电力电子技术复习提纲
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
电力电子技术知识提纲第1章 绪论电力电子技术和4类电力变换第2章 电力电子器件1、二极管、晶闸管、MOSFET 、IGBT 工作原理、特性、主要参数,晶闸管电流的换算2、器件的分类第3章 整流电路1、单相、三相可控整流电路的结构、工作原理、波形分析、参数计算(求d U 公式,电阻负载、阻感负载、反电动势阻感负载)(3.1~3.2)2、单相桥式可控整流电路、三相半波可控整流电路、三相桥式可控整流电路求d U ∆γ、的公式(3.3)3、了解3.4 、3.5 两节的知识4、有源逆变产生的条件、波形分析、参数计算,第4章 逆变电路1、换流方式2、单相、三相电压型逆变电路结构、工作原理、波形分析、特点3、了解电流逆变电路原理4、了解多重逆变电路和多电平逆变电路原理第5章 直流-直流变流电路1、4种斩波电路(Buck 、Boost 、Buck-Boost 、Cuk )工作原理、求o U 公式2、5种带隔离的直流-直流变流电路(正激、反激、半桥、全桥、推挽)原理、波形分析、电流连续时求o U 公式第6章 交流-交流变流电路1、单相交流调压电路结构、原理、波形分析,了解交流调功电路的原理2、了解三相调压电路及单相交-交变流电路原理第7章 PWM 控制技术1、面积等效原理2、单相桥式逆变电路的单极性调制、双极性调制原理、波形分析,三相桥式逆变电路的双极性调制原理、波形分析,异步调制和同步调制各自的优缺点,了解PWM 逆变电路的谐波特性,了解梯形波、鞍形波、叠加3倍频和直流的信号作为调制信号提高电压利用率和减少开关频率3、特定谐波消除法原理、规则采样法原理4、滞环比较方式原理及优缺点,了解三角波比较方式原理,了解电压型逆变电路的8种开关状态5、PWM 整流电路工作原理,了解PWM 整流电路控制方法第8章 软开关技术了解硬开关和软开关、零电压开关和零电流开关第9章 电力电子器件应用的共性问题1、驱动电路的隔离,了解电压型驱动型驱动电路原理2、了解器件4种保护(过电压保护、过电流保护、du dt 保护、di dt 保护)和缓冲电路原理。
一、画图题1.画出降压斩波器的原理图,并推导输出电压的大小。
2.单相桥式半控整流电路如图所示,负载Ld足够大。
试绘出α=90°时输出电压U d、流过晶闸管VT1的电流i T1以及流过二极管VD3的电流i D3的波形。
3.如图所示为具有中点二极管的单相半控桥式整流电路,试画出α=45°时U d的波形,并推导出U d=f(α)的关系式。
4.画出升压斩波器的原理图,并推导输出电压的大小与导通比的关系。
5、如图所示为单相全波整流电路,由一只晶闸管与一只整流二极管组成,已知变压器次端输出为U2。
试画出α=45°时U d的波形并推导出U d=f(α)的关系式。
6、试画出单相桥式逆变器的主电路。
并说明控制方法和工作过程。
7、单相桥式半控整流电路如图所示,负载Ld足够大。
试绘出α=90°时输出电压U d、Array流过晶闸管VT1的电流i T1以及流过二极管VD1的电流i D1的波形。
二、填空题1.在GTR和IGBT两种自关断器件中,属于电压驱动的器件是____________,属于电流驱动的器件是___________。
2.单相半波可控整流电路,当电感性负载接续流二极管时,控制角的移相范围为_____________________。
3.在反电动势负载时,只有______________的瞬时值大于负载的反电动势,整流桥路中的晶闸管才能随受正压而触发导通。
4.把晶闸管承受正压起到触发导通之间的电角度称为_____________。
5.三相半波可控整流电路,带大电感负载时的移相范围为__________。
6.考虑变压器漏抗的可控整流电路中,在换相过程期间,两个相邻的晶闸管同时导通,对应的电角度称为_____________________。
7.考虑变压器漏抗的可控整流电路中,如与不考虑漏坑的相比,则使输出电压平均值________________。
8.晶闸管元件并联时,要保证每一路元件所分担的电流____________。
电力电子技术内容提要模块1 电力电子器件1.同处理信息的电子器件相比,电力电子器件具有以下特征:(1)能处理电功率的大小,即承受电压和电流的能力大多都远大于处理信息的电子器件;(2)电力电子器件一般都工作在开关状态。
