气制氢装置工艺流程简介及主要设备情况说明
- 格式:docx
- 大小:27.64 KB
- 文档页数:6
天然气制氢装置技术方案一、背景随着可再生能源的快速发展,氢能作为一种清洁、高效的能源被广泛关注。
而天然气是含氢量较高的化石能源,因此天然气制氢被认为是一种可行的制氢途径。
天然气制氢装置是指利用天然气经过化学反应生成氢气的设备,其技术方案对于提高制氢效率和降低成本具有重要意义。
二、技术方案1.预处理阶段预处理阶段主要是对天然气进行净化和脱硫处理,以消除对催化剂的有害物质和杂质。
具体操作包括:(1)天然气净化:利用吸附剂吸附天然气中的杂质,如二氧化碳、硫化氢等。
(2)脱硫处理:通过添加脱硫剂使硫化氢转化为硫化物,从而降低天然气中的硫化氢含量。
2.催化重整阶段催化重整阶段是指利用催化剂对天然气进行重整反应,生成主要含量为氢气的合成气。
具体操作包括:(1)反应器选择:选择合适的反应器,如管式反应器或床层反应器,以提高反应效率。
(2)催化剂选择:选择具有高活性和稳定性的催化剂,如镍铬催化剂,以促进重整反应。
(3)反应条件控制:控制适当的温度、压力和反应物的流量,以实现最佳的重整反应效果。
3.氢气净化阶段氢气净化阶段是对合成气中的杂质进行去除和净化,以获得高纯度的氢气。
具体操作包括:(1)合成气压力升高:通过增加压力,促使合成气中的杂质与吸附剂更充分地发生作用。
(2)吸附剂选择:选择适当的吸附剂,如活性炭或分子筛,以去除合成气中的杂质,如二氧化碳、甲醇等。
(3)脱硫处理:对于从催化重整阶段引入的硫化物进行脱硫处理,以降低硫化物对催化剂的毒化作用。
三、领先技术和创新点1.新型催化剂的开发:开发具有高催化活性和选择性的新型催化剂,以提高重整反应的效率和产氢效果。
2.膜分离技术的应用:利用膜分离技术将氢气和其他气体分离,以提高氢气的纯度和产氢效率。
3.废气回收利用:将合成气中的废气进行回收和再利用,以最大程度地减少资源浪费和环境污染。
四、优势和应用前景1.天然气资源丰富:中国是天然气资源大国,利用天然气制氢能够充分利用资源优势。
制氢装置流程及关键设备介绍1.引言制氢是一种重要的能源生产方式,可以通过多种方法进行生产,如煤炭气化、水电解、天然气重整等。
本文将重点介绍水电解方法制氢的流程及关键设备。
2.水电解制氢流程水电解是指通过电解水来产生氢气的方法。
其基本原理是将水分解成氢气和氧气,反应方程式如下:2H2O->2H2+O2水电解制氢的具体流程如下:2.1水净化原水经过预处理工序,去除其中的杂质和离子,以保证水的纯净。
预处理通常包括过滤、反渗透和电去离子等步骤。
2.2电解池水电解的核心部分是电解池,它是水分解反应发生的地方。
电解池通常由阳极和阴极两部分组成,两者之间通过离子交换膜进行隔离。
阳极产生氧气,阴极产生氢气。
2.3电源系统电源系统提供电流给电解池,通常采用直流电源。
电源的电流和电压可以根据不同的需要进行调整。
2.4氢气处理通过氢气处理系统,将产生的氢气进行净化和压缩。
净化过程通常包括除湿、除杂质和除油等步骤。
经过处理的氢气可以被储存或者用于其他工业应用。
2.5氧气处理产生的氧气也需要经过处理,在氧气处理系统中进行净化和压缩。
净化步骤通常包括除湿和除杂质等。
下面将介绍水电解制氢过程中的几个关键设备:3.1电解池电解池是水电解制氢的核心设备,决定了产氢效率和质量。
电解池主要由电极和离子交换膜组成,电极通常采用铂或其他贵金属材料制成。
3.2电源系统电源系统为电解池提供所需的电流和电压。
电源的稳定性和控制精度对制氢过程至关重要。
3.3氢气处理系统氢气处理系统主要包括除湿、除杂质和除油等步骤。
