2.3.1等差数列的前n项和(第二课时)
- 格式:ppt
- 大小:742.00 KB
- 文档页数:26
2.3 等差数列的前n 项和公式(2) 课前预习 ● 温故知新 学前温习1.等差数列的前n 项和公式设等差数列{n a }的公差为d ,其前n 项和Sn= 或Sn= .2.等差数列的前n 项和公式与二次函数的关系 新课感知1.在等差数列{n a }中,若1a >0,d <0,则Sn 是否存在最大值?若存在,如何求?2. 已知{}n a 是等差数列,n S 是其前n 项和,求证:12186126,,S S S S S --也成等差数列。
由此推广,你能得到什么结论? 课堂学习 ● 互动探究 知识精讲1.等差数列的前n 项和有如下的性质.(1)若{a n }为等差数列,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…也为等差数列.(2)等差数列{a n }中,数列⎩⎨⎧⎭⎬⎫S n n 仍为等差数列.(3)等差数列{a n }中,若S m =S p (m≠p),则S m +p =0. (4)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n(a 1+a 2n )=n(a n +a n +1)(a n ,a n +1为中间两项);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1. (5)若数列{n a }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则a n b n =n n --2121S T.2.求等差数列的前n 项和S n 的最值有两种方法: (1)利用二次函数的最值特征求解.S n =n 1a +nn -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n=d 2⎣⎢⎡⎦⎥⎤n -⎝ ⎛⎭⎪⎫12-a 1d 2-d 2⎝ ⎛⎭⎪⎫12-a 1d 2.由二次函数的对称性及n∈N *知,当n 取最接近12-a 1d 的正整数时,S n 取到最大值(或最小值),值得注意的是最接近12-a 1d 的正整数有时有1个,有时有2个. (2)根据项的正负来定.若1a >0,d<0,则数列前n 项和有最大值,可由n a ≥0,且1+n a ≤0,求得n 的值 若1a <0,d>0,则数列前n 项和有最小值,可由n a ≤0,且1+n a ≥0,求得n 的值 课堂点拨1、在等差数列{ a n }中, 125a =,179s s =,求n s 的最大值.解析:方法一:由S 17=S 9,得25×17+172(17-1)d =25×9+92(9-1)d , 解得d =-2,∴S n =25n +n2(n -1)(-2)=-(n -13)2+169, 由二次函数性质得当n =13时,S n 有最大值169. 方法二:先求出d =-2(同方法一), ∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0a n +1=25-2n<0,得⎩⎪⎨⎪⎧n≤1312n>1212.∴当n =13时,S n 有最大值169. 方法三:先求出d =-2(同方法一),1,..S S a a a a a a a a a a a a a d a a a ⋯<>∴><1791011171017111612151314131413140020000Q ,由=得+++=, 而+=+=+= +故+==-,,,故n =13时,Sn 有最大值169.方法四:先求出d =-2(同方法一)得S n 的图象如图所示,由S 17=S 9知图象对称轴n =9+172=13, ∴当n =13时,取得最大值169.【点拨】求等差数列前n 项和的最值,常用的方法: (1)利用等差数列的单调性,求出其正负转折项; (2)利用性质求出其正负转折项,便可求得和的最值;(3)利用等差数列的前n 项和Sn=An 2+Bn (A 、B 为常数)为二次函数,根据二次函数的性质求最值.2、已知数列{n a }为等差数列,其前12项和354,在前12项中,偶数项之和与奇数项之和的比为32∶27,求这个数列的通项公式.解析:方法一:由等差数列的性质可知奇数项a 1,a 3,a 5,…,a 11与偶数项a 2,a 4,a 6,…,a 12仍然成等差数列,设{a n }的首项为a 1,公差为d ,则 S 偶=a 2×6+6×52×2d=6a 1+36d , S 奇=a 1×6+6×52×2d=6a 1+30d , ⎩⎪⎨⎪⎧12a 1+66d =354,6a 1+36d 6a 1+30d =3227,解得⎩⎪⎨⎪⎧a 1=2,d =5.∴a n =a 1+(n -1)d =5n -3.方法二:设奇数项与偶数项的和分别为S 奇,S 偶, ∴⎩⎪⎨⎪⎧S 偶+S 奇=354,S 偶S 奇=3227,∴⎩⎪⎨⎪⎧S 偶=192,S 奇=162,∴d=192-1626=5, 又∵S 奇=a 1+a 11×62=3(2a 1+10d)=162, ∴a 1=2,∴a n =a 1+(n -1)d =5n -3.【点拨】等差数列{n a }中,a 1,a 3,a 5,…是首项为a 1,公差为2d 的等差数列,a 2,a 4,a 6,…是首项为a 2,公差为2d 的等差数列.当项数为2n 时,S 偶-S 奇=nd ,方法2中运用到了这些,利用等差数列前n 项和公式列方程组求解或根据等差数列的奇数项依次成等差数列,偶数项依次成等差数列求解.3、两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,求a n b n . 解析: 方法一:设a n =a 1+(n -1)d ,b n =b 1+(n -1)e. 取n =1,则a 1b 1=S 1T 1=12,所以b 1=2a 1.所以S n T n =na 1+n n -12d nb 1+n n -12e =a 1+n -12d b 1+n -12e =a 1+n 2d -d22a 1+n 2e -e 2=2n3n +1,故en 2+(4a 1-e)n =32dn 2+⎝ ⎛⎭⎪⎫3a 1-32d +d 2n +a 1-d 2.从而⎩⎪⎨⎪⎧a 1-d2=0,4a 1-e =3a 1-d ,e =32d.即⎩⎪⎨⎪⎧d =2a 1,e =3a 1.所以a n b n =2n -13n -1.方法二:设S n =an 2+bn ,T n =pn 2+qn(a ,b ,p ,q 为常数), 则S n T n =an +b pn +q =2n3n +1,所以3an 2+(3b +a)n +b =2pn 2+2qn ,从而⎩⎪⎨⎪⎧3a =2p ,3b +a =2q ,b =0,即⎩⎪⎨⎪⎧a =2q ,b =0,p =3q ,所以S n =2qn 2,T n =3qn 2+qn.当n =1时,a 1b 1=S 1T 1=12;当n≥2时,a n b n =S n -S n -1T n -T n -1=2n -13n -1方法三:1212112121()22()22n n n n n n n n n a a a a S n b b b b T ----+===+2(21)21=.3(21)131n n n n --=-+- 【点拨】由S n T n =7n +2n +3,设S n 与T n 时,如果设成S n =(7n +2)k ,T n =(n +3)k 则错误.从此 的性质方向讲是正确的.但要考虑到等差数列的前n 项和为关于n 的二次函数,所以应设为S n =(7n +2)kn ,T n =(n +3)kn. , 当堂达标1.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .92、设{}n a 是公差为2的等差数列,若5097741=++++a a a a Λ, 则99963a a a a ++++Λ的值为 ( ) A. 78 B. 82 C. 148 D. 1823. 设S n 是等差数列{}n a 的前n 项和,若3163=S S ,则=126S S ( ) (A )103 (B ) 31 (C )8 (D )914. 已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .1005.等差数列{a n }中,S n 是其前n 项和,a 1=-11,S 1010-S 88=2,则S 11=( )A .-11B . 11C .10D 。
