2018学年数学人教A版选修2-2优化练习:第一章 1.6 微积分基本定理
- 格式:doc
- 大小:109.00 KB
- 文档页数:5
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课后提升训练十一微积分基本定理(45分钟70分)一、选择题(每小题5分,共40分)1.dx等于( )A.2(-1)B.+1C.-1D.2-【解析】选C.原式=dx=(cosx-sinx)dx=(sinx+cosx)=-1.2.已知函数f(x)=3x2+2x+1,且f(x)dx=2f(a)成立,则a的值为( )A.-1B.-1或C.1或-D.-【解析】选B.(3x2+2x+1)dx=(x3+x2+x)=4,所以2(3a2+2a+1)=4,即3a2+2a-1=0,所以a=-1或.3.(2017·唐山高二检测)若(2x-3x2)dx=0,则k等于( )A.0B.1C.0或1D.不确定【解析】选B.(2x-3x2)dx=(x2-x3)=k2-k3=0,所以k=1或k=0(舍去).【补偿训练】若dx=3+ln2,则a的值是( )A.6B.4C.3D.2【解析】选D.dx=2xdx+dx=x2+lnx=a2-1+lna=3+ln2.所以a=2.4.定积分|2-x|dx的值为( )A. B.- C.3 D.0 【解析】选A.|2-x|dx=(2-x)dx+(x-2)dx=+=2+=.5.设a=dx,b=x2dx,c=x3dx,则a,b,c的大小关系是( )A.c>a>bB.a>b>cC.a=b>cD.a>c>b【解析】选B.a=dx==,b=x2dx=x3=,c=x3dx=x4=,因为<<,所以a>b>c.【一题多解】选B.本题中积分区间相同,只需比较在该区间上被积函数的大小即可.由幂函数的性质知在区间(0,1)上>x2>x3,所以a>b>c.【补偿训练】若a=x2dx,b=x3dx,c=sinxdx,则a,b,c的大小关系是________.【解析】a=x2dx=x3=,b=x3dx=x4=4,c=sinxdx=(-cosx)=-cos 2+1<2,所以c<a<b.答案:c<a<b6.(2017·大连高二检测)已知f(x)为偶函数且f(x)dx=8,则f(x)dx等于( ) A.0 B.4 C.8 D.16【解析】选D.因为f(x)为偶函数,图象关于y轴对称,所以f(x)dx=2f(x)dx=2×8=16.【补偿训练】函数y=(cost+t2+2)dt(x>0) ( )A.是奇函数B.是偶函数C.是非奇非偶函数D.以上都不正确【解析】选A.原式==2sinx++4x,为奇函数.7.已知定积分(kx+1)dx=k,则实数k= ( )A.2B.-2C.1D.-1 【解析】选A.因为(kx+1)dx=k,所以=k,所以k+1=k,所以k=2.8.(2017·重庆高二检测)已知f(x)是一次函数,且f(x)dx=5,xf(x)dx=,则f(x)的解析式为( )A.4x+3B.3x+4C.-4x+2D.-3x+4【解析】选A.设f(x)=ax+b(a≠0),则f(x)dx= (ax+b)dx==a+b=5,①xf(x)dx=(ax2+bx)dx==a+b=.②联立①②,解得a=4,b=3,所以f(x)=4x+3.二、填空题(每小题5分,共10分)9.定积分(|x|-1)dx=________.【解析】(|x|-1)dx=(x-1)dx+(-x-1)dx=+=-1.答案:-110.定积分dx=________.【解析】令y=,则x2+y2=16(y≥0),点(x,y)的轨迹为半圆,dx表示以原点为圆心,4为半径的圆面积的,所以dx=×π×42=4π.答案:4π三、解答题(每小题10分,共20分)11.求定积分|x-a|dx.【解析】(1)当a≥2时,|x-a|dx=(a-x)dx==2a-2.(2)当0<a<2时,|x-a|dx=(a-x)dx+(x-a)dx=+=a2-2a +2.(3)当a≤0时,|x-a|dx=(x-a)dx==2-2a.12.求下列函数的定积分:(1)(3x2+4x3)dx. (2)sin2dx.(3)(-1)dx.【解析】(1)原式=3x2dx+4x3dx=x3+x4=8+16=24.(2)原式=dx=dx=(1-cosx)dx=1dx-cosxdx=x-sinx=-.(3)原式=dx-1dx=-1=×(-1)-1=.【补偿训练】计算下列定积分:(1)dx. (2)2x dx.【解析】(1)因为[ln(3x+2)]′=,所以dx=ln(3x+2)=ln(3e+2)-ln(3×0+2)=ln.(2)因为′=2x,所以2x dx==-=. 【方法总结】利用微积分基本定理求定积分步骤(1)求F(x),使得F′(x)=f(x).(2)计算F(b)-F(a).【能力挑战题】已知e x dx=e-1,e x dx=e2-e,x2dx=,dx=2ln2. 求:(1)e x dx.(2)(e x+3x2)dx.(3)dx.【解析】(1)e x dx=e x dx+e x dx=e-1+e2-e=e2-1.(2)(e x+3x2)dx=e x dx+3x2dx=e x dx+3x2dx=e2-1+8=e2+7.(3)dx=e x dx+dx=e2-e+ln2.关闭Word文档返回原板块。
人教a 版数学高二选修2-2习题_第一章_导数及其应用_1.6微积分基本定理 有答案1.6 微积分基本定理A 级 基础巩固一、选择题1.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:依题意,S =2 0cos x d x =2sin x |π30= 3.答案:D2.下列定积分值是0的是( ) A.∫2-2x sin x d x B.∫2-2x 2cos x d x C.∫2-2(x 2+x 4)d xD.∫2-22(x +x 5)d x解析:根据当f (x )是奇函数时,∫a -a f (x )d x =0,当f (x )是偶函数时,∫a-a f (x )d x=2∫a 0f (x )d x ,可知选项D 符合条件.答案:D3.∫20|1-x |d x =( ) A .0 B .1 C .2 D .-2解析:∫20|1-x |d x =∫10(1-x )d x +∫21(x -1)d x =⎝ ⎛⎭⎪⎫x -12x 2|10+⎝ ⎛⎭⎪⎫12x 2-x |21= ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12×4-2-⎝ ⎛⎭⎪⎫12-1=1.答案:B4.m =∫1e xd x 与n =∫e 11xd x 的大小关系是( )A . m >nB .m <nC .m =nD .无法确定解析:m =∫10e x d x =e x |10=e -1,n =∫e 11xd x =ln x |e 1=1,所以m >n . 答案:A5.若∫k0(2x -3x 2)d x =0,则k =( ) A .0 B .1 C .0或1D .不确定解析:∫k 0(2x -3x 2)d x =(x 2-x 3)|k 0=k 2-k 3=0,解得k =0(舍去)或k =1. 答案: B 二、填空题6.津卷)曲线y =x 2与直线y =x 所围成的封闭图形的面积为____.解析:解方程组⎩⎨⎧y =x 2,y =x 得两曲线的交点坐标为(0,0),(1,1)(图略),所求面积为S =∫10(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪10=16.答案:167.已知函数f (a )=∫a0sin x d x ,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫π2=________.解析:因为f (a )=∫a 0sin x d x =(-cos x )|a0=1-cos a ,所以f ⎝ ⎛⎭⎪⎫π2=1-cos π2=1,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫π2=f (1)=1-cos 1.