导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定;(3)实用中,电力电子器件往往需要由信息电子电路来控制;(4)不仅在器件封装上讲究散热设计,在其工作时一般都要安装散热器2.在电力电子器件的各种功率损耗中,一般来讲,断态损耗是很小的,通态损耗是主要因素,但当器件开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素3.电力电子器件的分类:(1)按照器件能够被控制电路信号所控制的程度,可将电力电子器件分为半控型、全控型和不控型三类,如晶闸管是半控型,Power MOSFET、IGBT、GTO、GTR、IGCT等是全控型,Power Diode 是不控型。
(举例)(2)按照驱动电路加在器件控制端和公共端之间信号的性质,可将电力电子器件分为电流驱动型和电压驱动型两大类,如晶闸管、GTR、GTO等是电流驱动型,Power MOSFET、IGBT、SIT、SITH等是电压驱动型。
(举例)(3)按照器件内部电子和空穴两种载流子参与导电的情况,可将电力电子器件分为单极型、双极型和复合型三类,如Power MOSFET、SIT是单极型,晶闸管、GTR、GTO、SITH等是双极型,IGBT、MCT、IGCT等是复合型。
(举例)4. 电力二极管的关断(即恢复反向阻断能力)须经过一段短暂的时间,关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。
5.电力二极管的种类:普通二极管GPD、快恢复二极管FRD和肖特基二极管SBD。
6.晶闸管的导通条件是在承受正向的阳极电压的同时,注入正向门极触发电流。
第一章电力电子器件1、电力电子技术就是用电力电子器件对电能进行变换与控制的技术流(AC—AC)。
常用电力电子器件、电路图形文字符号与分类:二、晶闸管的导通条件:阳极正向电压、门极正向触发电流、三、晶闸管关断条件就是:晶闸管阳极电流小于维持电流。
导通后晶闸管电流由外电路决定实现方法:加反向阳极电压。
3、晶闸管额定电流就是指:晶闸管在环境温度40与规定的冷却状态下,稳定结温时所允许流过的最大工频正弦半波电流的平均值。
4、IT(AV)与其有效值IVT的关系就是IT(AV)=IVT/1、575、晶闸管对触发电路脉冲的要求就是:1)触发脉冲的宽度应保证晶闸管可靠导通 2)触发脉冲应有足够的幅度3)所提供的触发脉冲应不超过晶闸管门极电压,电流与功率额定且在门极伏安特性的可靠触发区域之内4)应有良好的抗干扰性能,温度稳定性与主电路的电气隔离。
第二章:整流电路1、单相桥式全控整流电路结构组成:A.纯电阻负载:α的移相范围0~180º,Ud 与Id的计算公式,要求能画出在α角下的Ud ,Id及变压器二次测电流的波形(参图3-5);B.阻感负载:R+大电感L下,α的移相范围0~90º,Ud 与Id计算公式要求能画出在α角下的Ud ,Id,Uvt1及I2的波形(参图3-6);2、三相半波可控整流电路:α=0 º的位置就是三相电源自然换相点A)纯电阻负载α的移相范围0~150 ºB)阻感负载(R+极大电感L)①α的移相范围0~90 º②Ud IdIvt计算公式③参图3-17 能画出在α角下能Ud IdIvt的波形(Id电流波形可认为近似恒定)3、三相桥式全控整流电路的工作特点:A)能画出三相全控电阻负载整流电路,并标出电源相序及VT器件的编号。
B)纯电阻负载α的移相范围0~120 ºC)阻感负载R+L(极大)的移相范围0~90 ºUd IdIdvtIvt的计算及晶闸管额定电流It(AV)及额定电压Utn的确定D)三相桥式全控整流电路的工作特点:1)每个时刻均需要两个晶闸管同时导通,形成向负载供电的回路,其中一个晶闸管就是共阴极组的,一个共阳极组的,且不能为同一相的晶闸管。
一、填空1.1 电力变换可分为以下四类:交流变直流、直流变交流、直流变直流和交流变交流。
1.2 电力电子器件一般工作在 开关 状态。
1.3 按照电力电子器件能够被控制电路信号所控制的程度,可将电力电子器件分为: 半控 型器件, 全控型器件,不可控器件等三类。
1.4 普通晶闸管有三个电极,分别是 阳极 、 阴极 和 门极1.5 晶闸管在其阳极与阴极之间加上 正向 电压的同时,门极上加上 触发 电压,晶闸管就导通。
1.6 当晶闸管承受反向阳极电压时,不论门极加何种极性解发电压,管子都将工作在 截止 状态。
1.7 在通常情况下,电力电子器件功率损耗主要为 通态损耗 ,而当器件开关频率较高时,功率损耗主要为 开关损耗 。
1.8 电力电子器件组成的系统,一般由 控制电路 、 驱动电路 和 主电路 三部分组成 1.9 电力二极管的工作特性可概括为 单向导电性 。
1.10 多个晶闸管相并联时必须考虑 均流 的问题,多个晶闸管相串联时必须考虑 均压 的问题。