等差数列的前n 项和A 级 基础巩固一、选择题1.一个等差数列共有2n +1项,其奇数项的和为512,偶数项的和为480,则中间项为()A .30B .31C .32D .33解析:中间项为a n +1.S 奇=(a 1+a 2n +1)2·(n +1)=(n +1)a n +1=512. S 偶=a 2+a 2n 2·n =n ·a n +1=480. 所以a n +1=S 奇-S 偶=512-480=32.答案:C2.(多选)设{a n }是等差数列,S n 为其前n 项和,且S 7<S 8,S 8=S 9>S 10,则下列结论正确的是()A .d <0B .a 9=0C .S 11>S 7D .S 8、S 9均为S n 的最大值解析:由S 7<S 8得a 1+a 2+a 3+…+a 7<a 1+a 2+…+a 7+a 8,即a 8>0,又因为S 8=S 9,所以a 1+a 2+…+a 8=a 1+a 2+…+a 8+a 9,所以a 9=0,故B 项正确.同理由S 9>S 10,得a 10<0,因为d =a 10-a 9<0,故A 项正确.对C ,S 11>S 7,即a 8+a 9+a 10+a 11>0,可得2(a 9+a 10)>0,由结论a 9=0,a 10<0,显然C 项是错误的.因为S 7<S 8,S 8=S 9>S 10,所以S 8与S 9均为S n 的最大值,故D 项正确.答案:ABD3.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12为()A.310B.13C.18D.19解析:S 3,S 6-S 3,S 9-S 6,S 12-S 9,构成一个新的等差数列,令S 3=1,S 6-S 3=3-1=2,所以S 9-S 6=3,S 12-S 9=4.所以S 12=S 3+(S 6-S 3)+(S 9-S 6)+(S 12-S 9)=1+2+3+4=10.所以S 6S 12=310. 答案:A4.若数列{a n }的前n 项和是S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于()A .15B .35C .66D .100解析:易得a n =⎩⎪⎨⎪⎧-1,n =1,2n -5,n ≥2. |a 1|=1,|a 2|=1,|a 3|=1,令a n >0则2n -5>0,所以n ≥3.所以|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.答案:C5.设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =()A .9B .8C .7D .6解析:设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2, 解得⎩⎪⎨⎪⎧a 1=-13,d =2.所以a n =-15+2n .由a n =-15+2n ≤0,解得n ≤152. 又n 为正整数,所以当S n 取最小值时,n =7.答案:C二、填空题6.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=________.解析:S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6).因为S 3=9,S 6-S 3=27,所以S 9-S 6=45,所以a 7+a 8+a 9=S 9-S 6=45.答案:457.(2019·全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和,a 1≠0,a 2=3a 1,则S 10S 5=________. 答案:48.若等差数列{a n }的前n 项和为S n (n ∈N *),若a 2∶a 3=5∶2,则S 3∶S 5=________. 解析:S 3S 5=3(a 1+a 3)5(a 1+a 5)=3a 25a 3=35×52=32. 答案:3∶2三、解答题9.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的X 围;(2)问前几项的和最大,并说明理由.解:(1)因为a 3=12,所以a 1=12-2d ,因为S 12>0,S 13<0,所以⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0, 所以-247<d <-3. (2)因为S 12>0,S 13<0,所以⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,所以⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0, 所以a 6>0.又由(1)知d <0.所以数列前6项为正,从第7项起为负.所以数列前6项和最大.10.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 解:法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎪⎨⎪⎧10a 1+10×92d =100,①100a 1+100×992d =10,② ①×10-②,整理得d =-1150, 代入①,得a 1=1 099100. 所以S 110=110a 1+110×1092d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150 =110×1 099-109×11100=-110. 故此数列的前110项之和为-110. 法二 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100为等差数列,设公差为d ′,则10S 10+10×92×d ′=S 100=10, 因为S 10=100,代入上式得d ′=-22, 所以S 110-S 100=S 10+(11-1)×d ′=100+10×(-22)=-120, 所以S 110=-120+S 100=-110.法三 设等差数列{a n }的前n 项和S n =an 2+bn . 因为S 10=100,S 100=10,所以⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10, 所以⎩⎪⎨⎪⎧a =-11100,b =11110, 所以S n =-11100n 2+11110n , 所以S 110=-11100×1102+11110×110=-110. B 级 能力提升1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则()A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n 答案:A2.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003· a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是________.解析:由条件可知数列单调递减,故知 a 2 003>0,a 2 004<0,故S 4 006=4 006(a 1+a 4 006)2=2 003·(a 2 003+a 2 004)>0, S 4 007=4 007(a 1+a 4 007)2=4 007×a 2 004<0, 故使前n 项和S n >0成立的最大自然数n 是4 006. 答案:4 0063.等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 因为S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52. 因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n , 于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+⎦⎥⎤…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13(110-3n -110)=n 10(10-3n ).。