答案:1-cos 18.计算∫-1-21xd x =________.解析:因为(ln x )′=1x中,x >0,所以由f (x )=1x 为奇函数,可得∫-1-21xd x =-∫211xd x =-(ln x )|21=ln 1-ln 2=-ln 2.答案:-ln 2 三、解答题9.计算下列定积分:(1)∫20(4-2x )(4-x 2)d x ;(2)∫21x 2+2x -3xd x .解:(1)∫20(4-2x )(4-x 2) d x =∫20(16-8x -4x 2+2x 3)d x =⎝⎛⎭⎪⎫16x -4x 2-43x 3+12x 4|20=403. (2)∫21x 2+2x -3x d x =∫21⎝ ⎛⎭⎪⎫x +2-3x d x = ⎝ ⎛⎭⎪⎫12x 2+2x -3ln x |21=72-3ln 2.10.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,∫10f (x )d x =-2,求a 、b 、c 的值.解:因为f (-1)=2,所以a -b +c =2.① 又因为f ′(x )=2ax +b ,所以f ′(0)=b =0.②而∫10f (x )d x =∫10(ax 2+bx +c )d x ,取F (x )=13ax 3+12bx 2+cx ,则F ′(x )=ax 2+bx +c .所以∫1f (x )d x =F (1)-F (0)=13a +12b +c =-2.③由①②③得a =6,b =0,c =-4.B 级 能力提升1.设f (x )=ax 2+c (a ≠0),若∫10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为( )A .-33 B.33 C .-13 D.13解析:因为∫10f (x )d x =⎝ ⎛⎭⎪⎫13ax 3+cx |10=13a +c ,所以ax 2+c =13a +c ,所以x 20=13,因为0≤x 0≤1,所以x 0=33.答案:B2.由曲线y =sin x 与直线x =-π2,x =5π4,y =0所围成图形的面积为________.解析:如图所示,在区间⎣⎢⎡⎦⎥⎤-π2,0和⎣⎢⎡⎦⎥⎤π,5π4上,定积分的值为负,所以①③部分面积应为定积分值的相反数,所求的是①②③部分面积的和,在x 轴上方的②积分值取正号,在x 轴下方的①③积分值取负号,而面积为正值.所以,所求面积为S =|sin x |d x =-sin x d x +∫π0sin x d x -πsin x d x =1+2+⎝⎛⎭⎪⎫1-22=4-22.答案:4-223.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 的值.解:抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =∫10(x -x 2)d x =⎝ ⎛⎭⎪⎫x 2-x 33|10=12-13=16. 抛物线y =x -x 2与直线y =kx 两交点的横坐标为x ′1=0,x ′2=1-k ,所以S2=∫1-k 0(x -x 2-kx )d x =⎝⎛⎭⎪⎫1-k 2x 2-x 33|1-k 0= 16(1-k )3, 又知S =16,所以(1-k )3=12.于是k =1-312=1-342.。
1.6 微积分基本定理[学习目标]1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的定积分. [知识链接]1.导数与定积分有怎样的联系?答 导数与定积分都是微积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.在下面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?答 根据定积分与曲边梯形的面积的关系知: 图(1)中S =⎠⎛ab f (x )d x ,图(2)中S =-⎠⎛ab f (x )d x ,图(3)中S =⎠⎛0b f (x )d x -⎠⎛a0f (x )d x .[预习导引] 1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).2.函数f (x )与其一个原函数的关系 (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n(n ≠-1),则F (x )=1n +1·x n +1; (3)若f (x )=1x,则F (x )=ln_x (x >0);(4)若f (x )=e x ,则F (x )=e x;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1); (6)若f (x )=sin x ,则F (x )=-cos_x ; (7)若f (x )=cos x ,则F (x )=sin_x .要点一 求简单函数的定积分 例1 计算下列定积分(1)⎠⎛123d x ; (2)⎠⎛02(2x +3)d x ;(3)⎠⎛3-1(4x -x 2)d x ; (4)⎠⎛12(x -1)5d x .解 (1)因为(3x )′=3,所以⎠⎛123d x =(3x )⎪⎪⎪21=3×2-3×1=3.(2)因为(x 2+3x )′=2x +3,所以⎠⎛02(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10.(3)因为⎝ ⎛⎭⎪⎫2x 2-x 33′=4x -x 2,所以⎠⎛3-1(4x -x 2)d x =⎝ ⎛⎭⎪⎫2x 2-x 33⎪⎪⎪3-1=⎝ ⎛⎭⎪⎫2×32-333-⎣⎢⎡⎦⎥⎤2×-12--133=203. (4)因为⎣⎢⎡⎦⎥⎤16x -16′=(x -1)5, 所以⎠⎛21(x -1)5d x=16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6 =16. 规律方法 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x );②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②f (x )的原函数有无穷多个,如F (x )+c ,计算时,一般只写一个最简单的,不再加任意常数c .跟踪演练1 求下列定积分: (1)∫π2(3x +sin x )d x ;(2)⎠⎛21⎝⎛⎭⎪⎫e x -1x d x . 解 (1)∵⎝ ⎛⎭⎪⎫32x 2-cos x ′=3x +sin x , ∴∫π20(3x +sin x )d x =⎝ ⎛⎭⎪⎫32x 2-cos x ⎪⎪⎪⎪π20=⎣⎢⎡⎦⎥⎤32×⎝ ⎛⎭⎪⎫π22-cos π2-⎝ ⎛⎭⎪⎫32×0-cos 0=3π28+1; (2)∵(e x -ln x )′=e x-1x,∴⎠⎛21(e x-1x)d x =()e x-ln x ⎪⎪⎪21=(e 2-ln 2)-(e -0)=e 2-e -ln 2.要点二 求较复杂函数的定积分 例2 求下列定积分: (1)⎠⎛41x (1-x )d x ; (2)∫π202cos 2x2d x ; (3)⎠⎛41(2x+1x)d x .解 (1)∵x (1-x )=x -x ,又∵⎝ ⎛⎭⎪⎫23x 32-12x 2′=x -x .∴⎠⎛41x (1-x )d x =⎝ ⎛⎭⎪⎫23x 32-12x 2⎪⎪⎪41=⎝ ⎛⎭⎪⎫23×432-12×42-⎝ ⎛⎭⎪⎫23-12=-176.(2)∵2cos 2x2=1+cos x ,(x +sin x )′=1+cos x ,∴原式=∫π20(1+cos x )d x =(x +sin x )⎪⎪⎪⎪π2=π2+1. (3)∵⎝ ⎛⎭⎪⎫2x ln 2+2x ′=2x+1x, ∴⎠⎛41(2x+1x)d x =⎝ ⎛⎭⎪⎫2xln 2+2x ⎪⎪⎪41=⎝ ⎛⎭⎪⎫24ln 2+24-⎝ ⎛⎭⎪⎫2ln 2+2=14ln 2+2.