除湿通常使用吸附剂或冷凝器进行,除杂质可以通过吸附或催化剂进行。
除油通常采用吸附或膜分离等方法。
3.4氧气处理系统氧气处理系统与氢气处理系统类似,也包括除湿和除杂质等步骤。
由于氧气对杂质的要求较高,除杂质的过程可能要更为严格。
4.结论水电解制氢是一种重要的制氢方法,具有高效、环保、可再生的特点。
制氢的流程包括水净化、电解池、电源系统、氢气处理和氧气处理等步骤,每个步骤都有相应的关键设备。
制氢装置工艺流程制氢装置是一种用于生产氢气的设备,通常用于工业生产中。
氢气是一种重要的工业原料,广泛应用于化工、石油、冶金等行业。
制氢装置的工艺流程通常包括原料准备、氢气生产、氢气纯化和氢气储存等步骤。
下面将详细介绍制氢装置的工艺流程。
1. 原料准备制氢装置的原料通常是水或天然气。
如果使用水作为原料,首先需要将水进行预处理,去除其中的杂质和溶解气体。
如果使用天然气作为原料,首先需要将天然气进行脱硫和脱水处理,以确保原料气体的纯度和稳定性。
2. 氢气生产氢气生产通常采用蒸汽重整、部分氧化、水煤气变换等工艺。
其中,蒸汽重整是最常用的生产氢气的方法。
在蒸汽重整工艺中,将预处理后的原料与蒸汽混合,然后通过催化剂在高温高压下进行反应,生成氢气和二氧化碳。
这是一种高效的氢气生产方法,能够获得高纯度的氢气。
3. 氢气纯化生产出的氢气中通常还会含有少量的杂质气体,如二氧化碳、一氧化碳等。
为了提高氢气的纯度,需要对氢气进行纯化处理。
氢气纯化通常采用吸附剂吸附、膜分离、压力摩擦等方法,将杂质气体从氢气中分离出来,从而获得高纯度的氢气。
4. 氢气储存生产出的高纯度氢气需要进行储存,以备后续使用。
氢气储存通常采用压缩氢气储罐或液态氢储罐。
压缩氢气储罐适用于小规模的氢气储存,液态氢储罐适用于大规模的氢气储存。
在储存过程中,需要注意氢气的安全性和稳定性,避免发生泄漏和爆炸等意外情况。
以上就是制氢装置的工艺流程。
通过原料准备、氢气生产、氢气纯化和氢气储存等步骤,可以高效地生产出高纯度的氢气,满足工业生产中对氢气的需求。
制氢装置的工艺流程在实际应用中需要严格控制各个环节的操作参数,确保氢气的质量和生产效率。
同时,也需要重视氢气的安全性,采取有效的安全措施,确保生产过程中不发生意外事故。
制氢装置的工艺流程在工业生产中发挥着重要作用,为各行业提供了稳定可靠的氢气供应。
天然气制氢装置工艺过程原料及工艺流程清晰
一、天然气制氢工艺过程
1、原料:
天然气作为原料,其单位的能量超过木炭。
天然气中含氢量为3-7%,主要是由甲烷组成。
2、工艺流程:
(1)气液分离:
经热交换、放空等操作,天然气经液气分离装置分离,得到的气体为
纯净的天然气。
(2)燃烧:
经加热和压缩后,热能和机械能组合在一起,进行燃烧,产生大量的
高压热能烟气。
(3)回流:
将烟气经过扩散塔再燃烧,燃烧后的烟气进入回流管,分为气和水,
其中气液分离后的混合物进入洗涤装置,经过多次洗涤,得到纯净的氢气。
(4)冷凝:
气液分离出来的混合物经过冷凝,冷凝出的氢气填充到压缩氢气罐中,完成气体的回收。
(5)净化:
经压缩的氢气进入净化器,通过吸附塔相当于洗涤,捕集细颗粒,净化氢气。
(6)储存:
经过净化的氢气填充到存储罐中,进行氢气的长期储存,为用户提供及时的氢气供应。
二、天然气制氢装置技术参数
(1)天然气的比热容:1.9KJ/m3·K;
(2)氢的摩尔比:1.360;
(3)氢的密度:0.093Kg/m3;
(4)氢的比热容:2.98KJ/kg·K;
(5)氢的温度:-253℃;
(6)氢气的蒸汽压:1.5kPa;。
制氢装置流程及关键设备介绍制氢装置是一种将化石燃料或其他可再生能源转化为氢气的设备。