等差数列的前n 项和(二)等差数列的内容内涵丰富,通项公式与前n 项和公式是其核心内容,我们对其进行合理整合、变形,可以得到诸多的性质,它们的应用使解题变得轻松愉悦,与常规方法相比较,过程要简捷得多.【性质1】 已知等差数列{a n },m 、p 、q ∈N *,若存在实数λ使λλ++=1qp m (λ≠-1), 则λλ++=1q p m a a a .证明:由等差数列{a n }的通项公式a n =dn +a 1-d 的几何意义:点(p,a p )、(m,a m )、(q,a q )共线,由斜率公式得mq a a pm a a m q p m --=--,因为λλ++=1qp m ,所以λ=--q m m p . 所以λ(a m -a q )=a p -a m .所以(1+λ)a m =a p +λa q ,即λλ++=1q p m a a a .评析:特别地,当λ=1时,2a m =a p +a q ,我们不妨将性质1称为等差数列的定比分点公式.【性质2】 等差数列{a n },n i ,m i ∈N *,i=1,2,3,…,k,若∑∑===ki ik i i mn 11.则∑∑===ki m ki ma a11.证明:设等差数列{a n }的公差为d .根据a n i =a mi +(n i -m i )d ,i=1,2,3,…,k,则∑∑∑∑∑======-+=k i mi k i k i k i i i mi ki nia d m n a a11111)(.所以∑∑===ki mi k i ni a a 11推论:等差数列{a n },n i ,m ∈N *,i=1,2,3,…,k,若∑==k i i n km 1.则∑==ki n m i a ka 1.评析:本性质实质上是等差中项性质的推广.【性质3】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *, 则d n m n S m S n m )(21-=-.证明:因为mn mS nS n S m S nm n m -=- =mnd n n na m d m m ma n ]2)1([]2)1([11-+--+=mndn mn mna d m mn mna 2)1(2)1(11----+=d mn mnmn mn n m 222+--=d mnmn n m 222- =d mn n m mn 2)(-=d n m )(21- 所以d n m n S m S n m )(21-=-.评析:实质上数列⎭⎬⎫⎩⎨⎧n S n 是公差为2d 的等差数列.【性质4】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *,则S m+n =S m +S n +mnd . 证明:因为S m+n =S n +(a n +1+a n +2+…+a n +m ) =S n +(a 1+nd )+(a 2+nd )+…+(a m +nd ) =S n +(a 1+a 2+…+a m )+m nd=S m +S n +m nd , 所以S m+n =S m +S n +mnd .【性质5】 等差数列{a n }前n 项和为S n ,若m=p+q(m 、p 、q ∈N *且p≠q),则有qp S S m S qp m --=. 证明:设等差数列{a n }的公差为d . 因为S p -S q =p a 1+21p(p-1)d -q a 1-21 q(q-1)d =(p-q)[a 1+21(p+q-1)d ],所以d q p a q p S S qp )1(211-++=--.又因为d m a m S m )1(211-+=且m=p+q ,所以有qp S S m S qp m --=. 推论:等差数列{a n }前n 项和为S n ,若m+t=p+q(m 、t 、p 、q ∈N *且m≠t,p≠q),则qp S S t m S S q p t m --=--.【性质6】 等差数列{a n }前n 项和为S n . (1)当n =2k(k ∈N *)时,S 2k =k(a k +a k+1); (2)当n =2k-1(k ∈N *)时,S 2k-1=k a k .。
教案课题:2.3.2等差数列的前n 项和(第二课时)(人教A 版·必修5)一、 教学目标本课时的教学目标为: 1、知识与技能:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题,会利用等差数列通项公式和前n 项和公式研究n s 的最值. 2、过程与方法:通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力. 3、情感态度与价值观:①提高学生代数的思维能力,使学生获得一定的成就感;②通过生动具体的现实问题、数学问题,激发学生探究的兴趣与欲望,树立求真的勇气与自信心,增强学生学好数学的心理体验,产生热爱数学的情感. 二、 教学重点等差数列前n 项和公式的掌握与应用.三、 教学难点灵活应用求和公式解决问题.四、教辅手段利用多媒体投影幕布展示需要解决的问题,既增加学习容量,也使各教学环节的衔接更加紧凑自然.五、教学过程I 情景设置—温故知新首先,回顾上一节所学的内容. 1、等差数列的前n 项和公式1:()12n n n a a s +=2、等差数列的前n 项和公式2:()112n n n d s na -+=假定,1a ,d 是确定的,那么,211(1)()222n n n dd d S na n a n-=+=+-设 2d A =,12d B a =-,则上式可得2n S A n B n=+当 0A ≠ 即 0d ≠ 时n s 是关于n 的二次式,即(,)n n S 在二次函数2y a x b x =+的图像上.接下来,我们来完成一探究题.如果一个数列{}n a 的前 n 项和为2nS p n q n r=++.其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是什么? 解:由21S pn qn r=++ 得11S a p q r ==++2n ≥ 时221()[(1)(1)]2()n n n a S S pn qn r p n q n r pn p q -=-=++--+-+=-+1[2()][2(1)()]2n n d a a pn p q p n p q p -=-=-+---+= ∴此类数列从第二项开始为等差数列. 归纳:若一个数列为等差数列,则 2n S A n B n C=++中的C 必为0,A 、B 为任意常数.反之也成立. Ⅱ.新知探究1. 等差数列的最值问题问题一:已知等差数列24,3,775,4 的前n 项和为n s ,求使得n s 最大的序号n 的值分析:等差数列的前n 项和公式可以写成211(1)()222n n n dd d S na n a n-=+=+-,所以 可以看成函数2122dd x a x y ⎛⎫++ ⎪⎝⎭=,()*x N ∈,当x n =时的函数值.另一方面,容易知道n s 关于n 的图像是一条抛物线上的一些点,因此,我们可以利用二次函数来求n 的值.解:由题意知,等差数列24,3,775,4 的公差为57-所以()2252512775514515112514256nn n n nn s ⎡⎤⎛⎫=⨯+-- ⎪⎢⎥⎝⎭⎣⎦-=⎛⎫=--+ ⎪⎝⎭当 n 取与152最接近的整数即为7或8时n s 取最大值.2.等差数列的最值为题的一题多解.问题二:等差数列{}n a 中,10a <,912s s =求数列前多少项的和最小? 解法一:由912s s =得1198121112229d a da ⨯⨯+=+因此1330d a =- 则1110d a =-10a <则0d>()2221212112811212222n n n n ddn dn n d d s a ⎛⎫=+-=-=-- ⎪⎝⎭∴ 由以上条件知n s 有最小值.又 *n N ∈,则n =10或11时n s 取最小值,最小值为55d -. 