1.11 按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为 电流驱动 和电压驱动 两类。
2.1 单相半波可控整流电阻性负载电路中,控制角a 的最大移相范围是︒180~0。
2.1 单相桥全控整流电路中,带纯阻负载时,a 角的移相范围是︒180~0,单个晶闸管所所承受的最大反压为22u ,带阻感负载时,a 角的移相范围是︒90~0,单个晶闸管所所承受的最大反压为22u2.3 三相半波可控整流电路中的三个晶闸管的触发脉冲相位相序依次互差︒120,单个晶闸管所承受的最大反压为26u ,当带阻感负载时,a 角的移相范围是2~0π2.4 逆变电路中,当交流侧和电网边结时,这种电路称为 有源逆变电路 ,欲现实有源逆变,只能采用全控电路,当控制角20π<<a 时,电路工作在 整流 状态,ππ<<a 2时,电路工作在 逆变 状态。
电力电子技术复习第一章⏹电力电子技术的概念⏹电力电子功率变换的分类第二章⏹功率半导体器件分类⏹二极管的工作原理、特性和分类⏹晶闸管的工作原理、特性、分类和选型(额定电压和额定电流计算)⏹半导体功率器件开关能量损耗的计算⏹可控开关的理想特性描述⏹BJT、达林顿管、MOSFET、GTO和IGBT的基本原理第三章⏹网络换流整流器单相桥路:视在功率,有功功率,畸变功率和谐波⏹网络换流整流器三相桥路:视在功率,有功功率,畸变功率和谐波⏹稳态下的非正弦波形:THD,PF, DPF,浪涌系数的计算⏹有功、无功⏹功率因数的计算⏹畸变功率的计算⏹似稳态过程的概念⏹总电流、基波电流、谐波电流⏹基波电流含有率⏹谐波电流含有率第四章⏹单相桥式二极管整流电路Ls=0 的波形和计算(输出电压、交流侧电流有效值、基波分量、谐波分量、功率因数).⏹单相桥式二极管整流电路Ls>0 的波形和计算(换相重叠角、输出电压)⏹三相桥式二极管整流电路Ls=0 的波形和计算(输出电压、交流侧电流有效值、基波分量、谐波分量、功率因数).⏹三相桥式二极管整流电路Ls>0 的波形和计算(换相重叠角、输出电压)⏹单相整流电路与三相整流电路的比较(定性)。
⏹开通时的瞬间冲击电流和过电压的影响⏹谐波的影响第五章⏹单相全控桥整流电路Ls=0 (纯电阻负载、阻感负载、反电动势负载)的波形和计算(输出电压、交流侧电流有效值、基波分量、谐波分量、功率因数)⏹单相全控桥整流电路Ls>0 的波形和计算(换相重叠角、输出电压)⏹有源逆变产生的原理和条件,逆变失败的原因及其防止措施。
⏹12脉冲整流电路的基本性质⏹双向整流电路:环流电抗器的作用、环流系统分类。
⏹交交变换的概念和特性。
第六章⏹直流斩波的基本概念、基本的斩波电路类型⏹降压斩波电路的工作原理和计算⏹升压斩波电路的工作原理和计算⏹斩波电路的电流控制方式⏹逆变的概念及分类⏹换流的概念、分类、原理和适用器件⏹逆变器分类⏹电压型逆变电路主要特点⏹单相电压型半桥逆变电路的原理、电压电流波形和计算(基波幅值、有效值),反馈二极管的作用。
电力电子技术复习题第一章1电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术4.电力电子技术的诞生1957年美国通用电气公司研制出第一个晶闸管,1904年出现电子管,1947年美国著名贝尔实验室发明了晶体管。
5 电子技术分为信息电子技术与电力电子技术。
信息电子技术主要用于信息处理,电力电子技术主要用于电力变换。
第2章电力电子器件1、电力电子器件一般工作在开关状态。
2、在通常情况下,电力电子器件功率损耗主要为通态损耗,而当器件开关频率较高时,功率损耗主要为开关损耗。
3、电力电子器件组成的系统,一般由_控制电路、驱动电路、主电路三部分组成,由于电路中存在电压和电流的过冲,往往需添加保护电路。
4、按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为单极型器件、双极型器件、复合型器件三类。
5、电力二极管的工作特性可概括为承受正向电压导通,承受反相电压截止。
6、电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。
7、晶闸管的基本工作特性可概括为正向电压门极有触发则导通、反向电压则截止。
8、GTO的多元集成结构是为了便于实现门极控制关断而设计的。
10、电力MOSFET的通态电阻具有正温度系数。
11、IGBT 的开启电压UGE(th)随温度升高而略有下降,开关速度小于电力MOSFET 。
12、按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为电压驱动型和电流驱动型两类。