规律方法 求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余弦函数、指数、对数函数与常数的和与差. (2)确定积分区间,分清积分下限与积分上限. 跟踪演练2 计算下列定积分: (1)∫π3(sin x -sin 2x )d x ;(2)⎠⎛0ln 2e x(1+e x)d x .解 (1)sin x -sin 2x 的一个原函数是-cos x + 12cos 2x ,所以∫π30(sin x -sin 2x )d x =⎝ ⎛⎭⎪⎫-cos x +12cos 2x ⎪⎪⎪⎪π30=⎝ ⎛⎭⎪⎫-12-14-⎝⎛⎭⎪⎫-1+12=-14.(2)∵e x(1+e x)=e x+e 2x,∴⎝⎛⎭⎪⎫e x +12e 2x ′=e x +e 2x,∴⎠⎛0ln 2e x(1+e x)d x =⎠⎛0ln 2()e x+e2xd x=⎝⎛⎭⎪⎫e x +12e 2x ⎪⎪⎪ln 2=eln 2+12e 2ln 2-e 0-12e 0 =2+12×4-1-12=52.要点三 定积分的简单应用例3 已知f (a )=⎠⎛10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝ ⎛⎭⎪⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛10(2ax 2-a 2x )d x =⎝ ⎛⎭⎪⎫23ax 3-12a 2x 2⎪⎪⎪10=23a -12a 2, 即f (a )=23a -12a 2=-12⎝ ⎛⎭⎪⎫a 2-43a +49+29=-12⎝ ⎛⎭⎪⎫a -232+29,∴当a =23时,f (a )有最大值29.规律方法 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪演练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛10f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2. ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ②而⎠⎛10f (x )d x =⎠⎛10(ax 2+bx +c )d x =⎝ ⎛⎭⎪⎫13ax 3+12bx 2+cx ⎪⎪⎪1=13a +12b +c , ∴13a +12b +c =-2, ③由①②③式得a =6,b =0,c =-4. 要点四 求分段函数的定积分 例4 计算下列定积分:(1)若f (x )=⎩⎪⎨⎪⎧x 2x ≤0cos x -1 x >0,求∫π2-1f (x )d x ;(2)⎠⎛30|x 2-4|d x .解 (1)∫π2-1f (x )d x =⎠⎛0-1x 2d x +∫π20(cos x -1)d x ,又∵⎝ ⎛⎭⎪⎫13x 3′=x 2,(sin x -x )′=cos x -1∴原式=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪⎪π2=⎝ ⎛⎭⎪⎫0+13+⎝⎛⎭⎪⎫sin π2-π2-(sin 0-0)=43-π2. (2)∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4 x ≥2或x ≤-2,4-x 2-2<x <2,又∵⎝ ⎛⎭⎪⎫13x 3-4x ′=x 2-4,⎝ ⎛⎭⎪⎫4x -13x 3′=4-x 2,∴⎠⎛30|x 2-4|d x =⎠⎛20(4-x 2)d x +⎠⎛32(x 2-4)d x=⎝⎛⎭⎪⎫4x -13x 3⎪⎪⎪20+⎝ ⎛⎭⎪⎫13x 3-4x ⎪⎪⎪32=⎝ ⎛⎭⎪⎫8-83-0+(9-12)-⎝ ⎛⎭⎪⎫83-8=233. 规律方法 (1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论. 跟踪演练4 求⎠⎛3-3(|2x +3|+|3-2x |)d x .解 ∵|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,x <-32,6,-32≤x ≤32,4x ,x >32,∴⎠⎛3-3(|2x +3|+|3-2x |)d x=∫-32-3(-4x )d x +∫32-326d x +∫3324x d x=-2x 2⎪⎪⎪⎪-32-3+6x⎪⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=45.1.∫π2-π2(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2答案 D解析 ∵(x +sin x )′=1+cos x , ∴⎪⎪⎪∫π2-π21+cos x d x =x +sin x π2-π2=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝ ⎛⎭⎪⎫-π2=π+2. 2.若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2,则a 的值是( )A .5B .4C .3D .2答案 D解析 ⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x =x 2|a1+ln x ⎪⎪ a1=a 2-1+ln a =3+ln 2,解得a =2.3.⎠⎛02⎝⎛⎭⎪⎫x 2-23x d x =________. 答案 43解析 ⎠⎛02⎝ ⎛⎭⎪⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x=x 33⎪⎪⎪⎪⎪⎪20-x 2320=83-43=43.4.已知f (x )=⎩⎪⎨⎪⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算⎠⎛0πf (x )d x .解 ⎠⎛0πf (x )d x =∫π20f (x )d x +错误!f (x )d x =∫π2(4x -2π)d x +错误!cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x . 所以∫π2(4x -2π)d x +错误!cos x d x =(2x 2-2πx )错误!+sin x ⎪⎪⎪ππ2=-12π2-1,即⎠⎛0πf (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础达标1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )⎪⎪ ba;②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0);③它在时间段[a ,b ]内的位移是s =li m n →∞∑i =1nb -ans ′(ξi ); ④它在时间段[a ,b ]内的位移是s =⎠⎛ab s ′(t )d t .A .①B .①②C .①②④D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3.⎠⎛01(e x+2x )d x 等于( )A .1B .e -1C .eD .e +1答案 C解析 ⎠⎛01(e x+2x )d x =(e x+x 2)|10=(e 1+12)-(e 0+02)=e.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32 B .43 C .23 D .-23答案 B解析 ⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛011d x =⎪⎪⎪x 330-1+1=13+1=43,故选B. 5.