即101155d s s =-= 解法二:由解法一知11010d a =->而10a <则数列{}n a 为递增数列. 令{10n n a a +≤> 即(){()()111111111011011010111001010001011a n a n n d nd n a n a a a n ⎛⎫+--≤--≥ ⎪-⎝⎭+⎛⎫-<+-> ⎪⎝⎭+≤>⎧⎧⎪⇒⇒<≤⎨⎨⎪⎩⎩⇒ ∴数列的前10项均为负值, 11a =0.从第12项开始为正值. ∴n=10或n=11时n s 取最小值.解法三: 912s s =∴1011120a a a ++=∴130a =即110a =又 10a <则数列{}n a 为递增数列.∴数列的前10项均为负值,11a =0.从第12项开始为正值. ∴当n=10或11是n s 取最小值.六、归纳提升求等差数列前n 项和n s 的最值有两种方法 第一种:根据项的正负来定若10a >,0d <则数列的所有正数项之和最大, 若10a >, 0d >则数列的所有负数项之和最小.. 第二种:1212211221112222222122212n n n d dd d a a d n d d a d d n d s na dn a na d (-)⎛⎫⎛⎫-- ⎪⎪⎝⎭+- ⎪ ⎪⎝⎭⎛⎫⎡⎤⎛⎫=--- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭=+ =+(-) =-由二次函数的最大,小值知识及*n N ∈ 知.当n 取接近于112a d-的正整数时,n s 取最大值(或最小值)值得注意的是接近112a d-的正整数有时1个,有时2个.七、即时体验问题3.等差数列{}n a 中,415,3a d =-=,求数列{}n a 的前n 项和Sn 的最小值.分析:利用归纳的2种解题方法进行求解:①将Sn 表示成关于n 的一元二次函数的最值求解.②确定数列中负值的个数,由所有项之和最小求解. 解答过程略.八、课后延续P45课后练习2,P46习题2.3.A 组第三题.九、板书设计十、备用问题(高考题):【2010年高考福建卷·理3】设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A、6B、7C、8D、9考点:等差数列的前n项和.专题:常规题型.分析:条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.解答:解:设该数列的公差为d,则a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,所以,所以当n=6时,Sn取最小值.故选A.(高考题):【2010年高考福建卷·文17】数列{a n}中,a1= ,前n项和S n满足S n+1-S n=()n+1(n∈)N*.(I)求数列{a n}的通项公式a n以及前n项和S n(II)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.考点:等比数列的通项公式;等比数列的前n项和;等差关系的确定.专题:计算题.分析:(Ⅰ)根据an+1=Sn+1-Sn求得an+1进而根据a1求得数列{an}的通项公式,根据等比数列的求和公式求得前n项的和.(Ⅱ)根据求得(1)的前n项和的公式,求得S1,S2,S3,进而根据等差中项的性质求得t.解答:解:(I)设等差数列{a n}的公差为d,则a n=a1+(n-1)d由a1=1,a3=-3,可得1+2d=-3,解得d=-2,从而,a n=1+(n-1)×(-2)=3-2n;(II)由(I)可知a n=3-2n,所以S n= n[1+(3-2n)]2=2n-n2,进而由S k=-35,可得2k-k2=-35,即k2-2k-35=0,解得k=7或k=-5,又k∈N+,故k=7为所求.十一、教后反思。
4.2.2等差数列的前n项和公式(2)
本节课选自《2019人教A版高中数学选择性必修二》第四章《数列》,本节课主要学习等差数列的前n项和公式(2)
数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。
数列是培养学生数学能力的良好题材。
等差数列前n项和公式的推导过程中,让学生经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。
发展学生逻辑推理、直观想象、数学运算和数学建模的的核心素养。
课程目标学科素养
A.等差数列掌握等差数列前n项和的性质
及应用.
B.会求等差数列前n项和的最值.
1.数学抽象:等差数列前n项和公式
2.逻辑推理:等差数列前n项和公式与二次函数
3.数学运算:等差数列前n项的应用
4.数学建模:等差数列前n项的具体应用
重点:求等差数列前n项和的最值
难点:等差数列前n项和的性质及应用
多媒体
由于教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者。
所以我采用“问题情景---建立模型---求解---解释---应用”的教学模式,启发引导学生通过对问题的亲身动手探求、体验,获得不仅是知识,更重要的是掌握了在今后的发展中用这种手段去获取更多的知识的方法。
这是“教师教给学生寻找水的方法或给学生一杯水,使学生能找到一桶水乃至更多活水”的求知方式。
多媒体可以使教学内容生动、形象、鲜明地得到展示。
第2课时 等差数列前n 项和的性质及应用学习目标 1.进一步熟练掌握等差数列的通项公式和前n 项和公式,了解等差数列前n 项和的一些性质.2.掌握等差数列前n 项和的最值问题.知识点一 等差数列前n 项和的性质1.若数列{a n }是公差为d 的等差数列,则数列{S n n }也是等差数列,且公差为d2.2.设等差数列{a n }的公差为d ,S n 为其前n 项和,则S m ,S 2m -S m ,S 3m -S 2m ,…仍构成等差数列,且公差为m 2d .3.若等差数列{a n }的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n.4.若等差数列{a n }的项数为2n +1,则S 2n +1=(2n +1)·a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n n +1.思考 在性质3中,a n 和a n +1分别是哪两项?在性质4中,a n +1是哪一项?答案 中间两项,中间项.知识点二 等差数列{a n }的前n 项和公式的函数特征1.公式S n =na 1+n (n -1)d2可化成关于n 的表达式:S n =d 2n 2+(a 1-d 2)n .当d ≠0时,S n 关于n的表达式是一个常数项为零的二次函数式,即点(n ,S n )在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d 2x 2+(a 1-d 2)x 上横坐标为正整数的一系列孤立的点.2.等差数列前n 项和的最值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组Error!确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组Error!确定.(2)S n =d 2n 2+(a 1-d 2)n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的正整数时,S n 取到最值.1.在等差数列{a n }中,若a 1+a 2=2,a 3+a 4=4,则a 7+a 8等于( )A .7 B .8 C .9 D .10答案 B解析 ∵a 1+a 2=2,a 3+a 4=4,由等差数列的性质得a 5+a 6=6,a 7+a 8=8.2.已知数列{a n }为等差数列,a 2=0,a 4=-2,则其前n 项和S n 的最大值为( )A.98 B.94C .1 D .0答案 C解析 由a 4=a 2+(4-2)d ,得-2=0+2d ,故d =-1,a 1=1,故S n =n +n (n -1)2·(-1)=-n 22+3n2=-12(n -32)2+98.所以当n =1或2时,S n 的最大值为1.3.