制氢的过程涉及多个步骤和关键设备,下面将对其流程及关键设备进行介绍。
制氢装置的流程通常包括原料处理、催化剂反应、气体分离和气体纯化等环节。
下面将逐步介绍每个步骤以及关键设备。
首先是原料处理。
不同的制氢装置使用的原料可能不同,常用的原料包括天然气、石油、煤、生物质等。
原料处理的目的是去除其中的杂质和含硫化合物等有害成分,以保证后续反应的顺利进行。
关键设备包括储气罐、气体分离器、液氢分离器、吸附剂床等。
其次是催化剂反应。
原料处理后的气体进入反应器,加热并与催化剂接触以产生化学反应。
常用的制氢反应有蒸汽重整、部分氧化、燃烧、催化裂化、水煤气变换等。
不同的反应需要不同的催化剂以及反应温度和压力条件。
关键设备包括反应器、加热炉、催化剂床等。
接下来是气体分离。
制氢反应生成的气体混合物中,通常含有一定比例的氢气、二氧化碳、一氧化碳等成分。
气体分离的目的是将氢气与其他气体进行分离,以获取纯净的氢气。
常用的气体分离方法包括膜分离、吸附剂分离、液态分离等。
关键设备包括膜分离器、吸附剂床、分离塔等。
最后是气体纯化。
气体分离后的氢气可能还含有一些杂质,如微量的氧气、水蒸汽、硫化氢等。
气体纯化的目的是去除这些杂质,以满足氢气的使用要求。
常用的气体纯化方法包括催化氧化、吸附剂处理、液态纯化等。
关键设备包括纯化塔、吸附剂床、催化剂床等。
除了以上的基本流程和关键设备外,制氢装置还需要一些辅助设备来保障工艺的顺利进行。
例如气体压缩机用于提高气体压力,气体储罐用于存储气体等。
总之,制氢装置是利用催化剂进行化学反应,将化石燃料或其他可再生能源转化为纯净的氢气的设备。
其流程包括原料处理、催化剂反应、气体分离和气体纯化等步骤,关键设备包括储气罐、反应器、膜分离器、纯化塔等。
通过合理设计和运行这些设备,可以高效地制取氢气,满足工业和能源领域对氢气的需求。
天然气制氢装置工艺技术规程1.1装置概况规模及任务本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成1.2工艺路线及产品规格该制氢装置已天然气为原料,采用干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换,PSA工艺制得产品氢气。
1.3消耗定额(1000Nm3氢气作为单位产品)2.1工艺过程原料及工艺流程2.1.1工艺原理1.天然气脱硫本装置采用干法脱硫来解决该原料气中的硫份。
为了脱除有机硫,采用铁锰系转化吸取型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反映:RSH+H2=H2S+RHH2S+MnO=MnS+H2O经铁锰系脱硫剂初步转化吸取后,剩余的硫化氢,再在采用的氧化锌催化剂作用下发生下述脱硫反映而被吸取:H2S+ZnO=ZnO+H2OC2H5SH+ZnS+C2H5+H2O氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的规定。
2.蒸汽转化和变换原理原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反映,重要反映如下:CH4+H2O= CO+3H2-Q (1)一氧化碳产氢CO+H2O=CO2+H2+Q (2)前一反映需大量吸热,高温有助于反映进行;后一反映是微放热反映,高温不利于反映进行。
因此在转化炉中反映是不完全的。
在发生上述反映的同时还伴有一系列复杂的付反映。
涉及烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。