13、属于不可控器件的是电力二极管,属于半控型器件的是晶闸管,属于全控型器件的是 GTO 、GTR 、电力MOSFET 、IGBT _;属于单极型电力电子器件的有电力MOSFET,属于双极型器件的有电力二极管、晶闸管、GTO 、GTR,属于复合型电力电子器件得有 IGBT ;在可控的器件中,容量最大的是晶闸管,工作频率最高的是电力MOSFET,14、晶闸管触发的触发脉冲要满足哪几项基本要求?答:(1)触发信号应有足够的功率;(2)触发脉冲应有一定的宽度,脉冲前沿尽可能陡,使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通;(3)触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。
10级《电力电子技术》提纲要义 2013.1填空题:1分×20道选择题:2分×5道简答题:45分共8道计算题:25分共4道绪论※什么是电力电子技术?应用于电力领域的电子技术称为电力电子技术1)电力电子技术的定义:使用电力电子器件对电能进行变换和控制的技术2)电力变换的类型:交流变直流成为整流, 直流边交流叫做逆变具体变换种类及方法如下:①交流变直流(整流) ②直流变直流(直流斩波) ③交流变交流(交流电力控制变频、变相) ④直流变交流(逆变)3)电力电子技术的分类、学科组成、重要特征:分为器件和应用两大分支; 电力电子学是由电力学、电子学和控制理论三部分组成; 电力电子技术是弱电控制强电的技术,是弱电和强电的接口一、电力电子器件1)电力电子器件的概念、特征,与信息电子器件的区别: 在可直接用于处理电能的主电路中, 实现电能变换或控制的电子器件称作电力电子器件; 特征与区别: ①电力电子器件处理电功率远大于处理信息的电子器件; ②为减少本身损耗, 一般工作在开关状态, 导通时阻抗接近于零, 阻断时电流为零,而管子两端的电压取决于外电路③电力电子器件需要信息电子电路来控制④电力电子器件自身功率损耗远大于信息电子器件.2)电力电子器件的系统组成: 由控制电路、驱动电路、保护电路和以电力电子器件为核心的主电路组成3)电力电子器件的分类: 根据控制程度可分为半控型器件、全控型器件和不可控型器件; 根据控制端信号性质可分为电流驱动型和电压驱动型; 根据内部电子与空穴参与导电情况可分为单极型器件、双极型器件和复合型器件4)电力二极管的分类: 普通二极管、快恢复二极管和肖特基二极管5)晶闸管的静态工作特性,参数计算: 详见书本P15~216)四种全控型器件的优缺点比较: GTO (门极可关断晶体管)、GTR (电力晶体管)、电力MOSFET (电力场效应管)及IGBT(绝缘栅双极晶体管)优缺点如下7)电力电子器件驱动电路的任务:电子电路作为第一保护措施,快速熔断器仅作为短路部分区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作。
《电力电子技术》期末复习提纲电力电子技术是电气工程的一个重要分支,广泛应用于电力变换与控制领域。
以下是《电力电子技术》期末复习提纲。
一、电力电子技术概述1.电力电子技术的定义和发展历程2.电力电子技术的应用领域和重要性二、电力电子器件1.二极管、可控硅、晶闸管等常用电力电子器件的结构和特性2.电力电子器件的工作原理和应用场合3.电力电子器件的优缺点及选型注意事项三、电力电子电路1.单相和三相电压变换电路的基本组成和特点2.线性和非线性负载电压变换电路的特点和应用3.电力电子电路的控制策略和控制方法四、PWM调制技术1.PWM调制技术的定义、作用和优点2.固定频率PWM调制和变频PWM调制的原理和特点3.PWM调制技术在电力电子中的应用实例五、直流调速技术1.直流电机的基本结构和工作原理2.直流调速系统的基本组成和工作原理3.直流调速系统的调压和调速方式及其特点六、交流调速技术1.变频调速技术的基本原理和分类2.单相和三相交流调速电机的控制策略和控制方法3.交流调速系统的应用领域和发展趋势七、电力电子变换器1.逆变器、换流器和变频器的基本结构和工作原理2.电力电子变换器的功率流动和电磁干扰问题3.电力电子变换器的控制方法和改进措施八、电力电子在电力系统中的应用1.变压器的主动无功补偿技术2.电力电子调压技术在输电线路中的应用3.可控变压器在高压输电系统中的应用实例以上是《电力电子技术》期末复习提纲,每个知识点都需要理解其基本原理、应用场合以及相关的控制方法和技术。