(多选)已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为( )A .22 B .23 C .24 D .25答案 BC解析 由a n ≤0即2n -48≤0得n ≤24.∴所有负项的和最小,即n =23或24.4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.答案 2 020解析 由等差数列的性质可得{S n n}也为等差数列,设其公差为d ,则S 2 0192 019-S 2 0132 013=6d =6,∴d =1,∴S nn =S 11+(n -1)d =n -2 019.故S 2 0202 020=2 020-2 019=1,∴S 2 020=2 020.一、等差数列前n 项和的性质例1 (1)在等差数列{a n }中,S 10=120,且在这10项中,S 奇S 偶=1113,则公差d =________.答案 2解析 由Error!得Error!所以S 偶-S 奇=5d =10,所以d =2.(2)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m .解 方法一 在等差数列中,∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m2m =S mm +S 3m3m.即S 3m =3(S 2m -S m )=3×(100-30)=210.反思感悟 利用等差数列前n 项和的性质简化计算(1)在解决等差数列问题时,先利用已知求出a 1,d ,再求所求,是基本解法,有时运算量大些;(2) 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.(3)设而不求,整体代换也是很好的解题方法.跟踪训练1 (1)已知数列{a n }是项数为偶数的等差数列,它的奇数项的和是50,偶数项的和为34,若它的末项比首项小28,则该数列的公差是________.答案 -4解析 设等差数列{a n }的项数为2m ,∵末项与首项的差为-28,∴a 2m -a 1=(2m -1)d =-28,①∵S 奇=50,S 偶=34,∴S 偶-S 奇=34-50=-16=md ,②由①②得d =-4.(2)已知一个等差数列的前10项和为100,前100项和为10,求前110项之和.解 S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列.设其公差为d ,前10项和为10S 10+10×92d =S 100=10,解得d =-22,∴S 110-S 100=S 10+(11-1)d =100+10×(-22)=-120,∴S 110=-120+S 100=-110.二、等差数列前n 项和的最值问题例2 在等差数列{a n }中,a 1=25,S 8=S 18,求前n 项和S n 的最大值.解 方法一 因为S 8=S 18,a 1=25,所以8×25+8×(8-1)2d =18×25+18×(18-1)2d ,解得d =-2.所以S n =25n +n (n -1)2×(-2)=-n 2+26n =-(n -13)2+169.所以当n =13时,S n 有最大值为169.方法二 同方法一,求出公差d =-2.所以a n =25+(n -1)×(-2)=-2n +27.因为a 1=25>0,由Error!得Error!又因为n ∈N *,所以当n =13时,S n 有最大值为169.方法三 因为S 8=S 18,所以a 9+a 10+…+a 18=0.由等差数列的性质得a 13+a 14=0.因为a 1>0,所以d <0.所以a 13>0,a 14<0.所以当n =13时,S n 有最大值.由a 13+a 14=0,得a 1+12d +a 1+13d =0,解得d =-2,所以S 13=13×25+13×122×(-2)=169,所以S n 的最大值为169.方法四 设S n =An 2+Bn .因为S 8=S 18,a 1=25,所以二次函数图象的对称轴为x =8+182=13,且开口方向向下,所以当n=13时,S n取得最大值.由题意得Error!解得Error!所以S n=-n2+26n,所以S13=169,即S n的最大值为169.反思感悟 (1)等差数列前n项和S n最大(小)值的情形①若a1>0,d<0,则S n存在最大值,即所有非负项之和.②若a1<0,d>0,则S n存在最小值,即所有非正项之和.(2)求等差数列前n项和S n最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用Error!或Error!来寻找.②运用二次函数求最值.跟踪训练2 在等差数列{a n}中,a10=18,前5项的和S5=-15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和的最小值,并指出何时取最小值.解 (1)设等差数列的公差为d,因为在等差数列{a n}中,a10=18,S5=-15,所以Error!解得a1=-9,d=3,所以a n=3n-12,n∈N*.(2)因为a1=-9,d=3,a n=3n-12,所以S n=n(a1+a n)2=12(3n2-21n)=32(n-7 2)2-1478,所以当n=3或4时,前n项的和S n取得最小值S3=S4=-18.三、求数列{|a n|}的前n项和例3 数列{a n}的前n项和S n=100n-n2(n∈N*).(1)判断{a n}是不是等差数列,若是,求其首项、公差;(2)设b n=|a n|,求数列{b n}的前n项和.解 (1)当n≥2时,a n=S n-S n-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n.∵a1=S1=100×1-12=99,适合上式,∴a n =101-2n (n ∈N *).又a n +1-a n =-2为常数,∴数列{a n }是首项为99,公差为-2的等差数列.(2)令a n =101-2n ≥0,得n ≤50.5,∵n ∈N *,∴n ≤50(n ∈N *).①当1≤n ≤50时,a n >0,此时b n =|a n |=a n ,∴数列{b n }的前n 项和S n ′=100n -n 2.②当n ≥51时,a n <0,此时b n =|a n |=-a n ,由b 51+b 52+…+b n =-(a 51+a 52+…+a n )=-(S n -S 50)=S 50-S n ,得数列{b n }的前n 项和S n ′=S 50+(S 50-S n )=2S 50-S n =2×2 500-(100n -n 2)=5 000-100n +n 2.由①②得数列{b n }的前n 项和为S n ′=Error!n ∈N *.反思感悟 已知等差数列{a n },求绝对值数列{|a n |}的有关问题是一种常见的题型,解决此类问题的核心便是去掉绝对值,此时应从其通项公式入手,分析哪些项是正的,哪些项是负的,即找出正、负项的“分界点”.跟踪训练3 在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解 (1)由Error!得Error!∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533,∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴数列{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2(-32×172+1032×17)-(-32n 2+1032n)=32n 2-1032n +884.∴S n =Error!等差数列前n 项和公式的实际应用典例 某单位用分期付款的方式为职工购买40套住房,共需1 150万元,购买当天先付150万元,按约定以后每月的这一天都交付50万元,并加付所有欠款利息,月利率为1%,若交付150万元后的一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少钱?全部付清后,买这40套住房实际花了多少钱?