2017年秋九年级数学上册 4.7相似三角形性质第1课时相似三角形中的对应线段之比作业课件 江西专用 北师大版
- 格式:ppt
- 大小:14.56 MB
- 文档页数:22
第四章图形的相似7相似三角形的性质第1课吋相似三角形中的对应线段之比(续表)【课堂引入】1.前而我们学习了相似三角形的有关知识.问题1什么叫相似三角形?问题2如何判定两个三角形相似? 问题3相似三角形有何性质?问题4想一想:一个三角形有三条重要的线段,你们知道是哪三条吗?如果两个三角形相似,那么这些对应线段有什么关系呢?2.在生活屮,我们经常利用相似的知识解决建筑类问题.如图4_7_7,小王依据图纸上的AABC,以1:2的比例建造了模型房的房梁AA ,B Z C',CD 和LD ,分别是它们的立柱.图4一7—7问题1试写出AABC 与AA'B Z C ,的对应边之间的关系和对应角之间的关系.问题2AACD 与Z ∖A'C ,D ,相似吗?为什么?如果相似,指出它们的相似比.活动创设 情境 导入 新课活动二:实践 探究 交流新 知问题3如果CD=I.5cm,那么模型房的房梁立柱有多高?问题4据此,你可以发现相似三角形具有怎样的性质?【探究1】如图4一7—8,已知△ΛBC^ΔA,B,C,,相似比为k,AD平分ZBAC,A z D,平分ZB'A,C,,E,E'分别为BC,B,C Z的中点.试探究AD与A,D Z的比值关系.AE图4一7—8通过学生小组合作探究,类比前面的探究过程,在导学案上至少证明其中一个结论,完成后再展示说明,学生之间互相补充,教师适时点评.【探究2】我们己经得到了相似三角形中特殊线段的关系,如果把角平分线、中线变为对应角的三等分线、四等分线、…、n 等分线,对应边的三等分线、四等1.回顾前面所学内容,加深学生对所学知识的理解,通过设问,激发学生的学习兴趣,为学习新知识做准备,让学生明确本节课学习的内容.重点让学生回顾理解三角形中的三条重要的线段中线、高线和角平分线的特征•2.从生动有趣的问题情景出发,釆用递进式的提问,通过己学的知识來解决,学生主动获取了部分知识,同时也激发了学生学习新知识的欲望.L通过学生小组合作探究,类比前面的探究过程,引发学生的主动探究意识,培养合作交流能力,发展学生的类比思维能力与归纳总结能力.2.通过比较培与A'B' D,E, C分线、…、n等分线,那么它们也具有特殊关系吗?下面请同学们独立探索以下问题:AB>b DE CV E,Γ)∙D图4一7—9如图4一7—9,已知△ABC^ΔA,B,C,,ZXABC与△A'B,C,的相似比为k,点D,E在BC边上,点D z,E'在B'C,边上.(1)若ZBAD=IZBAC,ZB'A,D,=IZB y A'C f,AD则亍下厂等于多少?] 1 AF 养了学生观察、思考、类比、判断的能力.有了前面探索的基础,学生完全有能力独立完成探究2的探索,在探索过程屮,发展学生类比探究的能力与独立解决问题的能力,培养学生全面思。
知识点总结6.相似三角形的性质相似三角形的性质★★★相似三角形的对应角相等,对应边成比例.相似三角形性质定理1★★★ 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比.相似三角形性质定理2★★★相似三角形的周长的比等于相似比.相似三角形性质定理3★★★相似三角形的面积的比等于相似比的平方.要点解析1.性质定理1和定理2可以概括为:相似三角形中对应线段(高、中线、角平分线)及周长的比都等于相似比. 即相似三角形对应高的比=对应中线的比=对应角平分线的比=周长的比=相似比.在这些比例中,只要知道任何一组线段的比,就可以求出其他对应线段的比.2.相似三角形的性质3为:相似三角形的面积比=相似比的平方,要防止出现“面积比=相似比”的错误.如果其中两个三角形相似,它们之间有怎样的性质呢?相似三角形线段的关系在相似三角形中,除了角和边外,还有三种主要线段:高线、中线,角平分线。
这些对应线段之间有怎样的关系呢?相似三角形周长和面积的关系周长比等于相似比。
面积的比等于相似比的平方。
【例】一块三角形木板,工人师傅要把它切割成:一块三角形和一块梯形,要使切割出的三角形与梯形面积之比为4:5,该怎么切割呢?同理,当DE平行于AC或AB时,也可以得到类似的结果,因此可以有三种切割方法。