复习时要结合教材、课件、课堂笔记等资料进行系统的学习和总结,重点掌握各个知识点的关键概念和关键流程,同时进行习题和例题的练习,加深对知识点的理解和运用能力。
希望以上提纲对你的复习有所帮助,祝你成功完成期末考试!。
《电力电子技术》期末复习提纲绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
第1章电力电子器件1 电力电子器件与主电路的关系(1)主电路:指能够直接承担电能变换或控制任务的电路。
(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。
2 电力电子器件一般都工作于开关状态,以减小本身损耗。
3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。
(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。
4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
如SCR晶闸管。
(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET和IGBT。
(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
如电力二极管。
根据驱动信号的性质分类(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。
如SCR、GTO、GTR。
(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。
如MOSFET、IGBT。
根据器件内部载流子参与导电的情况分类(1)单极型器件:内部由一种载流子参与导电的器件。
2021电力电子技术复习提纲第一章电力电子技术的定义、电力变换的四大类、电力电子技术的研究对象、电力电子技术的发展历史第2章电力电子器件的定义与信息电子设备相比,电力电子设备的特点电力电子器件的主要工作状态,电力电子器件的主要损耗,冷却方式(哪种最常用)电力电子设备的系统组成电力电子设备的分类电力二极管:封装类型,电气符号,主要类型,应用场合晶闸管:封装类型、电气符号、主要衍生装置、英文缩写、应用场合、门极关断晶闸管、功率晶体管:英文缩写、电气符号、应用场合、功率场效应晶体管:分类、应用场合、英文缩写、电气符号、,绝缘栅双极晶体管:电气符号、主要类型、应用场合熟悉其他新型电力电子器件有哪些,当前电力电子器件的发展趋势掌握课后p421~5第三章整流器的定义、整流器电路的分类、单相:主要的典型单相可控整流电路1)单相半波可控整流电路:电路、带阻性负载、阻性电感负载和续流二极管(续流二极管的功能)电路的工作状态、相应的电路波形、相关计算、晶闸管正反向峰值电压、相移范围和导通角2)单相桥式全控整流电路:电路,带阻性负载、阻感负载、反电动势负载的电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角3)单相全波可控整流电路:电路、带阻性负载和阻性负载电路的工作状态、相应的电路波形、相关计算、晶闸管承受正负峰值电压、移相范围和导通角。
它主要不同于单相桥式全控整流电路。
三阶段:自然换相点的概念1)三相半波可控整流电路:电路、阻性负载和阻性负载电路的工作状态、相应的电路波形、相关计算、晶闸管承受正负峰值电压、相移范围、导通角、,电阻负载下间歇输出电压的临界触发角2)三相桥式全控整流电路:电路,带阻性负载、阻感负载电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角,电阻负载时输出电压断续的临界触发角变压器漏感对整流电路的影响及相关计算,换相重叠角的概念以及整流电路谐波和无功功率的影响什么是逆变?为什么逆变?逆变的种类?发生有源逆变的条件?逆变失败的原因?最小逆变角p953,4,5,6,7,9,10,11,12,13,16,26,29课后第四章逆变的定义,逆变的分类,有源逆变和无源逆变的概念换向的概念,换向方式,各种换向方式的适用范围,掌握负荷换向的工作原理,掌握强制换向的工作原理和分类,哪些换向方式属于自换向,哪些属于外换向无源逆变电路的分类:电压型和电流型电压型逆变电路的主要特点单相半桥逆变电路:电路、工作原理及波形、特性单相全桥逆变电路:电路、工作原理及波形、特性三相电压型逆变电路:工作模式、电路、工作原理、电流型逆变电路的主要特性单相电流型逆变电路:电路,工作原理p1181,2,3,4,6第五章1、斩波电路主要基本斩波电路、斩波电路的控制方式和控制原理降压斩波电路:电路、工作原理和波形、相关计算升压斩波电路:电路、工作原理和波形、相关计算升压斩波电路:电路、工作原理和波形、相关计算2。
