水行船问题中的相遇与追及问题.通过一些具体的例子我们可以发现,如果两船相向而行,两船的速度和就是静水速度之和;如果两船同向而行,两船的速度差就是静水速度之差.因此,相遇时间和追及时间与水速大小无关.例题5. A 、B 两码头间河流长为300 千米,甲、乙两船分别从A 、B 码头同时起航.如果相向而行 5 小时相遇,如果同向而行10小时甲船追上乙船.求两船在静水中的速度.【分析】不妨设A 码头在上游,B 码头在下游.如果相向而行,甲船的实际速度为甲速+水速,乙船的实际速度为乙速-水速,两船的速度之和就是甲速+乙速,所以相遇时间和水速大小没有关系.如果同向而行,追及时间是不是也与水速大小没有关系呢?例题6. 某人在河里游泳,逆流而上.他在A 处掉了一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A 处2千米的地方追到.假定此人在静水中的游泳速度为每分钟60米,求水流速度.【分析】游泳者丢失水壶时,他并没有发觉,仍旧逆流而上,此时游泳者的速度是:-静水速度水速,而水壶则顺流而下,速度和水速相同.两者背向而行,相当于一个相遇问题的逆过程.速度和为“()-+静水速度水速水速”,恰好为游泳者的静水速度.当游泳者返回的时候,他开始追自己的水壶,此时他和水壶的速度又是怎样的?追及时的速度差又是多少呢?帆船帆船起源于欧洲,其历史可以追溯到远古时代。
A1、某船顺水速度是每小时17千米,逆水速度是每小时10千米,求船速和水速。
2、一只船在静水中的速度是每小时12千米,逆水5小时航行40千米,那么水流速度是每小时多少千米?顺水速度是每小时多少千米?3、一只船从甲港开往乙港,去时顺水19小时到达,返回时逆水比去时多用4小时,已知船的顺水速度是每小时23千米,求水流速度。
4、两个码头相距240千米,轮船顺水行完全程需要8小时,逆水每小时比顺水少行6千米,逆水比顺水多用几小时?5、已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需要5小时,问乙船逆流而上需要多少小时?6、已知一艘轮船顺水行48千米需要4小时,逆水行同样的路程需6小时。
现在轮船从上游甲城到下游乙城,已知两城的水路长96千米。
开船时船上掉下一木板,问船到乙城时,木板离乙城还有多少路?7、一条大河,河中间(主航道)水速为每小时8千米,沿岸边水速为每小时6千米。
一条船在河沿岸边逆流而上,20小时行驶520千米,这条船走主航道顺流而下返回原出发点,需要多少小时?8、甲、乙两船在静水中的速度相同,他们同时从沿河的两个码头相对开出,4小时以后相遇。
如果这条河的水速是每小时4千米,那么甲、乙两船航行的距离相差多少千米?9、一只帆船的速度是每分钟60米,船在水流速度为每分钟20米的河中,从上游的一个港口到下游某地共走了30分钟,这两个港口之间相距多少米?10、两个港口相距644千米,甲、乙两艘轮船同时由两港口相对开出,7小时相遇,在静水中甲船比乙船每小时快2千米,那么甲、乙两船在静水中的速度分别是每小时多少千米?11、从甲地到乙地的水路有120千米,河水的速度是每小时2.5千米,某船在静水中的每小时行7.5千米,它在甲乙两地之间往返一次需要多少小时?12、甲乙两码头相距36千米,小王乘船从甲码头去乙码头贩货,已知此河水流速度是每小时5千米。
船速比水流速度的2倍还多3千米,那么往返甲、乙两码头一次需要多少小时?B1、一只船在静水中每小时行15千米,逆水3小时行24千米,那么水流速度是每小时多少千米?顺水速度是每小时多少千米?2、某条河中间有甲、乙两码头,甲、乙的水路是91千米,一条船从甲到乙顺流从上午8时出发,下午3时到达,已知次船从乙码头返回甲码头所用的时间比来时多用6小时,那么船速是每小时多少千米?水速是每小时多少千米?3、一艘轮船在静水中的速度是每小时18千米,它顺水航行8小时走了160千米,那么这艘船逆水速度是每小时多少千米?返回原地需要多少小时?4、某船顺水航行5小时共行120千米,返回原地需要8小时,那么该船在静水中的速度是每小时多少千米,水流速度是每小时多少千米?5、一只小船第一次顺流航行48千米,逆流航行8千米,共用10小时,第二次用同样的时间顺流航行24千米,逆流航行14千米。
【五年级奥数举一反三—全国通用】测评卷17《流水行船问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共8小题,满分16分,每小题2分)1.(2分)一艘客轮,在静水中的速度是每小时行25千米.已知这艘客轮在大运河中顺水航行308千米,水速是每小时3千米,需要行()个小时?A.12.32 B.11 C.14 D.22【解答】解:308(253)11÷+=(小时)故选:B。