在转化反映中,要使转换率高,残余甲烷少,氢纯度高,反映温度要高,但要考虑设备承受能力和能耗,所以炉温不宜太高。
为缓和积碳,增长收率,要控制较大的水碳比。
3.变化反映的反映方程式如下:CO+H2O=CO2+H2+Q这是一个可逆的放热反映,减少温度和增长过量的水蒸气,均有助于变换反映向右侧进行,变换反映假如不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反映速度。
天然气制氢装置工艺过程原料及工艺流程
1.原料:
-天然气:天然气是制氢装置的主要原料,通过管道输送至装置。
天
然气主要成分为甲烷(CH4),其它成分包括乙烷、丙烷等。
-水蒸气:水蒸气用于促进气化反应和转化反应。
2.工艺流程:
(1)气化反应:天然气与水蒸气进行反应生成合成气。
在气化炉中,
天然气与水蒸气混合后加热至高温(一般800-1000℃),从而发生反应。
气化反应的方程式如下:
CH4+H2O→CO+3H2
反应中生成的一氧化碳(CO)主要用于后续反应的中间产物。
(2)水气转移反应:将合成气与水蒸气进一步反应得到更高含氢量的
气体。
水气转移反应的方程式如下:
CO+H2O→CO2+H2
(3)调整反应:在这一步骤中,通过控制温度和气体流量,将二氧化
碳(CO2)与一氧化碳(CO)进行反应转化,生成更多的氢气。
调整反应
的方程式如下:
CO+H2O→CO2+H2
(4)氢气纯化:通过纯化过程将合成气中的杂质去除,得到纯净的氢气。
常见的纯化方法包括吸收-洗涤法、膜分离法等。
这些方法可以去除
氢气中的二氧化碳、一氧化碳等杂质,获得高纯度的氢气。
(5)氢气储存:将纯净的氢气储存起来,以便后续使用。
常用的储氢方式包括压缩氢气储存和液态氢气储存。
以上是天然气制氢装置的工艺过程、原料及工艺流程的详细介绍。
该装置通过将天然气与水蒸气进行一系列反应和处理,最终得到纯净高纯度的氢气。
天然气制氢装置在能源转型和环保领域具有重要的应用价值。
天然气制氢装置技术方案
内容要全面
一.技术思想
天然气制氢工艺是一种高效、安全、廉价的能源转换技术,它采用氢
化反应将天然气中的碳氢化合物分解成氢气和一定量的二氧化碳,从而获
得纯净的氢气。
采用天然气制氢装置,可以获取高纯度、低成本的氢气,
并具有抗过热等特性,是一种新型的制氢工艺。
二.工艺流程
天然气制氢装置典型工艺流程如下:经过取样和初步净化的天然气进
入预压缩塔,然后经过调节器进入热稳定塔,对天然气进行预热,使其达
到一定的温度后方可制氢,然后经过氢化塔将天然气中的碳氢化合物分解
成氢气和二氧化碳,然后再将二氧化碳直接排放,进而获取纯净的氢气,
最后经过压缩一步步压高氢气的压力,得到满足用户要求的高纯度氢气。
三.工艺优势
(1)环境友好:流程中仅有二氧化碳作为副产物,而该二氧化碳可
以被直接排放,不会给环境带来污染。
(2)抗过热:在装置内安装有过热保护装置,可以有效防止设备过热,提高工作稳定性。
(3)能效高:氢化反应是一个非常具有效率的反应,可以有效利用
天然气的能量,提高工艺效率。
(4)操作简单:天然气制氢装置的操作简单,易于维护,便于掌握,可降低生产。
产品氢气24Nm3/h副产品解析气≤40℃压力0.02Mpa 流量2.年运行时刻8000小时二消耗指标外表空气30 Nm3/h置换用氮气(间断使用)50Nm3/h三.排放物解析气24 Nm3/h第二部分生产工艺介绍一生产工艺原理变压吸附工艺的原理是利用所采纳的吸附剂对不同组分的吸附容量随着压力的不同而出现差异的特性,在吸附剂的选择吸附条件下,加压吸附原料气中的杂质组分,弱吸附组分H2等通过床层由吸附器顶部排出,从而使氢气与杂质分离。