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.答案33解析 由已知得13a +c =ax 20+c ,∴x 20=13,又∵0≤x 0≤1,∴x 0=33.6.(2013·湖南)若⎠⎛0T x 2d x =9,则常数T 的值为________.答案 3解析 ⎠⎛0T x 2d x =⎪⎪⎪13x 3T 0=13T 3=9,即T 3=27,解得T =3. 7.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b 的值.解 ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛1-1(x 3+ax )d x =0,∴⎠⎛1-1(x 3+ax +3a -b )d x=⎠⎛1-1(x 3+ax )d x +⎠⎛1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3, ①又f (t )=⎪⎪⎪⎣⎢⎡⎦⎥⎤x 44+a 2x 2+3a -b x t 0 =t 44+at 22+(3a -b )t 为偶函数,∴3a -b =0,②由①②得a =-3,b =-9. 二、能力提升 8.∫π20sin 2x2d x 等于( ) A.π4 B .π2-1C .2D .π-24答案 D 解析 ∫π20sin 2x 2d x =∫π201-cos x2d x =⎪⎪⎪12x -sin x π20=π-24,故选D. 9.(2013·江西)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121xd x ,S 3=⎠⎛12e xd x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D . S 3<S 2<S 1答案 B解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪ 21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e xd x =e x |21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B. 10.设f (x )=⎩⎪⎨⎪⎧ lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a =________.答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3|a 0=x +a 3, 所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛a1b x d x =13a +12b =176. 由⎩⎪⎨⎪⎧ 12a +b =513a +12b =176,得⎩⎪⎨⎪⎧ a =4b =3.即f (x )=4x +3.12.若函数f (x )=⎩⎨⎧ x 3,x ∈[0,1],x ,x ∈1,2],2x ,x ∈2,3].求⎠⎛03f (x )d x 的值. 解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232xd x =x 44⎪⎪⎪⎪⎪⎪10+23x 3221 ⎪⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2.三、探究与创新13.求定积分⎠⎛3-4|x +a |d x . 解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛3-4(x +a )d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫x 22+ax 3-4=7a -72.(2)当-4<-a <3即-3<a <4时, 原式=⎠⎛-4-a[-(x +a )]d x +⎠⎛3-a(x +a )d x =⎝ ⎛⎭⎪⎫-x 22-ax ⎪⎪⎪ -a-4+ ⎪⎪⎪⎝ ⎛⎭⎪⎫x 22+ax 3-a=a 22-4a +8+⎝ ⎛⎭⎪⎫a 22+3a +92=a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=⎠⎛3-4[-(x +a )]d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫-x22-ax 3-4=-7a +72.综上,得⎠⎛3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72a ≥4,a 2-a +252-3<a <4,-7a +72a ≤-3.。
§1.6 微积分基本定理 课时目标 1.了解微积分基本定理的内容与含义.2.会利用微积分基本定理求函数的定积分.1.如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=________,那么ʃb a f (x )d x =__________.该结论叫做微积分基本定理,又叫________________公式.2.微积分基本定理揭示了________和__________之间的内在联系,同时它也提供了计算____________的一种有效方法;计算定积分的关键是找到满足F ′(x )=f (x )的函数F (x ).(1)若F ′(x )=x α,则F (x )=____________;(2)若F ′(x )=cos x ,则F (x )=__________;(3)若F ′(x )=sin x ,则F (x )=____________;(4)若F ′(x )=e x ,则F (x )=________;(5)若F ′(x )=1x(x >0),则F (x )=__________; (6)F ′(x )=a x (a >0且a ≠1),则F (x )=__________.一、选择题1.设f (x )在[a ,b ]上连续,且(F (x )+C )′=f (x )(C 为常数),则lim Δx →0 F (x +Δx )-F (x )Δx等于( ) A .F (x ) B .f (x )C .0D .f ′(x )2.由曲线y =x 3,直线x =0,x =1及y =0所围成的曲边梯形的面积为( )A .1 B.12C.13D.143.20π⎰ ⎝⎛⎭⎫sin x 2+cos x 22d x 的值是( ) A.π2 B.π2+1 C .-π2D .0 4.ʃ0-4|x +3|d x 的值为( )A .-2B .0C .5 D.12。