复习提纲:考试类型:填空20分选择(单项)20分绘图20分计算40分(A)填空20 简答20选择10 计算50(B)1、电力电子变换技术(4种)2、电力电子系统构成,电力电子元件工作状态、特点、损耗3、电力电子元件分类(按照可控程度、驱动类型分类)、晶闸管导通和关断条件、维持电流和擎住电流的概念、几种全控元件的名称4、触发角、导通角的概念5、单相半波整流电路(电阻性负载),输出电压(电流)波形、表达式、触发角移相范围;单相半波整流电路带续流二极管阻感性负载输出电压(电流)波形、表达式、触发角移相范围;续流二极管电流波形,电流平均值的计算;续流二极管的作用。
6、单相桥式全控整流电路(电阻性、阻感性负载)输出电压(电流)波形、表达式、触发角移相范围;晶闸管电流平均值、有效值、晶闸管承受最大正反向电压(主要计算阻感性负载情况)。
7、单相桥式全控整流电路带反电动势负载,停止导电角的计算;有平波电抗器时相关参数的计算。
(与6相同,只需计算电流时将反电动势减掉即可8、三相半波可控整流电路(电阻性、阻感性负载)输出电压(电流)波形、表达式、触发角移相范围;电阻性负载时电流连续范围;晶闸管电流平均值、有效值、晶闸管承受最大正反向电压(主要计算阻感性负载情况);触发脉冲的特点;触发角为0的位置。
9、三相桥式全控整流电路(电阻性、阻感性负载)输出电压(电流)波形、表达式、触发角移相范围;电阻性负载时电流连续范围;晶闸管电流平均值、有效值、晶闸管承受最大正反向电压(主要计算阻感性负载情况);触发脉冲的特点。
10、单相桥式全控、三相半波可控、三相桥式全控整流电路变压器二次侧电流有效值波形及计算(阻感性负载)。
11、斩波电路调制三种方式;三种基本斩波电路的输出电压、电流计算,基本斩波电路图的绘制。
12、换流(或换相)及换流方式13、单极性、双极性PWM波绘制及电路工作原理(以单相桥式电压型逆变电路为例),PWM控制的含义,什么是SPWM波?14、实现有源逆变的两个条件;最小逆变角的范围;有源逆变对变流电路的要求;什么是逆变失败,造成逆变失败的原因有哪些?15、什么是换相重叠角?变压器漏感对整流电路有哪些影响?(含漏感整流电路计算不考)16、同步调制和异步调制概念,各有什么特点?(第7章第3节)17、逆变分类(有源、无源)18、交流—交流变换分类(交流电力控制电路改变电压、电流,不改变频率;分为交流调压和交流调功电路;)交—交直接变频;交流电力电子开关。
电力电子技术复习大纲一、基本概念1.电力电子技术是什么技术?它包含哪几类变换?电力电子系统一般包含哪四部分?电力电子技术——使用电力电子器件对电能进行变换和控制的技术,即应用于电力领域的电子技术。
它包含四类变换 整流(AC-DC ),逆变(DC-AC ),斩波(DC-DC (可调)),交流-交流变换(AC-AC )。
电力电子系统:由控制电路、驱动电路和以电力电子器件为核心的主电路组成。
2.谁是半控型器件?哪些是全控型器件?哪些是单极型器件?哪些是双极型器件?哪些是复合型器件?按照器件能够被控制电路信号所控制的程度,分为以下三类:1)不可控器件(不能用控制信号来控制其通断, 因此也就不需要驱动电路。
) 电力二极管(Power Diode )只有两个端子,器件的通和断是由其在主电路中承受的电压和电流决定的。
2)半控型器件(通过控制信号可以控制其导通而不能控制其关断。
) 晶闸管(SCR )(Thyristor )及其大部分派生器件 器件的关断由其在主电路中承受的电压和电流决定3)全控型器件(通过控制信号既可控制其导通又可控制其关断,又称自关断器件。
)绝缘栅双极晶体管(Insulated-Gate Bipolar Transistor ——IGBT ) 电力场效应晶体管(电力MOSFET ) 电力晶体管(GTR ,BJT ) 门极可关断晶闸管(GTO )控制电 路测 测驱电RL 主电V1V2 控制电路检测电路驱动电路主电路V1LR2U 22按照器件内部电子和空穴两种载流子参与导电的情况分为三类: 1) 单极型器件(由一种载流子参与导电的器件) 如:电力场效应晶体管(电力MOSFET )2) 双极型器件(由电子和空穴两种载流子参与导电的器件) 如:电力二极管 晶闸管(SCR )电力晶体管(GTR ,BJT ) 门极可关断晶闸管(GTO )3) 复合型器件(由单极型器件和双极型器件集成混合而成的器件) 如:绝缘栅双极晶体管(IGBT )MCT (MOS 控制晶闸管)3.