2.(2分)一小船逆流航行,在途中掉下一箱可漂浮物品,20分钟后发现,掉头回追,回追上这只木箱还需的时间()A.超过20分钟B.少于20分钟C.等于20分钟D.可能永远也追不上【解答】解:设船在静水速度为a,水流速度为b,a b b a b b-+÷+-[20()20]()=÷20a a=(分钟)20答:再经过20分钟小船追上木头.故选:C。
3.(2分)一架小飞机,在静止的空气中飞行速度为320千米/小时.现在有风,风速为40千米/小时(风速不变),逆风飞行全程需时135分钟,顺风返回需时()分钟.(飞机起飞和着陆的时间略去不计)A.94.5 B.105 C.112.5 D.120【解答】解:(32040)135(32040)-⨯÷+=⨯÷280135360=÷37800360105=(分钟)答:顺风返回需时105分钟.故选:B。
4.(2分)一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达.这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米.这艘轮船往返一次每小时的平均速度是() A.12千米B.24千米/小时C.24.5千米D.25千米【解答】解:28384⨯=(千米)84214÷=(小时)842(34)⨯÷+1687=÷24=(千米/小时)答:这艘轮船往返一次每小时的平均速度是每小时24千米.故选:B。
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208 千米,一只船从甲港开往乙港,顺水8 小时到达,从乙港返回甲港,逆水13 小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21 千米,水流速度每小时 5 千米.例2、某船在静水中的速度是每小时15 千米,它从上游甲地开往下游乙地共花去了8 小时,水速每小时3 千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
五年级流水行船奥数题及答案【三篇】【第一篇】一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
解:设静水速度为x。
总路程是相同的。
6×(x+2.5)=8×(x-2.5)6x+15=8x-20x=17.5答:静水速度为17.5千米/小时。
【第二篇】两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷2=(38-22)÷2=8(千米/时)答:这条河的水流速度为8千米/时。
【第三篇】已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).答:船到B港时,木块离B港还有60米.。
《流水行船问题》练习题(含答案)在行程问题的基础上,这一讲我们将研究流水行船的问题.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.另外一种与流水行船问题相类似的问题是“在风中跑步或行车”的问题,其实处理方法是和流水行船完全一致的.行船问题是一类特殊的行程问题,它的特殊之处就是多了一个水流速度,船速:在静水中行船,单位时间内所走的路程叫船速;逆水速度:逆水上行的速度叫逆水速度;顺水速度:顺水下行的速度叫顺水速度;水速:船在水中不借助其他外力只借助水流力量单位时间所漂流的路程叫水流速度(以下简称水速),顺水速度=船速+水速;逆水速度=船速-水速 .顺水行程=顺水速度×顺水时间逆水行程=逆水速度×逆水时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2 .(可理解为和差问题)【例1】甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?分析:从甲到乙顺水速度:234÷9=26(千米/小时);从乙到甲逆水速度:234÷13=18(千米/小时);船速是:(26+18)÷2=22(千米/小时);水速是:(26-18)÷2=4(千米/小时).【前铺】轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要多少小时?分析:要求轮船从乙港返回甲港所需的时间,即轮船顺水航行144千米所需时间,就要求出顺水航行的速度。