解 因购房时付150万元,则欠款1 000万元,依题意分20次付款,则每次付款的数额依次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5,a 3=50+(1 000-50×2)×1%=59,a 4=50+(1 000-50×3)×1%=58.5,所以a n =50+[1 000-50(n -1)]×1%=60-12(n -1)(1≤n ≤20,n ∈N *).所以{a n }是以60为首项,-12为公差的等差数列.所以a 10=60-9×12=55.5,a 20=60-19×12=50.5.所以S 20=12×(a 1+a 20)×20=10×(60+50.5)=1 105.所以实际共付1 105+150=1 255(万元).[素养提升] (1)本题属于与等差数列前n 项和有关的应用题,其关键在于构造合适的等差数列.(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,抽象出数列的模型,并用有关知识解决相关的问题,是数学建模的核心素养的体观.1.已知数列{a n}满足a n=26-2n,则使其前n项和S n取最大值的n的值为( ) A.11或12 B.12C.13 D.12或13答案 D解析 ∵a n=26-2n,∴a n-a n-1=-2(n≥2,n∈N*),∴数列{a n}为等差数列.又a1=24,d=-2,∴S n=24n+n(n-1)2×(-2)=-n2+25n=-(n-252)2+6254.∵n∈N*,∴当n=12或13时,S n最大.2.一个等差数列共有10项,其偶数项之和是15,奇数项之和是12.5,则它的首项与公差分别是( )A.0.5,0.5 B.0.5,1C.0.5,2 D.1,0.5答案 A解析 由于项数为10,故S偶-S奇=15-12.5=5d,∴d=0.5,由15+12.5=10a1+10×92×0.5,得a1=0.5.3.(多选)设{a n}是等差数列,S n为其前n项和,且S5<S6=S7>S8,则下列结论正确的是( ) A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案 ABD解析 ∵S5<S6=S7>S8,∴a6>0,a7=0,a8<0.∴d<0.∴S6与S7均为S n的最大值.S9-S5=a6+a7+a8+a9=2(a7+a8)<0.∴S9<S5,故C错.4.已知在等差数列{a n}中,|a5|=|a9|,公差d>0,则使得其前n项和S n取得最小值的正整数n 的值是________.答案 6或7解析 ∵公差d>0,|a5|=|a9|,∴-a5=a9,即a5+a9=0.由等差数列的性质,得2a7=a5+a9=0,解得a7=0.故数列的前6项均为负数,第7项为0,从第8项开始为正.∴S n 取得最小值时的n 为6或7.5.已知等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,则公差d =________.答案 5解析 由题意得Error!故S 偶=192,S 奇=162,所以6d =S 偶-S 奇=30,故d =5.1.知识清单:(1)等差数列前n 项和的一般性质.(2)等差数列前n 项和的函数性质.2.方法归纳:整体思想、函数思想、分类讨论思想.3.常见误区:求数列{|a n |}的前n 项和时不讨论,最后不用分段函数表示.1.在等差数列{a n }中,a 1=1,其前n 项和为S n ,若S 88-S 66=2,则S 10等于( )A .10B .100C .110D .120答案 B解析 ∵{a n }是等差数列,a 1=1,∴{S n n }也是等差数列且首项为S 11=1.又S 88-S 66=2,∴{S n n }的公差是1,∴S 1010=1+(10-1)×1=10,∴S 10=100.2.若等差数列{a n }的前m 项的和S m 为20,前3m 项的和S 3m 为90,则它的前2m 项的和S 2m 为( )A .30B .70C .50D .60答案 C解析 ∵等差数列{a n }中,S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,∴2(S 2m -S m )=S m +S 3m -S 2m ,∴2(S 2m -20)=20+90-S 2m ,∴S 2m =50.3.已知数列{2n -19},那么这个数列的前n 项和S n ( )A .有最大值且是整数 B .有最小值且是整数C .有最大值且是分数 D .无最大值和最小值答案 B解析 易知数列{2n -19}的通项a n =2n -19,∴a 1=-17,d =2.∴该数列是递增等差数列.令a n =0,得n =912.∴a 1<a 2<a 3<…<a 9<0<a 10<….∴该数列前n 项和有最小值,为S 9=9a 1+9×82d =-81.4.(多选)已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,下列判断正确的是( )A .d <0B .S 11>0C .S 12<0D .数列{S n }中的最大项为S 11答案 AB 解析 ∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,A 正确;又S 11=112(a 1+a 11)=11a 6>0,B 正确;S 12=122(a 1+a 12)=6(a 6+a 7)>0,C 不正确;数列{S n }中最大项为S 6,D 不正确.故正确的选项是AB.5.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 018,S k =S 2 009,则正整数k 为( )A .2 017 B .2 018 C .2 019 D .2 020答案 D解析 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S2 011=S2 018,S k=S2 009,可得2 011+2 0182=2 009+k2,解得k=2 020.6.已知在等差数列{a n}中,公差d=1,且前100项和为148,则前100项中的所有偶数项的和为________.答案 99解析 由题意,得S奇+S偶=148,S偶-S奇=50d=50,解得S偶=99.7.已知在等差数列{a n}中,S n为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=________.答案 5解析 ∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.8.已知等差数列{a n}的前n项和为S n,7a5+5a9=0,且a9>a5,则S n取得最小值时n的值为________.答案 6解析 由7a5+5a9=0,得a1d=-173.又a9>a5,所以d>0,a1<0.因为函数y=d2x2+(a1-d2)x的图象的对称轴为x=12-a1d=12+173=376,取最接近的整数6,故S n取得最小值时n的值为6.9.已知在等差数列{a n}中,a1=9,a4+a7=0.(1)求数列{a n}的通项公式;(2)当n为何值时,数列{a n}的前n项和取得最大值?解 (1)由a1=9,a4+a7=0,得a1+3d+a1+6d=0,解得d=-2,∴a n=a1+(n-1)·d=11-2n.(2)方法一 a1=9,d=-2,S n=9n+n(n-1)2·(-2)=-n2+10n=-(n-5)2+25,∴当n=5时,S n取得最大值.方法二 由(1)知a1=9,d=-2<0,∴{a n}是递减数列.令a n≥0,则11-2n≥0,解得n≤11 2 .∵n∈N*,∴当n≤5时,a n>0;当n≥6时,a n<0.∴当n=5时,S n取得最大值.10.在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.解 (1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴{a n}是等差数列,又∵a1=8,a4=2,∴d=-2,a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则S n=8n+n(n-1)2×(-2)=9n-n2.