减压时被吸附的杂质组分脱附,同时吸附剂获得再生。
吸附器内的吸附剂对杂质的吸附是定量的,当吸附剂对杂质的吸附达到一定量后,杂质从吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有有用意义。
故每个吸附器在实际过程中必须通过吸附和再生时期。
对每个吸附器而言,制取净化气的过程是间歇的,必须采纳多个吸附器循环操作,才能连续制取氢气。
本装置采纳四塔流程,简称4-1-2/P工艺,即采纳四个吸附器,单塔进料,二次均压,冲洗解吸循环操作工艺,由程序操纵器操纵其程控阀门的动作进行切换,整个操作过程差不多上在环境温度下进行。
二.工艺流程简述来自界外的原料气温度≤40℃。
压力5.0Mpa,经调剂阀(PCV-201)减压至1.6Mpa后进入原料气缓冲罐(V201),压力稳固后进入与四个吸附器(T0201A~D)及一组程控阀组成的变压吸附系统。
变压吸附系统采纳四塔操作,通过吸附、二次均压降、顺放、逆放、冲洗、二次均压升、终充等工艺流程。
原料气自上而下通过其中正处于吸附状态的吸附器,由其内部的吸附剂进行选择性的吸附,原料气中大部分H2组分在通过吸附气后未被吸附,在吸附压力下从吸附器顶端流出,得到合格的产品气,经调剂阀(PCV-202)调剂后进入氢气缓冲罐(V0202),缓冲稳压后经转子流量计(FIQ-201)计量,用管道直截了当送出界外。
大部份杂质被吸附在吸附剂上,通过减压被吸附的杂质脱附(解吸气),吸附剂得到再生。
600立方天然气制氢装置工艺(一)600立方天然气制氢装置工艺简介天然气制氢是一种环保、高效的氢气生产方式。
600立方天然气制氢装置工艺是一种适用于中小型企业的制氢技术。
本文将为你介绍600立方天然气制氢装置工艺的相关内容。
工艺流程600立方天然气制氢装置工艺的流程分为以下几个步骤:1.天然气脱硫:将天然气中的硫化氢去除。
2.压缩:将净化后的天然气压缩至高压。
3.合成气制备:将压缩后的天然气和蒸汽混合产生合成气。
4.转化反应:将合成气经过转化反应得到纯氢气。
5.氢气净化:将转化反应得到的氢气进一步净化。
工艺优点•生产成本低:与传统制氢方式相比,天然气制氢的成本更低。
•环保:天然气制氢的废气中二氧化碳含量低,对环境污染小。
•适用范围广:600立方天然气制氢装置工艺适用于中小型企业,能够满足企业的氢气生产需求。
应用领域天然气制氢广泛应用于以下领域:•燃料电池汽车:氢气是燃料电池汽车的燃料之一。
•工业用途:氢气在金属冶炼、电子、医药和化学等领域有广泛应用。
•能源储存:氢气能够用于储存能源,满足能量储存和使用需求。
结语600立方天然气制氢装置工艺是一种高效、环保的氢气生产方式。
它具有生产成本低、适用范围广和可持续发展等优点,应用范围广泛。
工艺设备600立方天然气制氢装置工艺需要使用以下设备:1.脱硫设备:用于将天然气中的硫化氢去除。
2.压缩机:用于将净化后的天然气压缩至高压。
3.转化反应器:用于将合成气转化为纯氢气。
4.氢气净化设备:用于将转化反应得到的氢气进一步净化。
5.控制系统:用于对整个制氢过程的控制和监测。
工艺注意事项使用600立方天然气制氢装置工艺需要注意以下事项:1.安全第一:制氢过程中需要注意氢气的危险性,进行安全保障措施。
2.设备维护:制氢设备需要定期进行检修和维护,确保设备正常运行。
3.能源消耗:制氢过程中需要消耗大量能源,需要考虑能源消耗的问题。
4.产品质量:对于氢气的纯度和流量等要求需要符合相关的标准和规定。
天然气制氢工艺及设备简介资料1.气体预处理:天然气中常常含有一些杂质,如二氧化碳、硫化物和水等。
