1-7 克拉默法则
- 格式:ppt
- 大小:301.00 KB
- 文档页数:15
§7 克拉默(Cramer)法则现在应用行列式解决线性方程组的问题.在这里只考虑方程个数与未知量个数相等的情形.定理4 如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********,, (1) 的系数矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211(2) 的行列式0||≠=A d那么线性方程组(1)有解,并且解是唯一的,解可以通过系数表为dd x d dx d d x n n ===,,,2211 , (3) 其中j d 是把矩阵A 中第j 列换成常数项n b b b ,,,21 所成的矩阵的行列式,即.,,2,1,1,1,121,221,22111,111,111n j a a b a a a a b a a a a b a a d nnj n nj n n n j j n j j j==+-+-+- (4)定理中包含着三个结论:1)方程组有解;2)解是唯一的;3)解由公式(3)给出.这三个结论是有联系的,因此证明的步骤是:1. 把),,,(21dd d d d d n 代入方程组,验证它确是解. 2. 假如方程组有解,证明它的解必由公式(3)给出. 定理4通常称为克拉默法则. 例1 解方程组⎪⎪⎩⎪⎪⎨⎧=+-+-=+-=--=+-+.0674,522,963,85243214324214321x x x x x x x x x x x x x x应该注意,定理4所讨论的只是系数矩阵的行列式不为零的方程组,它只能应用于这种方程组;至于方程组的系数行列式为零的情形,将在下一章的一般情形中一并讨论.常数项全为零的线性方程组称为齐次线性方程组.显然齐次方程组总是有解的,因为)0,,0,0( 就是一个解,它称为零解.对于齐次线性方程组,我们关心的问题常常是,它除了零解以外,还有没有其它解,或者说,它有没有非零解.对于方程个数与未知量个数相同的齐次线性方程组,应用克拉默法则就有定理5 如果齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0,0,0221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (10) 的系数矩阵的行列式0||≠A ,那么它只有零解.换句话说,如果方程组(10)有非零解,那么必有0||=A .例2 求λ在什么条件下,方程组⎩⎨⎧=+=+0,02121x x x x λλ 有非零解.克拉默法则的意义主要在于它给出了解与系数的明显关系,这一点在以后许多问题的讨论中是重要的.但是用克拉默法则进行计算是不方便的,因为按这一法则解一个n 个未知量n 个方程的线性方程组就要计算1+n 个n 级行列式,这个计算量是很大的.。
克拉默法则解二元一次方程组引言:在数学中,方程组是一个或多个方程的集合,而方程是一个等式,它包含未知数和常数。
解方程组就是找出同时满足所有方程的未知数的值。
而克拉默法则是一种解二元一次方程组的方法,它基于行列式的概念,通过求解行列式来得到方程组的解。
本文将详细介绍克拉默法则的原理和应用。
一、克拉默法则的原理克拉默法则是由法国数学家克拉默提出的,它利用行列式的性质来解方程组。
对于一个二元一次方程组:a1x + b1y = c1a2x + b2y = c2其中,a1、b1、c1、a2、b2、c2都是已知的常数,而x和y是未知数。
根据克拉默法则,方程组的解可以通过以下公式来表示:x = D1 / Dy = D2 / D其中,D是方程组的系数行列式,D1是将方程组的常数列替换掉x 的系数列所得到的行列式,D2是将方程组的常数列替换掉y的系数列所得到的行列式。
二、克拉默法则的应用克拉默法则在实际问题中有广泛的应用,特别是在工程、物理和经济等领域。
下面通过一个具体的例子来说明克拉默法则的应用。
例:解方程组2x + 3y = 74x - 5y = -3我们可以计算出D、D1和D2:D = |2 3| = 2*(-5) - 3*4 = -23|4 -5|D1 = |-3 3| = -3*(-5) - 3*4 = -3|-3 -5|D2 = |2 -3| = 2*(-3) - (-5)*4 = 23|4 -5|然后,我们可以根据公式求解方程组:x = D1 / D = -3 / -23 ≈ 0.13y = D2 / D = 23 / -23 ≈ -1所以,方程组的解为x ≈ 0.13,y ≈ -1。
三、克拉默法则的优点和局限性克拉默法则的优点是简单直观,易于理解和应用。
它不需要进行复杂的运算和推导,只需要计算行列式的值即可得到方程组的解。
此外,克拉默法则适用于任意多元一次方程组。
然而,克拉默法则也有一些局限性。
首先,克拉默法则要求方程组的系数行列式D不等于0,否则方程组无解或有无穷多解。