相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理习题讲析△ABC的三边之比为3:4:5,与其相似的△DEF的最短边是9cm,则其最长边的长是A、5cmB、10cmC、15cmD、30cm解析:C试题分析:由△ABC的三边之比为3:4:5,根据相似三角形的对应边成比例,可得与其相似的△DEF的三边之比为3:4:5,又由与其相似的△DEF的最短边是9cm,即可求得答案。
解:∵△ABC的三边之比为3:4:5,∴与其相似的△DEF的三边之比为3:4:5,∵与其相似的△DEF的最短边是9cm,∴其最长边的长是:15cm.故选:C.如图,在△ABC中,∠C=90°,∠A=30°.在△A′B′C′中,∠C′=90°,A′C′=B′C′.能否分别将这两个三角形各自分割成两个三角形,使△ABC所分成的两个三角形与△A′B′C′所分成的两个三角形分别对应相似?若能,请设计一种分割方案;若不能,请说明理由.解析:试题分析:要想让分成的每个三角形分别对应相似.那么唯一的方法就是把各个三角形中的直角进行分割.把∠C分为45°,45°,那么两个三角形的两个角分别为30°,45°;45°,60°,把∠C′分为30°,60°,那么两个三角形的两个角分别为30°,45°;45°,60°,相应的两个三角形都有两角对应相等,那么相似.试题解析:如图所示:∵∠C=90°,∠A=30°,∠C′=90°,A′C′=B′C′,∴∠B=60°,∠A′=∠B′=45°,又∵∠ACE=∠BCE=45°,∠A′C′F=30°,∠B′C′F=60°,∴∠A=∠AA′C′F,∠ACE=∠A′,∴△ACE∽△C′A′F,∵∠B=∠B′C′F,∠B′=∠BCE,∴△BCE∽△C′B′F.(1)若四边形ABCD的对角线AC将四边形分成面积相等的两个三角形,证明直线AC必平分对角线BD.(2)写出(1)的逆命题,这个逆命题是否正确?为什么?答案。
4.7 相似三角形的性质第1课时相似三角形中的对应线段之比●教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系。
(二)能力训练要求1。
熟练应用相似三角形的性质:对应高的比、对应角平分线的比、对应中线的比都等于相似比。
2。
利用相似三角形的性质解决一些实际问题。
(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识。
2。
通过运用相似三角形的性质,增强学生的应用意识。
●教学重点1。
相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.●教学难点相似三角形的性质的运用.●教学方法引导启发式●教具准备投影片两张第一张:(记作§4。
7.1 A)第二张:(记作§4。
7。
1 B ) ●教学过程Ⅰ。
创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质。
Ⅱ.新课讲解 1。
做一做投影片(§4。
7.1 A)钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图,图纸上的△ABC 表示该零件的横断面△A ′B ′C ′,CD 和C ′D ′分别是它们的高.(1)B A AB '',C B BC '',C A AC''各等于多少? (2)△ABC 与△A ′B ′C ′相似吗?如果相似,请说明理由,并指出它们的相似比。
(3)请你在图①中再找出一对相似三角形. (4)D C CD''等于多少?你是怎么做的?与同伴交流.图①[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43(2)△ABC ∽△A ′B ′C ′ ∵B A AB ''=C B BC ''=C A AC'' ∴△ABC ∽△A ′B ′C ′,且相似比为3∶4。