这些杂质在后续的制氢过程中会产生不良的影响,因此需要对天然气进行预处理。
一般的预处理方法包括酸碱洗、饱和水洗和脱硫等。
酸碱洗主要用于去除天然气中的二氧化碳和硫化物;饱和水洗则用于去除二氧化碳和水分;脱硫是指将天然气中的硫化物去除。
2.重整:重整是天然气制氢的核心工艺步骤之一、在重整过程中,天然气中的甲烷和水蒸气通过催化剂反应产生了合成气,包括氢气和一定量的一氧化碳。
这个反应的方程式如下所示:CH4+H2O->CO+3H2重整反应一般在高温高压下进行,通常使用镍基催化剂。
催化剂能够加速反应速率,并提高反应的选择性。
3.气体纯化:经过重整反应后,合成气中含有大量的一氧化碳、二氧化碳、甲烷、水蒸气等杂质。
这些杂质对于一些应用场合而言是不可接受的,因此需要进行气体纯化工艺。
一般的纯化方法包括压力摩尔吸附和膜分离等。
压力摩尔吸附是指通过吸附剂吸附掉气体中的杂质,从而得到高纯度的氢气;膜分离则是通过膜的选择性渗透性,将杂质分离出去。
除了上述的工艺步骤,天然气制氢还需要一些辅助设备来实现。
主要的设备包括压缩机、储氢罐、加热炉和催化剂等。
压缩机用于提高气体的压力,便于后续步骤的操作;储氢罐用于存储制得的氢气,以备后续使用;加热炉用于提供重整反应所需的高温;催化剂则是用于加速重整反应的进行。
总体上,天然气制氢是一项相对成熟的工艺,已经广泛应用于氢气生产领域。
随着氢能经济的推广和应用,天然气制氢的技术和设备也会不断改进和创新,以满足不同需求的氢气生产。
制氢装置流程及关键设备介绍
摘要
本文主要针对控制氢装置流程及关键设备,进行相关介绍。
首先,简要介绍控制氢装置流程,以及关键设备,其次详细阐述控制氢装置流程及关键设备的工作原理,最后深入研究尾气处理技术,有条件的情况下应当实施此技术来减少排放有害物质。
关键词:控制氢;流程;关键设备
1. Introduction
控制氢是指对氢气进行控制的技术,也叫作氢分选技术。
通常用于分离氢和其他气体或混合物,如液化空气、合成气体,以及供应气体等。
由于氢具有非常重要的能量和燃料储存价值,因此,控制氢技术的发展和应用极为重要,在现代社会中得到了广泛的应用。
2. Process of Control Hydrogen
控制氢装置流程特别复杂,首先氢气一般是从空气中提取出来,并且伴随有其他气体的混合物,然后经过空气预处理,如减压蒸发、冷凝、吸附等。
将空气前处理过后的气体放入高压膜分离装置进行膜分离,膜分离装置可以将氢气从其他气体中分离出来,氢气就可以通过控制氢装置进行控制。
3.The Key Equipment
控制氢装置的关键设备可以分为氢气提纯系统和储存系统两部分。
(1)氢气提纯系统:氢气提纯系统是指对氢气进行提纯的装置,它包括。
109单制氢装置工艺简介1 概述2×105 Nm3/h的制氢装置以天然气和饱和炼厂气为原料,采用德国Uhde公司的工艺技术,烃类蒸汽转化法造气、PSA法提纯氢气的工艺路线。
生产符合高压加氢裂化装置新氢要求的高纯氢气,同时副产9.8MPa(g)高压过热蒸汽。
1.1 装置组成制氢装置除总的公用工程系统配置外,由两个独立的系列构成,每个系列主要包括以下八个部分:炼厂气压缩部分、原料气精制部分、预转化部分、转化及余热回收部分、变换及变换气换热冷却部分、变压吸附氢提纯部分(由PSA供货商成套供应)、锅炉给水及蒸汽发生部分、公用工程部分。
1.2 工艺技术路线炼厂气压缩部分→原料气精制部分→预转化部分→转化及余热回收部分→变换及变换气换热冷却部分→变压吸附氢提纯部分1.3 主要产品装置主要产品为符合蜡油加氢裂化装置新氢要求的高纯氢气,同时副产9.8MPa(g)高压过热蒸汽和PSA解吸气。