现在知道轮船在静水中的速度,只需求出水流速度.根据已知,自甲港逆水航行8小时,到达相距144千米的乙港,由此可求出轮船的逆水航行的速度.再根据逆水速度与船速、水速的关系即可求出水速.水流速度:21—144÷8=21—18=3(千米/小时),顺水速度:2l+3=24(千米/小时),乙港返回甲港所需时间:144÷24=6(小时).【巩固】甲、乙两港相距208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达.水流速度是多少?分析:顺水速度=208÷8=26(千米/小时),逆水速度=208÷13=16(千米/小时),水速=(顺水速度-逆水速度)÷2=(26-16)÷2=5(千米/小时).【例2】A、B两港相距560千米,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?分析:先求出甲船往返航行的时间分别是:(105+35)÷2=70小时,(105-35)÷2=35.再求出甲船逆水速度每小时560÷70=8千米,顺水速度每小时560÷35=16千米,那么甲船在静水中的速度是每小时(16+8)÷2=12千米,水流的速度是每小时12-8=4千米,乙船在静水中的速度是每小时12×2=24千米,所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=20+28=48小时.【例3】甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水航行7小时,行了133千米到达乙河,在乙河中还要逆水航行84千米,问:这艘船还要航行几小时?分析:船在甲河中的顺水速度为:133÷7=19(千米/小时),船速=19-3=16(千米/小时).船在乙河中的逆水速度=船速一水速=16-2=14(千米/小时),逆水时间=逆水行程÷逆水速度=84÷14=6(小时).【例4】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离.分析:两港口间的距离=顺水速度×顺水时间=(船速+水速)×顺水时间=(船速+6)×4 ;两港口间的距离=逆水速度×逆水时间=(船速-6)×7;所以可得:(船速+6)×4=(船速-6)×7,解得:船速=22,可得两港口间的距离为:(22+6)×4=(22—6) ×7=112(千米).【例5】某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天.问:水从甲地流到乙地用了多少时间?分析:(法1)水流的时间=甲乙两地间的距离÷水速,而此题并未告诉我们“甲乙两地间距离”,且根据已知,顺水时间及逆水时间也无法求出,而它又是解决此题顺水速度、逆水速度和水速的关键.将甲、乙两地距离看成单位“1”,则顺水每天走全程的15,逆水每天走全程的17.水速=(顺水速度一逆水速度)÷2=135,所以水从甲地流到乙地需:113535÷=(天).当然,我们还可以把甲乙两地的距离设成其他方便计算的数字,这其实就是特殊值代入法!(法2)用方程思路,5×(船速+水速)=7×(船速—水速),即船速=6×水速,所以轮船顺流行5天的路程等于水流5+5×5=35(天)的路程,即木筏从A城漂到B城需35天.(法3)逆水比顺水多2天到达,即船要多行驶2天,为什么会多2天呢,因为顺水时得到了5天的水速帮助,逆水时又要去克服7天的水速,这一切都是靠2天的船速所实现的,即船速等于6天的水速;所以轮船顺流行5天的路程等于水流5+5×6=35(天)的路程,即木筏从A城漂到B城需35天.【例6】一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米.这艘小船的静水速度和水流速度是多少?分析:(法1)两次航行顺流的路程差:33-24=9 (千米),逆流的路程差:14-11=3 (千米),也就是说顺流航行9千米所用的时间和逆流航行3千米所用时间相同,那么顺流航行33千米与逆流航行33÷3=11 (千米)时间相同,则逆流速度:(11+11)÷11=2(千米/小时),同样可得顺流速度为:(24+14×3)÷11=6(千米/小时),静水速度:(6+2)÷2=4(千米/小时),水流速度:(6-2)÷2=2(千米/小时).(法2)根据顺流航行9千米所用的时间和逆流航行3千米所用时间相同,9千米=顺流速度×时间=逆流速度×3倍的时间,可得:顺流速度=3×逆流速度,而后仿照法1部分思路解答.【例7】一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.分析:逆水速度:18×2÷3=12(千米/小时),船速:(18+12)÷2=15(千米/小时)。
请关注我!谢谢你!