4.7 相似三角形性质第1课时相似三角形性质定理(一)理解相似三角形对应高比.对应角平分线比和对应中线比与相似比关系,会运用它求相关线段长.(重点)阅读教材P104107,自学“想一想” •“议一议”与“例1”,完成下列内容:(一)知识探究相似三角形对应高比•对应角平分线比.对应中线比都等于__________ .(二)自学反馈如图,已知△ ABB A A B‘ C,相似比为k, ADL BC于D, A D‘丄B‘ C 于D .(1)你能发现图中还有其他相似三角形吗?(2)△ ABC与厶A B C对应中线比.对应高比.对应角平分线比都等于________ .活动1小组讨论例如图,AD>A ABC高,AD= h,点R在AC边上,点S在AB边上,1 1SF L AD,垂足为E.当SR= 2BC时,求DE长,如果SR= 3BC呢?2 3解:T SRLAD BCL AD ••• SR/ BC.•••/ ASR=Z B,/ ARS=/ C.• △ ASR^A ABC (两角分别相等两个三角形相似). AE SR • AD =SC 相似三角形对应高比等于相似比),o AD- DE SR 即B€ 1 h -DE 11当SR =尹。
时,得〒=2.解得DE =尹 1h -DE 12当SR = 3BC 时,得〒=3.解得DE = 3h . 活动2跟踪训练 1. 如果两个相似三角形对应中线比为 8 : 9,贝卩它们相似比为()A.8 : 9B.9 2 : 32.已知△ ABC^A DEF ,且相似比为 C.64 : 81D.22 : 3,则厶ABC W^ DEF 寸应高之比A.2 : 3B.3C.4 : 9D.93.如图,电灯 P 在横杆AB 正上方, AB 在灯光下影子为 CD AB// CD AB=2 m , CD= 5 m ,点P 至U CD 距离是 3 m ,则点P 到AB 距离是( )B.6 C. - m 5它们相似比为角平分线比为6.若厶 ABC^A A B‘ C , AD.A D 分别是△ ABC A A AD : A D'= 3 : 4,A A B‘ C 一条中线 B‘ E '= 16 cm , 线BE=活动3课堂小结相似三角形性质定理1:相似三角形对应高比.对应角平分线比.对应中 线比都等于相似比.答案捉示【预习导学】 (一) 知识探究 相似比 (二) 自学反馈(1) △ ABD^A A B‘ □,△ AD3A A D C .(2)kD.10 空m4.如图,DE// BC 则厶 BC 交DE 于点G,则AG : AF = .若 AD= 3, BD= 2, AF 丄,△ AGE^A5.若厶 ABB A A B‘ CB'= 13cm , 则它们对应B‘ C 高, 则厶ABC 中cm.【合作探究】 活动2跟踪训练 1.A 2.A 3.C 4.ADE ABC 3 5 AFC 3 : 5 5.3 : 26.12第2课时相似三角形性质定理(二)出示II 标理解相似三角形周长比.面积比与相似比关系,并会运用它解决相关问 题.(重点)備习出学阅读教材P10A110,自学“例2”,完成下列内容: (一) 知识探究相似三角形周长比等于 _______ ,面积比等于 ___________ . (二) 自学反馈如图,△ ABB A A B‘ C ,相似比为 k, ADL BC 于 D, A ' D 丄 B‘ C 于D .(1)你能发现图中还有其他相似三角形吗?ABC尬攻 在运用相似三角形性质时,要注意周长比与面积比之间区别, 不要混为一谈,另外面积比等于相似比平方,反过来相似比等于面积比 算术平方根.活动1小组讨论ABC (2) △ ABC W^ A B‘ C 中,例如图,将△ ABC沿BC方向平移得到△ DEF △ ABC与△ DEF重叠部分(图中阴影部分)面积是△ ABC面积一半,已知BC= 2,求厶ABC平移距离•解:根据题意,可知EG// AB.•••/ GEC=Z B,/ EGC=Z A.•••△GE OA ABC两角分别相等两个三角形相似).S^ GEC EC E C()2= 2(相似三角形面积比等于相似比平方),S^ ABC BC BC即2=專•E C= 2.•E C= ‘ 2.•B E= BC- EC= 2—“ 2,即厶ABC平移距离为2— 2.活动2跟踪训练AB 11. 已知△ ABB A A B‘ C,且=:,则S A ABC:S^A Z B z C =()A B 2A.1 : 2B.2 : 1C.1 : 4D.4 : 12. 已知,△ ABC OA DEF △ ABC WA DEF面积之比为1 : 2,若BC= 1,则对应边EF长是()A. 2B.2C.3D.423. 设两个相似多边形周长比是3 : 4,它们面积差为70,那么较小多边 形面积是( ) A.80 B.90 C.100D.1204. 若两个相似三角形周长比为2 : 3,贝卩它们面积比是 ________ .5. 