[课时作业] [A 组 基础巩固]1.⎠⎛241xd x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2D .ln 2解析:∵(ln x )′=1x,∴⎠⎛241xd x =(ln x )| 42=ln 4-ln 2=ln 2. 答案:D2.如图,阴影区域的边界是直线y =0,x =2,x =0及曲线y =3x 2,则这个区域的面积是( )A .4B .8 C.13D.12解析:由定积分的几何意义,得S =⎠⎛023x 2dx =x 3| 20=23-0=8,故答案为B.答案:B3.定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:⎠⎛01(2x +e x )d x =(x 2+e x )| 10=(1+e)-(0+e 0)=e ,因此选C.答案:C4.已知f (x )=2-|x |,则⎠⎛-12f (x )d x 等于( )A .3B .4 C.72D.92解析:f (x )=2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0,2+x ,x <0,∴⎠⎛-12f (x )d x =⎠⎛-10(2+x )d x +⎠⎛02(2-x )d x =⎝⎛⎭⎫2x +x 22| 0-1+⎝⎛⎭⎫2x -x 22| 20=32+2=72. 答案:C5.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值解析:F (x )=⎠⎛0x (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 2|x 0=13x 3-2x 2(-1≤x ≤5). F ′(x )=x 2-4x ,由F ′(x )=0得x =0或x =4,列表如下:∴极大值F (0)=0,极小值F (4)=-323.又F (-1)=-73,F (5)=-253,∴最大值为0,最小值为-323.答案:B6.(2015·高考湖南卷)⎠⎛02(x -1)d x =________.解析:⎠⎛02(x -1)d x =⎝⎛⎭⎫12x 2-x |20=(2-2)-0=0.答案:07.若⎠⎛1a (2x +1x )d x =3+ln 2,则a =________.解析:⎠⎛1a (2x +1x )d x =(x 2+ln x )|a 1 =a 2+ln a -1=3+ln 2, ∴a =2. 答案:28.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1]1x,x ∈(1,e )(e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为________.解析:依题意得⎠⎛0e f (x ) d x =⎠⎛01x 2 d x +⎠⎛1e 1xd x=13x 3|10+ln x |e1=43. 答案:439.计算下列定积分: (1)⎠⎛12(2x 2-1x )d x ;(2)30π⎰(sin x -sin 2x )d x .解析:(1)函数y =2x 2-1x 的一个原函数是y =23x 3-ln x .所以⎠⎛12(2x 2-1x )d x =(23x 3-ln x )| 21=163-ln 2-23=143-ln 2.(2)函数y =sin x -sin 2x 的一个原函数为y =-cos x +12cos 2x .所以30π⎰(sin x -sin 2x )d x =(-cos x +12cos 2x )30π=(-12-14)-(-1+12)=-14.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x=-2.(1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解析:(1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧c =2-a b =0. ∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x=[13ax 3+ (2-a )x ]|10=2-23a =-2, ∴a =6,∴c =-4.从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1], 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.[B 组 能力提升]1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:令m =⎠⎛01f (x )d x ,则f (x )=x 2+2⎠⎛01f (x )d x =x 2+2m ,所以m =⎠⎛01f (x )d x =⎠⎛01⎝⎛⎭⎫x 2+2⎠⎛01f (x )d x d x =⎠⎛01(x 2+2m )d x =⎠⎛01(x 2)d x +2m =13+2m , 所以m =-13⇒⎠⎛01f (x )d x =-13.答案:B2. ⎠⎛-33(x 3cos x )d x =________.解析:∵y =x 3cos x 为奇函数,∴⎠⎛-33 (x 3cos x )d x =0.答案:03.函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若φ=π6,点P 的坐标为⎝⎛⎭⎫0,332,则ω=________.(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.解析:(1)y =f ′(x )=ωcos(ωx +φ),当φ=π6,点P 的坐标为⎝⎛⎭⎫0,332时,ωcos π6=332,所以ω=3.(2)由题图知AC =T 2=πω,S △ABC =12AC ·ω=π2,设A ,C 的横坐标分别为a ,b .设曲线段ABC 与x 轴所围成的区域的面积为S ,则S =⎪⎪⎪⎪⎠⎛abf ′(x )d x =|f (x )| ba |=|sin(ωb +φ)-sin(ωa +φ)|=2,由几何概型知该点在△ABC 内的概率为P =S △ABC S =π4.答案:(1)3 (2)π44.设f (x )=ax +b 且⎠⎛-11f 2(x )d x =1,求f (a )的取值范围.解析:∵⎠⎛-11f 2(x )d x=⎠⎛-11 (a 2x 2+2abx +b 2)d x=(13a 2x 3+abx 2+b 2x )| 1-1=23a 2+2b 2, ∴23a 2+2b 2=1,∴a 2=32-3b 2, 又∵f (a )=a 2+b =-3b 2+b +32=-3(b -16)2+1912,∴当b =16时,f (a )max =1912.∴f (a )≤1912.5.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176.求⎠⎛12f (x )xd x 的值. 解析:∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0),由⎠⎛01(ax +b )d x =5得(12ax 2+bx )|10=12a +b =5.① 由⎠⎛01xf (x )d x =176得⎠⎛01(ax 2+bx )d x =176,即(13ax 3+12bx 2)|10=176,∴13a +12b =176.② 解①②得a =4,b =3,∴f (x )=4x +3, 于是⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12(4+3x )d x=(4x +3ln x )|21=8+3ln 2-4=4+3ln 2.。
微积分基本定理预习课本P51~54,思考并完成下列问题 (1)微积分基本定理的内容是什么?(2)被积函数f (x )的原函数是否是唯一的?[新知初探]1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛a bf (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,我们常常把F (b )-F (a )记为F (x )⎪⎪⎪ba,即⎠⎛a bf (x )d x =F (x )⎪⎪⎪ba=F (b )-F (a ). [点睛] 对微积分基本定理的理解(1)微积分基本定理表明,计算定积分⎠⎛a bf (x )d x 的关键是找到满足F ′(x )=f (x )的函数F (x ),通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F (x ).(2)牛顿-莱布尼茨公式指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数(F (x )叫做f (x )的原函数)的问题,提示了导数和定积分的内在联系,同时也提供计算定积分的一种有效方法.2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,在x 轴下方的面积为S 下.