∵a n=10-2n,令a n=0,得n=5.当n>5时,a n<0;当n=5时,a n=0;当n<5时,a n>0.∴当n≤5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a n=9n-n2.当n>5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-9n+n2=n2-9n+40,∴T n=Error!11.若数列{a n}的前n项和是S n=n2-4n+2,则|a1|+|a2|+…+|a10|等于( ) A.15 B.35 C.66 D.100答案 C解析 易得a n =Error!|a 1|=1,|a 2|=1,|a 3|=1,令a n >0,则2n -5>0,∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.12.已知等差数列{a n }的前n 项和为S n ,a 2=11,S 1515-S 77=-8,则S n 取最大值时的n 为( )A .6B .7C .8D .9答案 B解析 设数列{a n }是公差为d 的等差数列,则{S n n }是公差为d2的等差数列.因为S 1515-S 77=-8,故可得8×d2=-8,解得d =-2;则a 1=a 2-d =13,则S n =-n 2+14n =-(n -7)2+49,故当n =7时,S n 取得最大值.13.已知S n ,T n 分别是等差数列{a n },{b n }的前n 项和,且S n T n =2n +14n -2(n ∈N *),则a 10b 3+b 18+a 11b 6+b 15=________.答案 4178解析 因为b 3+b 18=b 6+b 15=b 10+b 11,所以a 10b 3+b 18+a 11b 6+b 15=a 10+a 11b 10+b 11=10(a 10+a 11)10(b 10+b 11)=S 20T 20=2×20+14×20-2=4178.14.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,那么S 8S 16=________.答案 310解析 设S4=k,S8=3k,由等差数列的性质得S4,S8-S4,S12-S8,S16-S12构成等差数列.所以S8-S4=2k,S12-S8=3k,S16-S12=4k.所以S12=6k,S16=10k.S8S16=3 10.15.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.答案 11 7解析 设等差数列{a n}的项数为2n+1(n∈N*),S奇=a1+a3+…+a2n+1=(n+1)(a1+a2n+1)2=(n+1)a n+1,S偶=a2+a4+a6+…+a2n=n(a2+a2n)2=na n+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=a n+1,即a4=44-33=11,为所求的中间项.16.已知数列{a n}的前n项和为S n,a n>0,a1<2,6S n=(a n+1)(a n+2).(1)求证:{a n}是等差数列;(2)令b n=3a n a n+1,数列{b n}的前n项和为T n,求证:T n<1.证明 (1)因为6S n=(a n+1)(a n+2),所以当n≥2时,6S n-1=(a n-1+1)(a n-1+2),两式相减,得到6a n=(a2n+3a n+2)-(a2n-1+3a n-1+2),整理得(a n-a n-1)(a n+a n-1)=3(a n+a n-1),又因为a n>0,所以a n-a n-1=3,所以数列{a n}是公差为3的等差数列.(2)当n=1时,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因为a1<2,所以a1=1,由(1)可知a n-a n-1=3,即公差d=3,所以a n=a1+(n-1)d=1+(n-1)×3=3n-2,所以b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,所以T n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1.。
2019-2020年人教A版高中数学必修五第二章第3节《等差数列前n项数和》(第2课时)教案一、教学目标:1、进一步熟练掌握等差数列的通项公式和前n项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究。
2、通过等差数列前n项和的公式应用,体会数学的逻辑性3、通过有关内容在实际生活中的应用,引导学生要善于观察生活二、教学重点难点:教学重点:等差数列前n项和公式的性质.教学难点:等差数列前n项和公式的性质及函数与方程的思路.三. 教法、学法本课采用“探究——发现”教学模式.教师的教法突出活动的组织设计与方法的引导.学生的学法突出探究、发现与交流.五.教学过程教学过程设计为六个教学环节:(如下图)前,那么这个数列一探究点1. 已知数列{a n }的前n 项 和S n 求a n例1 已知数列{a n }的前n 项和为 S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它 的首项与公差分别是什么?解 根据S n =a 1+a 2+…+a n -1+a n 与S n -1=a 1+a 2+…+a n -1(n >1), 可知,当n >1时,a n =S n -S n -1=n 2+12n-[(n -1)2+12(n -1)]=2n -12①当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.由此可见:数列{a n }是以32为首项,公差为2的等差数列. 探究点二 等差数列前n 项和的最值 思考1 将等差数列前n 项和 S n =na 1+n n -2d 变形为S n 关于n的函数后,该函数是怎样的函数?为什么?答 由于S n =na 1+nn -2d =d 2n 2+(a 1-d2)n ,所以当d ≠0时,S n 为关于n 的二次函数,且常数项为0. 思考2 类比二次函数的最值情况,等差数列的S n 何时有最大值?何时有最小值?答 由二次函数的性质可以得出:当d >0时,S n 有最小值;当d <0时,S n 有最大值;且n 取最接近对称轴的正整数时,S n 取到最值.另外,数列作为特殊的函数,则有(1)若a 1>0,d <0,则数列的前面若干项为正项(或0),所以将这些项相加即得{S n }的最大值.(2)若a 1<0,d >0,则数列的前面若干项为负项(或0),所以将这些项相加即得{S n }的最小值;特别地,若a 1>0,d >0,则S 1是{S n }的最小值;若a 1<0,d <0,则S 1是{S n }的最大值.例2 已知等差数列5,427,347,…的前n 项和为S n ,求使得S n 最大的序号n 的值.解 由题意知,等差数列5,427,347,…的公差为-57,所以S n =5n +n n -2(-57)=-514(n -152)2+1 12556. 于是,当n 取与152最接近的整数即7或8时,S n 取最大值.另解:a n =a 1+(n -1)d =5+(n -1)×⎝⎛⎭⎫-57=-57n +407.a n =-57n +407≤0,解得n ≥8,即a 8=0,a 9<0.所以和是从第9项开始减小,而第8项为0,所以前7项或前8项和最大.反思与感悟:在-1)2+12(n -1)+1]=2n -12.当n =1时代入a n =2n -12得a 1=23≠25. ∴a n ={)2(212)1(25≥-=n n n .2 在等差数列{a n }中,a n =2n -14,试用两种方法求该数列前n 项和S n 的最小值.解 方法一 ∵a n =2n -14,∴a 1=-12,d =2.∴a 1<a 2<…<a 6<a 7=0<a 8<a 9<….∴当n =6或n =7时, S n 取到最小值.易求S 6=S 7=-42,∴(S n )min =-42.方法二 ∵a n =2n -14,∴a 1=-12. ∴S n =na 1+a n 2=n 2-13n =⎝⎛⎭⎫n -1322-1694.∴当n =6或n =7时,S n 最小,且(S n )min =-42.列,该数列的。