小学五年级奥数题答案:流水行船
【流水行船】
难度:★★
甲、乙两船分别从港顺水而下至480千米外的B港,静水中甲船每小时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发后1.5小时,甲船才出发,到B港后返回与乙迎面相遇,此处距A 港多少千米?
【分析】甲船顺水行驶全程需要:480(56+8)=7.5(小时),乙船顺水行驶全程需要:480(40+8)=10(小时).甲船到达B港时,乙船行驶1.5+7.5=9(小时),还有1小时的路程(48千米),即乙船与甲船的相遇路程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处,即距离B港24千米处,此处距离A港480-24=456(千米).
分类精心精选精品文档,欢迎下载,所有文档经过整理后分类挑选加工,下载后可重新编辑,正文所有带XX或是空格类下载后可自行代入字词。
五年级奥数题及答案流水行船问题1 编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:流水行船问题1,可以帮助到你们,助您快速通往高分之路!!船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1 甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
解析:顺水速度:208÷208÷8=268=26(千米/小时),逆水速度:208÷208÷13=1613=16(千米/小时), 船速:(26+16)÷2=21(千米/小时), 水速:(2626——16)÷2=5(千米/小时)小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒.顺水速度顺水速度静水速度静水速度水流速度水流速度逆水速度逆水速度流水行船问题讲座流水问题是研究船在流水中的流水问题是研究船在流水中的行程问题行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速目,一般是匀速运动运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个流水问题有如下两个基本公式基本公式: 顺水速度=船的静水速+水速(1) 逆水速度=船的静水速-水速(2) 水速=顺水速度-船速(3) 静水船速=顺水速度-水速(4) 水速=静水速-逆水速度(5) 静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷352÷1111-352÷352÷1616)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港解析:本题类似于解析:本题类似于流水流水行船问题.行船问题.根据题意可知,这个短跑选手的顺风根据题意可知,这个短跑选手的顺风速度速度为90÷90÷10=910=9米/秒,逆风速度为70÷70÷10=710=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.秒. 在无风时跑100米,需要的时间为100÷100÷8=12.58=12.5秒.秒.例5:一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷144÷8=188=18(千米/时)时) 因为船的静水速度是每小时因为船的静水速度是每小时 25千米,所以水流的速度为:25-18=718=7(千米(千米//时)时) 返回时是顺水,船的顺水速度是25+7=3225+7=32(千米(千米//时)时) 所以返回原处需要:所以返回原处需要:144144÷32=4.5(小时)例6:(难度等级 ※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离? 解析:(船速+6)×4=(船速-6)×7, 可得船速=22,两港之间的距离为:,两港之间的距离为: 6×6×7+6×7+6×4=664=66, 66÷(7-4)=22(千米/时)时) (22+6)×4=112千米.千米.例7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:水速,即: 每小时甲船比乙船多走6×6×2=12(2=12(千米). 4小时的距离差为12×12×4=48(4=48(千米) 顺水速度顺水速度 - 逆水速度逆水速度 速度差=(船速+水速) -(船速-水速) =船速+水速水速 -船速+水速水速 =2×2×6=126=12(千米)(千米) 12×12×4=484=48(千米)例8:(难度等级 ※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺段水航行同一段水水路,用了3小时.甲船返回原地比去时多用了几小时? 解:乙船顺水速:120÷120÷2=602=60(千米/小时). 水流速:(60-30)÷2=15(千米/小时). 甲船顺水速:12O÷12O÷33=4O (千米/小时)。
最新五年级奥数练习题流水行船
甲、乙两船分别从港顺水而下至480千米外的B港,静水中甲船每小时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发后1.5小时,甲船才出发,到B港后返回与乙迎面相遇,此处距A港多少千米?
答案与解析:
甲船顺水行驶全程需要:480(56+8)=7.5(小时),乙船顺水行驶全程需要:480(40+8)=10(小时).甲船到达B港时,乙船行驶1.5+7.5=9(小时),还有1小时的路程(48千米),即乙船与甲船的相遇路程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处,即距离B 港24千米处,此处距离A港480-24=456(千米).