单相桥式全控整流电路带纯阻负载时,晶闸管控制角α的移相范围为?单个晶闸管所承受的最大正向电压为?三相半波整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是?单个晶闸管所承受的最大电压为?三相桥式全控整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是?单个晶闸管所承受的最大电压为?单相桥式全控整流电路带纯阻负载时,晶闸管控制角α的移相范围[0 °,180 °]单个晶闸管所承受的最大正向电压为三相半波整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是[0 °,150 °](纯阻负载);[0 °,90 °](大电感负载) 单个晶闸管所承受的最大正向电压为2U 6三相桥式全控整流电路带纯阻(或阻感,大电感)负载时,晶闸管控制角α的移相范围是[0 °,120 °](纯阻负载);[0 °,90 °](大电感负载) 单个晶闸管所承受的最大正向电压为2U 6知识点巩固:1.单相桥式全控整流带纯阻负载工作波形:2.三相半波整流电路带纯阻负载工作情况分析:工作波形:基本数量关系:3.三相半波整流电路带大电感负载工作情况分析:工作波形:基本数量关系:4.三相桥式全控整流电路带纯阻负载工作情况分析:工作波形:基本数量关系:5.三相桥式全控整流电路带大电感工作波形:4.逆变电路可以根据直流侧滤波元件的不同进行分类,当直流侧采用电感滤波时,是哪一种逆变电路?直流侧采用电容滤波时,是哪一种逆变电路?逆变电路可以根据直流侧滤波元件的不同进行分类,当直流侧采用电感滤波时,是电压型逆变电路;直流侧采用电容滤波时,是电流型逆变电路。
电力电子技术复习提纲1电力电子技术的基本概念电力电子技术是应用于电力领域的电子技术,是使用电力电子器件对电能进行变换和控制的技术。
通常把电力电子技术分为电力电子器件制造技术和变流技术两个分支。
前者的理论基础是半导体物理,是电力电子技术的基础;后者的理论基础是电路理论,是电力电子技术的核心。
电力电子学是由电力学,电子学和控制理论三个学科交叉而形成的。
2两级式光伏并网逆变器的基本拓扑与控制(1)基本拓扑:两级式光伏并网逆变器主要包括前级DC/DC变换器和后级DC/AC 变换器。
两个变换器之间一般均设有一个足够容量的直流滤波电容,该直流滤波电容在缓冲前后级能量的同时,也起到了前后级控制上的解耦作用。
一般情况下,由于光伏电池的输出电压通常都低于电网电压的峰值,因此要实现并网发电,应先将光伏电池输出的直流电通过前级Boost变换器升压后再输出给后级的网侧逆变器。
单相三相(略)(2)控制策略:对前后级变换器的控制策略一般可以独立地进行研究。
一般而言,在具有两级变换的光伏并网逆变系统中,前级DC/DC变换器主要实现最大功率点跟踪(MPPT)控制,而后级的DC/AC变换器(并网逆变器)则有两个基本控制要求:一是要保持前后级之间的直流侧电压稳定;二是要实现并网电流的控制(网侧单位功率因数正弦波电流控制),甚至需根据指令进行电网的无功功率调节。
MPPT控制方法:1)基于输出特性曲线的开环MPPT方法;2)扰动观测法;3)电导增量法;4)智能MPPT方法。
并网逆变器的控制策略:1)基于电压定向的矢量控制策略;2)基于电压定向的直接功率控制策略;3)基于虚拟磁链定向的矢量控制策略;4)基于虚拟磁链定向的直接功率控制策略。
图1基于电压矢量定向的矢量控制系统(VOC)示意图图2基于虚拟磁链定向矢量控制(VFOC)的控制结构u*dc图3基于无电网电压传感器V-DPC的控制结构a ib i ci a e b e ce L L LPWMAS BS CS dcu dcu αi -PIp q*p*q --p S qS E空空空空βi αψβψA S B S CS *dcu 空空空空空空空空空空空空空空空空空空空空空空空空空图4基于无电网电压传感器VF-DPC 的控制结构3并网风力发电机组的基本类型与其变流器的基本拓扑3.1发电机组基本类型(1)恒速系统笼型/绕线型转子异步风发电机系统(2)半变速系统异步双馈(有齿轮箱)(3)全变速系统电励磁/永磁同步直驱(无齿轮箱)3.2变流器的基本拓扑(1)全功率电压型风机变流器拓扑二极管不控整流+升压斩波(boost)+三相电压型逆变器双PWM变流器三电平(2)全功率电流型风机变流器拓扑(3)全功率混合型风机变流器拓扑(4)矩阵型风机变流器拓扑4三相无源PWM逆变器的拓扑与控制策略,其输出滤波器的设计(1)三相无源PWM逆变器的拓扑(2)控制策略由于VSI直流侧多采用整流电源或蓄电池等供电,因此一般无需直流电压反馈。