保证条件合格的情况下,尽量往低限靠,用最低的资源生成最多的产品,减少资源的浪费。
氢气的规格如表1:2 装置工艺流程图1 制氢装置工艺流程图2.1 炼厂气压缩部分装置外来的天然气分别送入系列I、II,经天然气预热器预热到100℃,分出一部分作为转化炉的补充燃料气,其余部分作为制氢原料。
装置外来的饱和炼厂气分为三部分:一部分进入燃料气分液罐,分出可能的凝液后分别进入两系列作为转化炉补充燃料气;另一部分分别送入系列I、II作为制氢原料;其余部分通过压力控制线进入装置外的全厂燃料气管网,该线也用作全厂饱和炼厂气量有余时排入燃料气管网的洩放通道。
2.2 原料气精制部分作为原料的饱和炼厂气经炼厂气压缩机升压到3.96MPa(g),与经过预热的天然气混合,如果需要时再配入一定量从循环氢压缩机来的循环氢气(当装置按工况2操作时,需要的配氢量约3%),送入转化炉对流段的原料预热器I、II。
2.3 预转化部分上述原料气依次经过原料预热器I、II加热至370℃左右,然后依次通过加氢反应器、脱硫反应器将硫、氯含量降至0.01ppmV以下。
工艺原理1.1制氢装置主要工艺过程装置从原料净化到原料蒸汽转化及中温变换,每个过程都包含有复杂的化学反应,而产物的分离则是一个除去杂质的变压吸附过程,装置的各组成部分的催化剂有所不同,对操作的要求及处理也不同,为达到正常生产控制的目的,必须对每个过程的生产原理及催化剂性能有一定认识。
本装置制氢工艺主要由原料气净化,烃蒸汽转化,CO中温变换及中变气的PSA氢气提纯等几部分组成。
1.2制氢装置主要化学反应机理1.2.1原料气净化部分原料净化过程是在一定的温度、氢气压力和空速条件下,借助加氢催化剂作用,把原料气中硫化物、氯化物脱除,使原料气中硫含量降至0.2PPm,氯含量降至0. 1PPm,以保护好后续转化催化剂的正常运行。
原料气中硫化物对含镍蒸汽转化催化剂以及变换催化剂等一系列催化剂都有毒害作用,因此一定要脱除。
原料烃中的硫化物以多种形态存在,一般分为无机硫化物和有机硫化物两大类。
原料气中的硫化物绝大部分是有机硫化物,按有机硫化物的热稳定程度,大致可分为两类。
一类是硫醇和二硫化物,它们在150~250℃便能分解;另一类为硫醚和环状硫化物(噻吩类),它们在400℃时仍然稳定。
这些有机硫化物不能在氧化锌脱硫剂上直接反应被脱除,为了便于复杂有机硫的转化,必须使用加氢转化催化剂在氢气作用转化生成无机硫化物,再用氧化锌脱硫及吸附脱除。
一般的钴钼型加氢转化催化剂在350℃左右即可将复杂的有机硫转化为H2S,几种典型有机硫的加氢反应如下:硫醇加氢:R-SH+H2=RH+H2S硫醚加氢:R-S-R’+H2=RH+R’H+H2S噻吩加氢:C4H4S+4H2=C4H10+H2S二硫化碳加氢:CS2+H2=CH4+H2S硫氧化碳加氢:COS+H2=CO+H2S此处R-代表烷基,这些反应都是放热反应,平衡常数很大。
因此,只要反应速度足够快,有机硫的转化是很完全的。
除了上述有机硫加氢反应外,对于含有烯烃的制氢原料如焦化干气和催化干气,钴钼催化催还能使烯烃加氢成饱和烃,有机氮化物也可在一定程度上转化成氨和饱和烃了。
制氢装置工艺流程简介及主要设备情况说明
天然气制氢装置于2008年从中石化洞氮合成氨车间原料气头部分搬迁至神华。
当年设计、当年施工,当年投产。
目前运行良好。
工艺流程简要说明如下。
界区来的1.5MPa压力等级的天然气或液化干气在0101-LM和116-F脱液和除去杂质,进入原料气压缩机102-J压缩至4.2MPa,
通过调节进入转化炉对流段加热至350℃左右,进入加氢反应器