如图,在正方形ABC 冲,F 是AD 中点,BF 与AC 交于点6则4 FGA 与厶BGC 面积之比是(1)求厶DEF 周长;⑵求厶DEF 面积.活动3课堂小结相似三角形性质定理2:相似三角形周长比等于相似比,面积比等于相 似比平方.答案捉示【预习导学】 (一) 知识探究 相似比相似比平方 (二) 自学反馈(1) △ ABD^A A B‘ □,△ ADC^A A D C .(2)k k 【合作探究】 活动2跟踪训练 1.C 2.A3.B4.4 : 95.1 : 46.已知△ ABB A DEFDEA B=DE 2 一 2 DE 26. (1) v AB= 3,「上DEF周长二12X3= 8(cm).(2) v矿空,.」DEF2 2 1 2面积=30X(3)2= 133(cm2).。
九年级数学上册第四章图形的相似7相似三角形的性质第1课时相似三角形中的对应线段之比教案2(新版)北师大版第1课时 相似三角形中的对应线段之比教学目标1、运用类比的思想方法,通过实践探索得出相似三角形,对应线段(高、中线、角平分线)的比等于相似比;2、会运用相似三角形对应高的比与相似比的性质解决有关问题;3、经历“操作—观察—探索—说理”的数学活动过程,发展合情推理和有条理的表达能力. 重点难点1、探索得出相似三角形对应线段的比等于相似比;2、利用相似三角形对应高的比与相似比的性质解决问题.教学过程一、情境创设:全等三角形的对应边上的高相等。
相似三角形的对应边上的高又有怎样的关系呢?二、探索活动:1、如图,△ABC ∽△A ′B ′C ′,相比为k ,AD 与A ′D ′分别是△ABC 和△A ′B ′C ′的高,说明:AD/A ′D ′=k 由此引出:相似三角形对应高的比等于相似比2、全等三角形的对应线段(中线、角平分线)有何关系?那么相似三角形的对应线段(中线、角平分线)又有怎样的关系呢?3、小结相似三角形对应线段的关系。
三、例题教学例1. 课本P107例1例2. 如图△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是什么?A ’B C ’D ’A B C D D C B A四、课堂练习:1.课本P107随堂练习第1题和第2题.2.如图:已知梯形两条边的长分别为36和60,高为32,这个梯形两腰的延长线的交点到两底的距离分别是多少?五、小结与思考:(一)小结 本节课你有什么收获?(二)有一块三角形铁片ABC ,BC=12cm ,高AH=8cm ,按下面(1)、(2)两种设计方案把它加工成一块矩形铁片DEFG ,且要求矩形的长是宽的2倍,为了减少浪费,加工成的矩形铁片的面积应尽量大些。
相似三角形对应线段的性质●教学目标(一)教学知识点相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.(二)能力训练要求1. 熟练应用相似三角形的性质:对应高的比、对应角平分线的比、对应中线的比都等于相似比。
2.利用相似三角形的性质解决一些实际问题.(三)情感与价值观要求1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.2.通过运用相似三角形的性质,增强学生的应用意识.●教学重点1.相似三角形中对应线段比值的推导.2.运用相似三角形的性质解决实际问题.●教学难点相似三角形的性质的运用.●教学方法引导启发式●教具准备投影片两张第一张:(记作§4.7.1 A)第二张:(记作§4.7.1 B)●教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.Ⅱ.新课讲解1.做一做投影片(§4.7.1 A )钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图,图纸上的△ABC 表示该零件的横断面△A′B′C′,CD 和C′D′分别是它们的高.(1)B A AB '',C B BC '',C A AC''各等于多少?(2)△ABC 与△A′B′C′相似吗?如果相似,请说明理由,并指出它们的相似比.(3)请你在图①中再找出一对相似三角形.(4)D C CD''等于多少?你是怎么做的?与同伴交流.图①[生]解:(1)B A AB ''=C B BC ''=C A AC ''=43(2)△ABC ∽△A′B′C′∵B A AB ''=C B BC ''=C A AC''∴△ABC ∽△A′B′C′,且相似比为3∶4.