第一章
电力电子技术的定义,四大类电力变换,电力电子技术的研究对象
电力电子技术的发展史
第二章
电力电子器件的定义
与信息电子器件相比,电力电子器件的特征
电力电子器件的主要工作状态,电力电子器件的主要损耗,冷却方式(哪种最常用)
应用电力电子器件的系统组成
电力电子器件的分类
电力二极管:封装类型,电气符号,工作原理,主要参数,主要类型,应用场合
晶闸管:封装类型,电气符号,工作原理,主要参数,工作时的特性,主要的派生器件,英文缩写,应用场合
门极可关断晶闸管,电力晶体管:主要参数,英文缩写,电气符号,应用场合
电力场效应晶体管:分类,工作原理,应用场合,主要参数,英文缩写,电气符号
绝缘栅双极晶体管:电气符号,工作原理,主要参数,英文缩写,应用场合
熟悉其他新型电力电子器件有哪些,当前电力电子器件的发展趋势
掌握课后P42 1~5
第三章
整流的定义,整流电路的分类
单相:
主要的典型单相可控整流电路
1)单相半波可控整流电路:电路,带阻性负载、阻感负载、有续流二极管(续流二极管的作用)的电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角
2)单相桥式全控整流电路:电路,带阻性负载、阻感负载、反电动势负载的电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角
3)单相全波可控整流电路:电路,带阻性负载、阻感负载电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角,与单相桥式全控整流电路的主要区别
三相:
自然换相点的概念
1)三相半波可控整流电路:电路,带阻性负载、阻感负载电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角,电阻负载时输出电压断续的临界触发角
2)三相桥式全控整流电路:电路,带阻性负载、阻感负载电路工作情况,对应的电路波形,相关计算,晶闸管承受正反向峰值电压,移相范围,导通角,电阻负载时输出电压断续的临界触发角
变压器漏感对整流电路的影响,换相重叠角的概念
整流电路的谐波和无功的影响
什么是逆变?为什么逆变?逆变的种类?发生有源逆变的条件?逆变失败的原因?最小逆变角
课后P95 3,4,5,6,7,9,10,11,12,13,26,29
第四章
逆变的定义,逆变的分类,有源逆变和无源逆变的概念
换流的概念,换流方式,各种换流方式适用的范围,掌握负载换流的工作原理,掌握强迫换流的工作原理及分类,哪些换流方式属于自换流,哪些属于外部换流
无源逆变电路的分类:电压型和电流型
电压型逆变电路的主要特点
单相半桥逆变电路:电路,工作原理及波形,特点
单相全桥逆变电路:电路,工作原理及波形,特点
三相电压型逆变电路:工作方式,电路,工作原理
电流型逆变电路的主要特点
单相电流型逆变电路:电路,工作原理
P118 1,2,3,4,6
第五章
主要的基本斩波电路,斩波电路的控制方式及其控制原理
降压斩波电路:电路,工作原理及波形,相关计算
升压斩波电路:电路,工作原理及波形,相关计算
带隔离的直流-直流变流电路有哪些,分类,哪些什么是单端电路、双端电路,优缺点,功率范围,应用领域?表5-1
P138 1,2,4,5
第六章
交流—交流变流电路的定义,分类(交流电力控制电路,变频电路),交流电路控制电路包含哪些?变频电路的种类?
交流调压电路:
单相:电路,带阻性负载、阻感负载时的电路工作情况、电路波形及相关计算,移相范围,斩控式交流调压电路(电路,工作原理),
三相:
三相调压电路主要的连结方式,星形联结工作原理(三相三线,三相四线,晶闸管导通状态的三种情况,触发脉冲相位差,同相晶闸管相位差,移相范围,触发脉冲顺序及相位差),支路控制三角联结的主要应用
交流调功电路:工作原理,特点
交流调压和调功电路的区别
交流电力电子开关:特点,主要应用
单相交交变频电路工作原理及输出上线频率,交交变频电路的特点,应用范围
P161 3 4 5
第七章
PWM控制的概念,基本原理,什么是SPWM波
PWM逆变电路的控制工作原理,什么是单极性PWM控制方式、双极性PWM控制方式?这两种方式的控制方法及工作过程。
什么是异步调制和同步调制,PWM跟踪控制技术主要有哪些方式,PWM整流电路的控制方法主要有哪些
P184 1,3,5
第九章
过电压产生的原因和过电压保护的主要方法及原理
过电流主要分类,主要的保护措施保护的主要方法及原理
缓冲电路的概念、分类、典型电路及基本原理
电力电子器件串并联使用的目的,基本要求以及具体的注意事项。