克拉默法则先复习在前面得出以下结论:{a11x1+a12x2=b1a21x1+a22x2=b2当系数行列式D=|a11a12a21a22|≠0方程组有解:x1=|b1a12b2a22||a11a12a21a22|=D1Dx2=|a11b1a21b2||a11a12a21a22|=D2D那么:{a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2 a31x1+a32x2+a33x3=b3当系数行列式D=|a11a12a13a21a22a23a31a32a33|≠0,方程组有解:x1=|b1a12a13b2a22a23b3a32a33||a11a12a13a21a22a23a31a32a33|x2=|a11b1a13a21b2a23a31b3a33||a11a12a13a21a22a23a31a32a33|x3=|a11a12b1a21a22b2a31a32b3||a11a12a13a21a22a23a31a32a33|本节要将以上结论推广到含有n个未知数的线性方程组。
设有n个未知数工x1,x2,⋯x n,的n个线性方程的方程组:{a11x1+a12x2+⋯+a1n x n=b1a21x1+a22x2+⋯+a2n x n=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯a n1x1+a n2x2+⋯+a nn x n=b n可表示为:Ax=b其中系数为A,未知数为x,常量为b。
克拉默法则(Cramer’s Rule)如果线性方程组Ax=b的系数行列式不等于零:{a11x1+a12x2+⋯+a1n x n=b1a21x1+a22x2+⋯+a2n x n=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯a n1x1+a n2x2+⋯+a nn x n=b n,|A|=|a11a12a21a22⋯a1n⋯a2n⋯⋯a n1a n2⋯⋯⋯a nn|≠0则线性方程组Ax=b有唯一解:x1=|A1||A|,x2=|A2||A|,⋯,x n=|A n||A|其中A j是把A中的第j列的元素用方程组右端的常数项代替后得到的矩阵:|A j|=|a11⋯a1,j−1b1a21⋯a n1⋯⋯⋯a2,j−1⋯a2,j+1b2⋯b na1,j+1⋯a1na2,j+1⋯an,j+1⋯⋯⋯a2n⋯a nn|(j=1,2,⋯,n)注意:|A j |=|a 11⋯a 1j−1b 1a21⋯a n1⋯⋯⋯a 2j−1⋯a 2j+1b 2⋯b na 1j+1⋯a 1n a 2j+1⋯a nj+1⋯⋯⋯a 2n ⋯a nn| |A |=|a 11a 12a21a 22⋯a 1n ⋯a 2n⋯⋯a n1a n2⋯⋯⋯a nn|按第j 列展开 =b 1A j +b 2A 2j +⋯+b n A nj其中A ij 是|A |的第j 列元素的代数余子式。
克拉默法则解齐次方程组克拉默法则是一种通过计算行列式值来解齐次线性方程组的方法。
对于一个n个未知数的方程组,克拉默法则的基本思想是,将每个未知数的系数与方程组的解组成一个行列式,然后将行列式的值与方程组的常数项组成一个新的行列式,最后用此行列式的值除以系数行列式的值,可以得到每个未知数对应的解。
设有一个n个未知数的齐次方程组:a11x1 + a12x2 + ... + a1nxn = 0a21x1 + a22x2 + ... + a2nxn = 0......an1x1 + an2x2 + ... + annxn = 0其中,a11, a12, ..., ann是方程组中每个未知数对应的系数。
首先定义系数行列式D,D的值等于将方程组的系数矩阵进行按行展开的行列式,即:D=,a11a12 (1)a21a22...a2...........an1 an2 ... an然后,定义常数项行列式Di,Di的值等于将方程组的常数项组成的向量按列展开的行列式,即:Di = ,a11 a12 ... ai-1 a1i ai+1 (1)a21 a22 ... ai-1 a2i ai+1 ... a2.......................an1 an2 ... ai-1 ani ai+1 ... an其中,ai是方程组第i个未知数的系数。
根据克拉默法则,每个未知数的解xi等于系数行列式Di除以系数行列式D的值xi = Di / D通过使用克拉默法则,可以依次求解每个未知数的解,从而得到方程组的解。
需要注意的是,克拉默法则的计算比较繁琐,尤其是对于未知数较多的方程组。
当未知数的个数增多时,计算每个未知数的解需要进行多次行列式运算,工作量较大。
此外,克拉默法则对计算精度的要求也较高,因为行列式的计算本身就存在一定的误差,而且行列式的值通常是比较大的数,可能会造成计算结果的误差。
总结起来,克拉默法则是一种解齐次方程组的有效方法,可以求解方程组的解。