则 (1)当曲边梯形的面积在x 轴上方时,如图①,则⎠⎛a bf (x )d x =S 上.(2)当曲边梯形的面积在x 轴下方时,如图②,则⎠⎛a bf (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图③,则⎠⎛a bf (x )d x =S 上-S 下,若S 上=S 下,则⎠⎛a bf (x )d x =0.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )答案:(1)√ (2)√ (3)√ 2.下列积分值等于1的是( ) A.⎠⎛01x d x B.⎠⎛01(x +1)d x C.⎠⎛011d x D.⎠⎛0112d x答案:C3.计算:⎠⎛0πsin x d x =( )A .-2B .0C .2D .1 答案:C[典例] (1)定积分⎠⎛01(2x +e x )d x 的值为( ) A .e +2 B .e +1 C .eD .e -1(2)f (x )=⎩⎪⎨⎪⎧1+2x ,0≤x ≤1,x 2,1<x ≤2,求⎠⎛02f (x )d x .[解析] (1)⎠⎛01(2x +e x)d x =(x 2+e x) ⎪⎪⎪1=(1+e)-(0+e 0)=e ,因此选C.答案:C(2)解:⎠⎛02f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x=⎠⎛01(1+2x )d x +⎠⎛12x 2d x =(x +x 2)10+13x 321 =1+1+13(8-1)=133.1.由微积分基本定理求定积分的步骤当被积函数为两个函数的乘积时,一般要转化为和的形式,便于求得函数F (x ),再计算定积分,具体步骤如下.第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ). 2.分段函数的定积分的求法(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算. [活学活用] 计算下列定积分:(1)⎠⎛01(x 3-2x )d x ;(2) (x +cos x )d x ; (3)⎠⎛121x (x +1)d x .解:(1)⎠⎛01(x 3-2x )d x =⎝⎛⎭⎫14x 4-x 2⎪⎪⎪10=-34.(2)(x +cos x )d x =⎝⎛⎭⎫12x 2+sin x =π28+1. (3)f (x )=1x (x +1)=1x -1x +1.取F (x )=ln x -ln(x +1)=ln xx +1, 则F ′(x )=1x -1x +1,所以⎠⎛121x (x +1)d x =⎠⎛12⎝ ⎛⎭⎪⎫1x -1x +1d x =lnx x +1⎪⎪⎪21=ln 43.[典例] (1)已知x ∈(0,1],f (x )=⎠⎛01(1-2x +2t )d t ,则f (x )的值域是_________. (2)已知⎠⎛01[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围.[解析] (1)⎠⎛01(1-2x +2t )d t =[(1-2x )t +t 2] ⎪⎪⎪1=2-2x ,即f (x )=-2x +2,因为x ∈(0,1],所以f (1)≤f (x )<f (0), 即0≤f (x )<2 ,所以函数f (x )的值域是[0,2). 答案:[0,2)(2)解:⎠⎛01[(3ax +1)(x +b )]d x =⎠⎛01[3ax 2+(3ab +1)x +b ]d x =⎣⎡⎦⎤ax 3+12(3ab +1)x 2+bx ⎪⎪⎪1=a +12(3ab +1)+b =0,即3ab +2(a +b )+1=0.法一:由于(a +b )2=a 2+b 2+2ab ≥4ab ,所以⎝⎛⎭⎪⎫-3ab +122≥4ab ,即9(ab )2-10ab +1≥0,得(ab -1)(9ab -1)≥0,解得ab ≤19或ab ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). 法二:设ab =t ,得a +b =-3t +12,故a ,b 为方程x 2+3t +12x +t =0的两个实数根,所以Δ=(3t +1)24-4t ≥0,整理,得9t 2-10t +1≥0,即(t -1)(9t -1)≥0,解得t ≤19或t ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞).含有参数的定积分问题的处理办法与注意点(1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.[活学活用] 已知f (x )=⎠⎛x -a(12t +4a )d t ,F (a )=⎠⎛01[f (x )+3a 2]d x ,求函数F (a )的最小值.解:∵f (x )=⎠⎛x -a(12t +4a )d t =(6t 2+4at ) ⎪⎪⎪x-a=6x 2+4ax -(6a 2-4a 2) =6x 2+4ax -2a 2,∵F (a )=⎠⎛01[f (x )+3a 2]d x =⎠⎛01(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x ) ⎪⎪⎪1=a 2+2a +2=(a +1)2+1≥1,∴当a =-1时,F (a )最小值=1.层级一 学业水平达标1.下列各式中,正确的是( ) A.⎠⎛a bF ′(x )d x =F ′(b )-F ′(a ) B.⎠⎛a b F ′(x )d x =F ′(a )-F ′(b ) C.⎠⎛a b F ′(x )d x =F (b )-F (a ) D.⎠⎛a b F ′(x )d x =F (a )-F (b )解析:选C 由牛顿-莱布尼茨公式知,C 正确. 2.⎠⎛0π(cos x +1)d x 等于( ) A .1 B .0 C .π+1D .π解析:选D ⎠⎛0π(cos x +1)d x =(sin x +x ) ⎪⎪⎪π=sin π+π-0=π.3.已知积分⎠⎛01(kx +1)d x =k ,则实数k =( ) A .2 B .-2 C .1D .-1解析:选A 因为⎠⎛01(kx +1)d x =k , 所以⎝⎛⎭⎫12kx 2+x ⎪⎪⎪10=k . 所以12k +1=k ,所以k =2.4. ⎠⎛-aa|56x |d x ≤2 016,则正数a 的最大值为( )A .6B .56C .36D .2 016解析:选A ⎠⎛-a a|56x |d x =2⎠⎛0a56x d x =2×562x 2⎪⎪⎪a 0=56a 2≤2 016,故a 2≤36,即0<a ≤6. 5.⎠⎛03|x 2-4|d x =( ) A.213 B.223 C.233D.253解析:选C ∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4,2≤x ≤3,4-x 2,0≤x ≤2,∴⎠⎛03|x 2-4|d x =⎠⎛23(x 2-4)d x +⎠⎛02(4-x 2)d x =⎝⎛⎭⎫13x 3-4x ⎪⎪⎪32+⎝⎛⎭⎫4x -13x 3⎪⎪⎪2=⎣⎡⎦⎤(9-12)-⎝⎛⎭⎫83-8+⎣⎡⎦⎤⎝⎛⎭⎫8-83-0=-3-83+8+8-83=233.6.⎠⎛02(x 2-x )d x =__________.解析:∵⎝⎛⎭⎫x 33-12x 2′=x 2-x ,∴原式=⎝⎛⎭⎫x 33-12x 220=⎝⎛⎭⎫83-2-0=23. 答案:237. 设f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x >0.则⎠⎛1-1f (x )d x =_________. 