本文就是我们为大家准备的五年级奥数练习题流水行船,希望可以为大家的数学学习起到一定作用!。
(5升6暑假奥数)流水行船问题-小学数学五年级下册人教版一、单选题1.快艇从A码头出发,沿河顺流而下,途径B码头后继续顺流驶向C码头,到达C后掉头驶回B码头共用10小时。
若A、B距离20千米,快艇在静水中速度为40千米/小时,水流速度为10千米/小时,则AC间距离为:()A.120千米B.180千米C.200千米D.240千米2.一汽船往返于两码头间,逆流需要10小时,顺流需要6小时。
已知船在静水中的速度为12公里/小时。
问水流的速度是多少公里/小时?()A.2B.3C.4D.53.人乘竹排沿江顺水漂流而下,迎面遇到一般逆流而上的快艇。
他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一般轮船。
”竹排继续顺水漂流了1小时遇到了迎面开来的这般轮船。
那么快艇静水速度是轮船静水速度的()倍。
A.2B.2.5C.3D.3.54.一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为11千米/时.B,C两镇之间有木船摆渡,木船在静水中的速度为3.5千米/时.已知A,C两镇水路相距50千米,水流速度为1.5千米/时.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A,B两镇的距离是()A.10千米B.20千米C.25千米D.30千米5.一架小飞机,在静止的空气中飞行速度为320千米/小时.现在有风,风速为40千米/小时(风速不变),逆风飞行全程需135分钟,顺风返回需()分钟.(飞机起飞和着陆的时间略去不计)A.94.5 B.105 C.112.5D.1206.一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达.这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米.这艘轮船往返一次每小时的平均速度是()A.12千米B.24千米C.24.5千米D.25千米二、填空题7.轮船从深圳到上海要航行6 昼夜,而由上海到深圳要航行10 昼夜;那么由深圳顺水放一木筏到上海,途中需经昼夜。
五年级数学(上)奥数思维拓展《流水行船问题》测试题(含答案)一.填空题(共8小题)1.某轮船顺流航行3h,逆流航行1.5h,已知轮船在静水中的速度为akm/h,水流速度为ykm/h,则轮船共航行了km。
2.甲、乙两个景点相距15千米,一艘观光游船从甲景点出发,抵达乙景点后立即返回,共用3小时.已知第三小时比第一小时少行12千米,那么这条河的水流速度为每小时千米.3.一艘轮船的静水速度为每小时36千米,在河中逆水航行140千米用了4小时,那么这条河的水流速度是每小时千米.4.甲、乙两城相距350千米,一艘客轮在其间往返航行,从甲城到乙城是顺流,用去10小时;从乙城返回甲城是逆流,用去14小时.那么,船在静水中的速度是千米/时,水流速度是千米/时.5.甲乙两游船顺水航行的速度均是每小时7千米,逆水航行的速度均是每小时5千米.现甲乙两船从某地同时出发,甲先逆流而上再顺流而下,乙先顺流而下再逆流而上,1小时后他们又都回到了出发点.那么两船在这段时间内共有分钟行进方向相同.6.一只船在河中顺水航行了4小时,行程为48千米.已知水速为每小时3千米,则该船的静水速度为每小时千米.7.甲乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,速度每小时12千米.这只机帆船往返两港要小时.8.一只小船从甲港到乙港顺流航行需1小时,水流速度增加一倍后,再从甲港到乙港航行需50分钟,水流速度增加后,从乙港返回甲港需航行.二.应用题(共13小题)9.甲船逆水航行360千米需18小时,返回原地需要10小时:乙船逆水航行同样一段距离需要15小时,返回原地需要多少小时?10.甲、乙两港相距334千米,此时风平浪静,一艘客船和一艘货船同时自两港相向航行,开出4.5小时后两船相距100千米,已知客船每小时行进比货船快4千米,货船每小时行多少千米?有几种可能?(用方程解)11.甲、乙两港相距100千米,一艘轮船从甲港到乙港是顺水航行,船在静水中的速度是每小时23.5千米,水流速度是每小时3.5千米。
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
流水行船问题讲座流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港解析:顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒.解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4.5(小时)例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?解析:(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的距离为:6×7+6×4=66,66÷(7-4)=22(千米/时)(22+6)×4=112千米.例7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?解析:在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的距离差为12×4=48(千米)顺水速度-逆水速度速度差=(船速+水速) -(船速-水速)=船速+水速-船速+水速=2×6=12(千米)12×4=48(千米)例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?解:乙船顺水速:120÷2=60(千米/小时).乙船逆水速:120÷4=30(千米/小时)。
A
1、某船顺水速度是每小时17千米,逆水速度是每小时10千米,求船速和水速。
2、一只船在静水中的速度是每小时12千米,逆水5小时航行40千米,那么水流速度是每小时多少千米?顺水速度是每小时多少千米?