§2.3等差数列的前n项和第1课时等差数列的前n项和公式学习目标 1.掌握等差数列前n项和公式及其获取思路.2.熟练掌握等差数列的五个量a1,d,n,a n,S n的关系,能够由其中三个求另外两个.3.能用a n与S n的关系求a n.知识点一等差数列的前n项和1.定义:对于数列{a n},一般地,称a1+a2+a3+…+a n为数列{a n}的前n项和.2.表示:常用符号S n表示,即S n=a1+a2+a3+…+a n.知识点二等差数列的前n项和公式知识点三 a 1,d ,n ,a n ,S n 知三求二1.在等差数列{a n }中,a n =a 1+(n -1)d ,S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 两个公式共涉及a 1,d ,n ,a n 及S n 五个基本量,它们分别表示等差数列的首项,公差,项数,项和前n 项和.2.依据方程的思想,在等差数列前n 项和公式中已知其中三个量可求另外两个量,即“知三求二”. 知识点四 数列中a n 与S n 的关系对于一般数列{a n },设其前n 项和为S n ,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2. 特别提醒:(1)这一关系对任何数列都适用.(2)若在由a n =S n -S n -1(n ≥2)求得的通项公式中,令n =1求得a 1与利用a 1=S 1求得的a 1相同,则说明a n =S n -S n -1(n ≥2)所得通项公式也适合n =1的情况,数列的通项公式用a n =S n -S n -1表示.若在由a n =S n -S n -1(n ≥2)求得的通项公式中,令n =1求得的a 1与利用a 1=S 1求得的a 1不相同,则说明a n =S n -S n -1(n ≥2)所得通项公式不适合n =1的情况,数列的通项公式采用分段形式.1.若数列{a n }的前n 项和为S n ,则S 1=a 1.( )2.若数列{a n }的前n 项和为S n ,则a n =S n -S n -1,n ∈N *.( )3.等差数列前n 项和公式的推导方法是倒序相加.( )4.1+2+3+…+100=100×(1+100)2.( )题型一 等差数列前n 项和公式的基本运算例1 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .反思感悟 (1)在解决与等差数列前n 项和有关的问题时,要注意方程思想和整体思想的运用.(2)构成等差数列前n 项和公式的元素有a 1,d ,n ,a n ,S n ,知其三能求其二.跟踪训练1 在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .题型二 由S n 与a n 的关系求a n例2 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?引申探究若将本例中前n 项和改为S n =n 2+12n +1,求通项公式.反思感悟 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求得a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示,不符合则分段表示.跟踪训练2 已知数列{a n }的前n 项和S n =3n ,求a n .题型三 等差数列在实际生活中的应用例3 某人用分期付款的方式购买一件家电,价格为1 150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?反思感悟 建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.跟踪训练3 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?1.已知等差数列{a n}满足a1=1,a m=99,d=2,则其前m项和S m等于() A.2 300 B.2 400 C.2 600 D.2 5002.记等差数列的前n项和为S n,若S2=4,S4=20,则该数列的公差d等于() A.2 B.3 C.6 D.73.在一个等差数列中,已知a10=10,则S19=.4.已知数列{a n}是等差数列,S n是它的前n项和.若S4=20,a4=8,则S8=. 5.已知数列{a n}满足a1+2a2+…+na n=n(n+1)(n+2),则a n=.1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量.若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a m +a n =a p +a q (n ,m ,p ,q ∈N *);若m +n =2p ,则a m +a n =2a p (m ,n ,p ∈N *).3.由S n 与a n 的关系求a n 主要使用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.一、选择题1.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为( )A .200B .100C .90D .702.在等差数列{a n }中,若a 2+a 8=8,则该数列的前9项和S 9等于( )A .18B .27C .36D .453.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2,n ∈N *),则数列{a n }的前9项和等于( )A .27 B.632 C .45 D .-94.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为() A .10 000 B .8 000C .9 000D .11 0005.在等差数列{a n }中,若S 10=4S 5,则a 1d 等于( )A.12 B .2 C.14 D .46.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6637.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10等于( )A .-9B .-11C .-13D .-158.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18等于( )A .36B .35C .34D .33二、填空题9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为 .10.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为 .11.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200·OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 200= .三、解答题12.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8;(2)已知a 2+a 4=485,求S 5.13.已知{a n }为等差数列,S n 为数列{a n }的前n 项和,且S 7=7,S 15=75,求数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和T n .14.(2018·烟台检测)一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于()A.12 B.16 C.9 D.16或915.已知公差大于零的等差数列{a n}的前n项和为S n,且满足:a3a4=117,a2+a5=22.(1)求数列{a n}的通项公式a n;(2)若数列{b n}是等差数列,且b n=S nn+c,求非零常数c.。