解析:⎠⎛-11f (x )d x =⎠⎛-11x 2d x +⎠⎛01(cos x -1)d x=13x 3⎪⎪⎪0-1+(sin x -x ) ⎪⎪⎪1=⎣⎡⎦⎤13×03-13×(-1)3+[(sin 1-1)-(sin 0-0)] =sin 1-23.答案:sin 1-238.已知等差数列{a n }的前n 项和为S n ,且S 10=⎠⎛03(1+2x )d x ,则a 5+a 6=__________. 解析:S 10=⎠⎛03(1+2x )d x =(x +x 2)30=3+9=12. 因为{a n }是等差数列,所以S 10=10(a 5+a 6)2=5(a 5+a 6)=12,所以a 5+a 6=125.答案:1259.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a ,b ,c 的值.解:由f (-1)=2得a -b +c =2, ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+bx +c )d x =⎝⎛⎭⎫13ax 3+12bx 2+cx 10=13a +12b +c ,∴13a +12b +c =-2, ③ 由①②③式得a =6,b =0,c =-4.法二:设f (x )=|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,-3≤x <-32,6,-32≤x ≤32,4x ,32<x ≤3.如图,所求积分等于阴影部分面积,即⎠⎛3-3(|2x +3|+|3-2x |)d x =S =2×12×(6+12)×32+3×6=45.层级二 应试能力达标1.函数F (x )=⎠⎛0x cos t d t 的导数是( )A .F ′(x )=cos xB .F ′(x )=sin xC .F ′(x )=-cos xD .F ′(x )=-sin x解析:选A F (x )=⎠⎛0xcos t d t =sin t ⎪⎪⎪x=sin x -sin 0=sin x . 所以F ′(x )=cos x ,故应选A.2.若函数f (x )=x m+nx 的导函数是f ′(x )=2x +1,则⎠⎛12f (-x )d x =( )A.56B.12C.23D.16解析:选A ∵f (x )=x m+nx 的导函数是f ′(x )=2x +1,∴f (x )=x 2+x ,∴⎠⎛12f (-x )d x =⎠⎛12(x 2-x )d x =⎝⎛⎭⎫13x 3-12x 2⎪⎪⎪21=56. 3.若⎠⎛1a⎝⎛⎭⎫2x +1x d x =3+ln 2,则a 的值是( ) A .6 B .4 C .3D .2解析:选D ⎠⎛1a⎝⎛⎭⎫2x +1x d x =(x 2+ln x )a 1=(a 2+ln a )-(1+ln 1)=(a 2-1)+ln a =3+ln 2. ∴⎩⎪⎨⎪⎧a 2-1=3,a >1,a =2,∴a =2.4.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B 设⎠⎛01f (x )d x =c ,则c =⎠⎛01(x 2+2c )d x =⎝⎛⎭⎫13x 3+2cx ⎪⎪⎪10=13+2c ,解得c =-13. 5.函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k =________________.解析:由⎩⎪⎨⎪⎧ y =kx ,y =x 2,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =k ,y =k 2.由题意得,⎠⎛0k(kx -x 2)d x =⎝⎛⎭⎫12kx 2-13x 3⎪⎪⎪k0=12k 3-13k 3=16k 3=92,∴k =3. 答案:36.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________解析:长方形的面积为S 1=3,S 阴=⎠⎛013x 2d x =x 3⎪⎪⎪1=1,则P =S 阴S 1=13. 答案:137. 已知S 1为直线x =0,y =4-t 2及y =4-x 2所围成图形的面积,S 2为直线x =2,y =4-t 2及y =4-x 2所围成图形的面积(t 为常数).(1)若t =2时,求S 2.(2)若t ∈(0,2),求S 1+S 2的最小值. 解:(1)当t =2时,S 2=([2-(4-x 2)]d x =⎝⎛⎭⎫13x 3-2x =43(2-1). (2)t ∈(0,2),S 1=⎠⎛0t[(4-x 2)-(4-t 2)]d x =⎝⎛⎭⎫t 2x -13x 3⎪⎪⎪t0=23t 3, S 2=⎠⎛t 2[(4-t 2)-(4-x 2)]d x =⎝⎛⎭⎫13x 3-t 2x ⎪⎪⎪2t =83-2t 2+23t 3, 所以S =S 1+S 2=43t 3-2t 2+83,S ′=4t 2-4t =4t (t -1), 令S ′=0得t =0(舍去)或t =1, 当0<t <1时,S ′<0,S 单调递减, 当1<t <2时,S ′>0,S 单调递增, 所以当t =1时,S min =2.8.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k的值.解:抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积神笛2005神笛2005 S =⎠⎛01(x -x 2)d x =⎝⎛⎭⎫x 22-x 33⎪⎪⎪10=12-13=16. 抛物线y =x -x 2与直线y =kx 两交点的横坐标为 x ′1=0,x ′2=1-k ,所以S 2= (x -x 2-kx )d x =⎝ ⎛⎭⎪⎫1-k 2x 2-x 33=16(1-k )3,又知S =16,所以(1-k )3=12. 于是k =1-312=1-342.。
[课时作业] [A 组 基础巩固]
1.⎠⎛2
41
x
d x 等于【 】 A .-2ln 2 B .2ln 2 C .-ln 2
D .ln 2
解析:∵【ln x 】′=1
x
,
∴⎠⎛2
41x
d x =【ln x 】| 4
2=ln 4-ln 2=ln 2. 答案:D
2.如图,阴影区域边界是直线y =0,x =2,x =0及曲线y =3x 2,则这个区域面积是【 】
A .4
B .8 C.13
D.12
解析:由定积分几何意义,得S =⎠⎛0
23x 2dx =x 3| 2
0=23-0=8,故答案为B.
答案:B
3.定积分⎠⎛0
1【2x +e x 】d x 值为【 】
A .e +2
B .e +1
C .e
D .e -1
解析:⎠⎛0
1【2x +e x 】d x =【x 2+e x 】| 1
0=【1+e 】-【0+e 0】=e ,因此选C.
答案:C
4.已知f 【x 】=2-|x |,则⎠⎛-1
2f 【x 】d x 等于【 】
A .3
B .4 C.72
D.92
解析:f 【x 】=2-|x |=⎩
⎪⎨⎪⎧
2-x ,x ≥0,
2+x ,x <0,
∴⎠⎛-1
2f 【x 】d x =⎠⎛-1
0【2+x 】d x +⎠
⎛0
2【2-x 】d x =⎝⎛⎭⎫2x +x 22| 0-1+⎝⎛⎭⎫2x -x 2
2| 20=32+2=7
2. 答案:C
5.函数F 【x 】=⎠⎛0
x t 【t -4】d t 在[-1,5]上【 】
A .有最大值0,无最小值
B .有最大值0和最小值-32
3
C .有最小值-32
3,无最大值
D .既无最大值也无最小值
解析:F 【x 】=⎠
⎛0
x 【t 2-4t 】d t =⎝⎛⎭⎫13t 3-2t 2|x 0=13x 3-2x 2【-1≤x ≤5】. F ′【x 】=x 2-4x ,由F ′【x 】=0得x =0或x =4,列表如下:
∴极大值F 【0】=0,极小值F 【4】=-32
3
.
又F 【-1】=-73,F 【5】=-253,∴最大值为0,最小值为-32
3.