3、一只船从甲港开往乙港,去时顺水19小时到达,返回时逆水比去时多用4小时,已知船的顺水速度是每小时23千米,求水流速度。
4、两个码头相距240千米,轮船顺水行完全程需要8小时,逆水每小时比顺水少行6千米,逆水比顺水多用几小时?
5、已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需要5小时,问乙船逆流而上需要多少小时?
6、已知一艘轮船顺水行48千米需要4小时,逆水行同样的路程需6小时。
现在轮船从上游甲城到下游乙城,已知两城的水路长96千米。
开船时船上掉下一木板,问船到乙城时,木板离乙城还有多少路?
7、一条大河,河中间(主航道)水速为每小时8千米,沿岸边水速为每小时6千米。
一条船在河沿岸边逆流而上,20小时行驶520千米,这条船走主航道顺流而下返回原出发点,需要多少小时?
8、甲、乙两船在静水中的速度相同,他们同时从沿河的两个码头相对开出,4小时以后相遇。
如果这条河的水速是每小时4千米,那么甲、乙两船航行的距离相差多少千米?
9、一只帆船的速度是每分钟60米,船在水流速度为每分钟20米的河中,从上游的一个港口到下游某地共走了30分钟,这两个港口之间相距多少米?
10、两个港口相距644千米,甲、乙两艘轮船同时由两港口相对开出,7小时相遇,在静水中甲船比乙船每小时快2千米,那么甲、乙两船在静水中的速度分别是每小时多少千米?
11、从甲地到乙地的水路有120千米,河水的速度是每小时2.5千米,某船在静水中的每小时行7.5千米,它在甲乙两地之间往返一次需要多少小时?
12、甲乙两码头相距36千米,小王乘船从甲码头去乙码头贩货,已知此河水流速度是每小时5千米。
船速比水流速度的2倍还多3千米,那么往
返甲、乙两码头一次需要多少小时?
B
1、一只船在静水中每小时行15千米,逆水3小时行24千米,那么水流速度是每小时多少千米?顺水速度是每小时多少千米?
2、某条河中间有甲、乙两码头,甲、乙的水路是91千米,一条船从甲到乙顺流从上午8时出发,下午3时到达,已知次船从乙码头返回甲码头所用的时间比来时多用6小时,那么船速是每小时多少千米?水速是每小时多少千米?
3、一艘轮船在静水中的速度是每小时18千米,它顺水航行8小时走了160千米,那么这艘船逆水速度是每小时多少千米?返回原地需要多少小时?
4、某船顺水航行5小时共行120千米,返回原地需要8小时,那么该船在静水中的速度是每小时多少千米,水流速度是每小时多少千米?
5、一只小船第一次顺流航行48千米,逆流航行8千米,共用10小时,第二次用同样的时间顺流航行24千米,逆流航行14千米。
求这只小船在静水中的速度和水流速度?
6、一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水而行,回到甲地,逆水比顺水多行2小时,已知水速每小时4千米。
求甲乙两地相距多少千米?
7、某船在静水中的速度是每小时18千米,水流速度是每小时2千米,这船从甲地逆水航行到乙地需15小时。
(1)甲乙两地的路程是多少千米?
(2)这船从乙地回到甲地需多少小时?
8.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?
9.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?
10.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速
是2千米,求这轮船在静水中的速度.
11.甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?