(3)△BCD ∽△B′C′D′.(△ADC ∽△A′D′C′)∵由△ABC ∽△A′B′C′得∠B=∠B′∵∠BCD=∠B′C′D ′∴△BCD ∽△B′C′D′(同理△ADC ∽△A′D′C′)(4)D C CD ''=43∵△BDC ∽△B′D′C′∴D C CD ''= C B BC ''=432.议一议已知△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为k.(1)如果CD 和C′D′是它们的对应高,那么D C CD''等于多少?(2)如果CD 和C′D′是它们的对应角平分线,那么D C CD''等于多少?如果CD 和C′D′是它们的对应中线呢?[师]请大家互相交流后写出过程.[生甲]从刚才的做一做中可知,若△ABC ∽△A′B′C′,CD 、C′D′是它们的对应高,那么D C CD ''=C B BC''=k.[生乙]如图②,△ABC ∽△A′B′C′,CD 、C′D′分别是它们的对应角平分线,那么D C CD''= C A AC''=k.图②∵△ABC ∽△A′B′C′∴∠A=∠A′,∠ACB=∠A′C′B′∵CD 、C′D′分别是∠ACB 、∠A′C′B′的角平分线.∴∠ACD=∠A′C′D′∴△ACD ∽△A′C′D′∴DCCD''= CAAC''=k.[生丙]如图③中,CD、C′D′分别是它们的对应中线,则DCCD''= CAAC''=k.图③∵△ABC∽△A′B′C′∴∠A=∠A′,CAAC''= BAAB''=k.∵CD、C′D′分别是中线∴DAAD''=BAAB''2121=BAAB''=k.∴△ACD∽△A′C′D′∴DCCD''= CAAC''=k.由此可知相似三角形还有以下性质.相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.3.例题讲解投影片(§3.7.1 B)图④如图④所示,AD 是△ABC 的高,AD=h,点R 在AC 边上,点S 在AB 边上,SR ⊥AD,垂足为E.当S R=21BC 时,求DE 的长,如果SR=31BC 呢?解:∵ SR ⊥AD,BC ⊥AD,∴SR ∥BC.∵∠ASR=∠B, ∠ARS=∠C,∴△ASR ∽△ABC (两角分别相等的两个三角形相似). ∴BC SR AD AE =(相似三角形对应高的比等于相似比), 即BC SR AD DE AD =-. 当SR=21BC 时,得21=-h DE h ,解得DE=21h 当SR=31BC 时,得31=-h DE h ,解得DE=32hⅢ.课堂练习如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?(都是4∶5).Ⅳ.课时小结本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比.Ⅴ.课后作业完成习题Ⅵ.活动与探索图⑤如图⑤,AD ,A′D′分别是△ABC 和△A′B′C′的角平分线,且 B A AB ''=D B BD ''=D A AD''你认为△ABC ∽△A′B′C′吗?解:△ABC ∽△A′B′C′成立.∵B A AB ''=D B BD ''=D A AD''∴△ABD ∽△A′B′D′∴∠B=∠B′,∠BAD=∠B′A′D′∵∠BAC=2∠BAD,∠B′A′C′=2∠B′A′D′∴∠BAC=∠B′A′C′∴△ABC ∽△A′B′C′●板书设计§4.7.1 相似三角形的性质(一)一、1.做一做2.议一议3.例题讲解二、课堂练习三、课时小节四、课后作业●备课资料如图⑥,CD 是Rt △ABC 的斜边AB 上的高.图⑥(1)则图中有几对相似三角形.(2)若AD =9 cm,CD=6 cm,求BD.(3)若AB=25 cm,BC=15 cm,求BD. 解:(1)∵CD ⊥AB∴∠ADC=∠BDC=∠ACB=90°在△ADC 和 △ACB 中∠ADC=∠ACB=90°∠A=∠A∴△ADC ∽△ACB同理可知,△CDB ∽△ACB∴△ADC ∽△CDB所以图中有三对相似三角形.(2)∵△ACD ∽△CBD∴BD CD CD AD = 即BD 669= ∴BD=4 (cm )(3)∵△CBD ∽△ABC∴BC BD BA BC =. ∴152515BD =1515∴BD=25=9 (cm).。