答案:B
6.【2015·高考湖南卷】⎠⎛0
2【x -1】d x =________.
解析:⎠⎛0
2【x -1】d x =⎝⎛⎭⎫12x 2-x |2
0=【2-2】-0=0.
答案:0
7.若⎠
⎛1
a 【2x +1
x 】d x =3+ln 2,则a =________.
解析:⎠
⎛1
a 【2x +1
x 】d x =【x 2+ln x 】|a 1 =a 2+ln a -1=3+ln 2, ∴a =2. 答案:2
8.设f 【x 】=⎩⎪⎨⎪
⎧
x 2
,x ∈[0,1]1x ,x ∈(1,e )【e 为自然对数底数】,则⎠⎛0e f 【x 】d x 值为________. 解析:依题意得⎠⎛0
e f 【x 】 d x =⎠⎛0
1x 2 d x +⎠⎛1
e 1
x
d x
=13x 3|10+ln x |e
1=43. 答案:43
9.计算下列定积分: 【1】⎠
⎛1
2【2x 2-1
x 】d x ;
【2】
30
π⎰
【sin x -sin 2x 】d x .
解析:【1】函数y =2x 2-1x 一个原函数是y =2
3
x 3-ln x .
所以⎠
⎛1
2【2x 2-1x 】d x =【23x 3-ln x 】| 2
1=163-ln 2-23=143-ln 2.
【2】函数y =sin x -sin 2x 一个原函数为y =-cos x +1
2cos 2x .
所以
30
π⎰
【sin x -sin 2x 】d x =【-cos x +1
2
cos 2x 】
30
π
=【-12-14】-【-1+12】=-14
.
10.已知f 【x 】为二次函数,且f 【-1】=2,f ′【0】=0,⎠⎛01
f (x )d x =-2. 【1】求f 【x 】解析式;
【2】求f 【x 】在[-1,1]上最大值与最小值. 解析:【1】设f 【x 】=ax 2+bx +c 【a ≠0】, 则f ′【x 】=2ax +b .由f 【-1】=2,f ′【0】=0,
得⎩⎪⎨⎪⎧ a -b +c =2b =0,即⎩⎪⎨⎪⎧
c =2-a b =0
. ∴f 【x 】=ax 2+【2-a 】.
又⎠⎛01f 【x 】d x =⎠⎛0
1[ax 2+【2-a 】]d x
=[13ax 3+ 【2-a 】x ]|1
0=2-23a =-2, ∴a =6,∴c =-4.从而f 【x 】=6x 2-4. 【2】∵f 【x 】=6x 2-4,x ∈[-1,1], 所以当x =0时,f 【x 】min =-4; 当x =±1时,f 【x 】max =2.
[B 组 能力提升]
1.若f 【x 】=x 2+2⎠⎛01f 【x 】d x ,则⎠⎛0
1f 【x 】d x =【 】
A .-1
B .-13
C.13
D .1
解析:令m =⎠⎛01f 【x 】d x ,则f 【x 】=x 2+2⎠⎛0
1f 【x 】d x =x 2+2m ,
所以m =⎠⎛0
1f 【x 】d x =⎠⎛0
1⎝
⎛⎭⎫x 2+2⎠⎛01
f (x )d x d x = ⎠⎛0
1【x 2+2m 】d x =⎠
⎛0
1
【x 2】d x +2m =13+2m ,
所以m =-13⇒⎠⎛0
1f 【x 】d x =-1
3
.
答案:B
2. ⎠⎛-3
3【x 3cos x 】d x =________.
解析:∵y =x 3cos x 为奇函数,∴⎠⎛-3
3 【x 3cos x 】d x =0.
答案:0
3.函数f 【x 】=sin 【ωx +φ】导函数y =f ′【x 】部分图象如图所示,其中,P 为图象与y 轴交点,A ,C 为图象与x 轴两个交点,B 为图象最低点.
【1】若φ=π6,点P 坐标为⎝
⎛⎭⎫
0,332,则ω=________.
【2】若在曲线段ABC 与x 轴所围成区域内随机取一点,则该点在△ABC 内概率为________. 解析:【1】y =f ′【x 】=ωcos 【ωx +φ】,当φ=π6,点P 坐标为⎝⎛⎭⎫
0,332时,
ωcos π6=33
2,所以ω=3.
【2】由题图知AC =T 2=πω,
S △ABC =12AC ·ω=π
2,
设A ,C 横坐标分别为a ,b .
设曲线段ABC 与x 轴所围成区域面积为S ,则
S =⎪⎪⎪
⎪⎠⎛a b
f ′(x )d x =|f 【x 】| b a | =|sin 【ωb +φ】-sin 【ωa +φ】|=2,
由几何概型知该点在△ABC 内概率为P =S △ABC S =π
4.
答案:【1】3 【2】π
4
4.设f 【x 】=ax +b 且⎠⎛-1
1f 2【x 】d x =1,求f 【a 】取值范围.
解析:∵⎠⎛-1
1f 2【x 】d x
=⎠⎛-1
1 【a 2x 2+2abx +b 2】d x
=【13
a 2x 3+abx 2+
b 2x 】| 1
-1
=2
3
a 2+2
b 2, ∴23a 2+2b 2=1,∴a 2=3
2-3b 2, 又∵f 【a 】=a 2+b =-3b 2+b +32
=-3【b -16】2+19
12,
∴当b =16时,f 【a 】max =19
12.
∴f 【a 】≤19
12
.
5.若f 【x 】是一次函数,且⎠⎛0
1f 【x 】d x =5,⎠⎛01
xf (x )d x =176.求⎠⎛1
2f (x )x
d x 值. 解析:∵f 【x 】是一次函数,
∴设f 【x 】=ax +b 【a ≠0】,由⎠⎛0
1【ax +b 】d x =5得
【12ax 2+bx 】|10=12
a +
b =5.①
由⎠
⎛0
1xf 【x 】d x =176得⎠⎛0
1【ax 2+bx 】d x =176,
即【13ax 3+12bx 2】|10=176,∴13a +12b =17
6.② 解①②得a =4,b =3,∴f 【x 】=4x +3, 于是⎠⎛12
f (x )x d x =⎠⎛124x +3x d x =⎠⎛1
2【4+3
x 】d x
=【4x +3ln x 】|21=8+3ln 2-4=4+3ln 2.。