12、一只帆船在静水中的速度是每小时12千米,帆船在水流速度为每小时3千米的河中从上游的一个港口到下游的一个港口,再返回到原地,共用4小时。
问两个港口相距多少千米?
解答
A
1、船速:(17+10)÷2=13.5(千米)
水速:(17-10)÷2=3.5(千米
2、水速:12-40÷5=4(千米)
顺水速度:12+4=16(千米)
3、19+4=23(小时)
23×19÷23=19(千米)
(23-19)÷2=2(千米)
4、240÷8-6=24(千米)
240÷24-8=2(小时)
5、(80÷4-80÷10)÷2=6(千米)
80÷5-6×2=4(千米)
80÷4=20(小时)
6、(48÷4-48÷6)÷2=2(千米)
96÷(48÷4)=8(小时)
96-2×8=80(千米)
7、520÷20+6=32(千米)
520÷(32+8)=13(小时)
8、4×2×4=32(千米)
9、(60+20)×30=2400(米)
10、644÷7=92(千米)
甲船速度:(92+2)÷2=47(千米)
乙船速度:47-2=45(千米)
11、120÷(2.5+7.5)=12(小时)
120÷(2.5-7.5)=24(小时)
12+24=36(小时)
12、36÷(2×5+3+5)=2(小时)
36÷(2×5+3-5)=4(小时)
2+4=6(小时)
B
1、24÷3=8(千米)
水速:15-8=7(千米)
顺水速度:15+7=22(千米)
2、15-8=7(小时)91÷7=13(千米)
91÷(7+6)=7(千米)
船速:(7+13)÷2=10(千米)
水速:(13-7)÷2=3(千米)
3、逆水速度:18-(160÷8-18)=16(千米)
返回时间:160÷16=10(小时)
4、120÷5=24(千米)
120÷8=15(千米)
船速:(24+15)÷2=19.5(千米)
水速:(24-15)÷2=4.5(千米)
5、(48-24)÷(14-8)=4
逆水速度:(48÷4+8)÷10=2(千米)
逆水速度:2×4=8(千米)
船速:(8+2)÷2=5(千米)
水速:(8-2)÷2=3(千米)
6、(28-4×2)×2÷(4×2)=5(小时)
28×5=140(千米)
7、⑴(18-2)×15=240(千米)
⑵240÷(18+2)=12(小时)
8、
8. 船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求.
顺水速度:560÷20=28(千米/小时)
逆水速度:24-(28-24)=20(千米/小时)
返回甲码头时间:560÷20=28(小时)
9. 由题意可知乙船先出发2小时所行路程是两船的距离差,而两船是
顺水而行,船速水速已知,可求出两船顺水速度,两船速度差可知,那么甲船追上乙船时间可求.
甲船顺水速度:22+4=26(千米/小时)
乙船顺水速度:18+4=22(千米/小时)
乙船先行路程:22×2=44(千米)
甲船追上乙船时间:44÷(26-22)=11(小时)
10、由顺水速度=船速+水速
逆水速度=船速-水速
顺水比逆水每小时多行4千米
那么逆水4小时比顺水四小时少行了4×4=16千米,这16千米需要逆水1小时.
故逆水速度为16千米/小时.轮船在静水中的速度为16+2=18(千米/小时).
11、要求机帆船往返两港的时间,要先求出水速,轮船逆流与顺流的时间和与时间差分别是35小时与5小时.因此可求顺流时间和逆水时间,可求出轮船的逆流和顺流速度,由此可求水速.
轮船逆流航行时间:(35+5)÷2=20(小时)
轮船顺流航行时间:(35-5)÷2=15(小时)
轮船逆流速度:360÷20=18(千米/小时)
轮船顺流速度:360÷15=24(千米/小时)
水速:(24-18)÷2=3(千米/小时)
机船顺流速度:12+3=15(千米/小时)
机船逆流速度:12-3=9(千米/小时)
机船往返两港时间:360÷15+360÷9=64(小时)
12、12+3=15(千米)
12-3=9(千米)
4÷(15+9)×15=2.5(小时)2.5×9=22.5(千米)。