101-D加氢(有机硫转化为无机硫),氧化锌脱硫反应器108-
DA/DB除去无机硫(H2S),然后与装置内中压蒸汽管网来的
3.5MPa等级的蒸汽混合,在转化炉对流段加热至500±10℃,进入一段转化炉101-B,在镍系催化剂和高温的作用下反应,约80%左
右的原料气转化生成CO、CO2、H2,工艺介质的温度从810℃降至330℃,其中的热量在废热锅炉101-CA/CB、102-C中得到回收利用,副产10.0MPa压力等级的蒸汽,减压并入装置内3.5MPa蒸汽管网。
降温后的工艺介质进入高变反应器104DA将大部分的CO变换成
CO2,回收部分氢气,再在低变反应器104DB中反应,将少量的
CO变换成CO2和H2,经过热量回收和液体脱除后,工艺介质进入脱碳系统吸收塔1101-E,与上部下来的碳酸钾溶液对流换热、脱除CO2,吸收了热量和CO2的碳酸钾溶液从塔底进入再生塔1101-E
再生,脱除CO2后的工艺介质(氢气含量大于93%)从吸收塔顶去PSA工序,经过变压吸附得到纯度为99.5%以上的氢气,经压缩至3.0MPa送至全厂氢气管网,经过变压吸附吸附下来的富甲烷气作为燃料送至装置内转化炉燃烧。
流程简图如下:
主要设备参数(涵盖结构、性能等主要参数):
该装置动设备共计36台套,静设备78台套
102-J:
第一废热锅炉(101CA/CB):
形式:刺刀式
换热器规格:Φ1549×13335×24(44)mm
换热管规格:206根(Φ外50/Φ外25)×(3.4/1.65)×5283mm
介质:管程锅炉水/壳程转化气
重量:44010Kg
换热面积:170.9㎡
材质:壳程SA516-70/管程SA-214 SA-209Tla 设计压力:管程11.8/壳程3.4 MPa
设计温度:管程329/壳程1010 ℃
工作压力:管程7.8/壳程3.1 MPa
工作温度:管程314/壳程890 ℃
制造厂家:原产美国湘化机维修
一段转化炉:
形式:箱式炉
规格:长36700×宽18600×高21300
辐射段管数:378根
炉管材质:Hp-Nb
炉管规格:φ内89×18.6×9530 mm
出入口压力:2.3/2.4MPA
出入口温度:830/490
热负荷:73.5MW
燃烧器形式:WYNQ-DQ80 180个
WYNQ-DQ125 10个
WYNQ-DQ60 10个
制造厂家:美国凯洛格
变换反应器
规格:Φ内2134 H=14400mm
介质:天然气/氢气
重量:69854Kg
容积:48.5m³
壳体材质:SA-302GRB
衬材:SA-240
设计/工作压力:4.82/4.07MPa
设计/工作温度:454/420℃
制造厂家:美国
吸收塔:
规格:Φ内2591/Φ内3505 H=47574 δ=37/52 mm 介质:碳酸钾溶液/工艺气
重量:187695Kg
容积:400m³
塔盘形式:填料
层数:4
壳体材质:SA-516-70
设计/工作压力:3.06/2.8MPa
设计/工作温度:140/127℃
制造厂家:美国
再生塔:
规格:Φ内4270 H=56720 δ=16 介质:碳酸钾溶液/CO2
重量:116070Kg
容积:789m³
塔盘形式:填料
层数:3
壳体材质:SA-285-C SA240-T304 设计/工作压力:0.176/0.063MPa 设计/工作温度:149/120℃
制造厂家:美国
PSA:
规格:Φ2600 L=9200
介质:氢气
容积:58m³
形式:立式
壳体材质:16MnR
设计/工作压力:2.84/2.48MPa
设计/工作温度:50/40℃
制造厂家:鹤壁鑫大化工机械有限公司氢气压缩机:
尾气压缩机:。