人教版九年级数学上册 二次函数综合测试卷(word含答案)
- 格式:doc
- 大小:975.00 KB
- 文档页数:24
二次函数自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列函数中,属于二次函数的是( ) A. y =2x +lB. y =(x ﹣l )2﹣x 2C. y =5x 2D. y =22x 2. 在平面直角坐标系中,将二次函数y =x 2的图象先向右平移3个单位长度,再向上平移1个单位长度,所得新抛物线的解析式为( ) A. y =(x +3)2+1B. y =(x ﹣3)2﹣1C. y =(x +3)2﹣1D. y =(x ﹣3)2+13. 某抛物线的形状、开口方向与y =12x 2﹣4x +3相同,顶点坐标为(﹣2,1),则该抛物线的解析式为( ) A .y =12(x ﹣2)2+1 B .y =12(x +2)2﹣1C .y =12(x +2)2+1D .y =-12(x +2)2+14. 二次函数y =ax 2+bx +c 的部分图象如图所示,可知关于x 的方程ax 2+bx +c =0的所有根的积为( ) A .﹣4 B .4 C .﹣5 D .5第4题图 第8题图 第9题图 第10题图 5. 关于二次函数y =3(x +1)2﹣7的图象及性质,下列说法正确的是( ) A. 对称轴是x =1 B. 当x =﹣1时,y 取得最小值,且最小值为﹣7 C. 顶点坐标为(﹣1,7) D. 当x <﹣1时,y 随x 的增大而增大6. 某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100﹣x )件.若想获得最大利润,则售价x 应定为( )A .35元B .45元C .55元D .65元7. 一次函数y =bx +a (b ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A B C D8. 板球是以击球、投球和接球为主的运动,该项目主要锻炼手眼的协调能力,集上肢动作控制能力、技巧与力量为一体的综合性运动.如图是运动员击球过程中板球运动的轨迹示意图,板球在点A 处击出,落地前的点B 处被对方接住,已知板球经过的路线是抛物线,其解析式为y =132x 2+14x +1,则板球运行中离地面的最大高度为( )A. 1B.32C.83D. 49. 如图,在△ABC 中,∠B =90°,AB =4 cm ,BC =8 cm ,动点P 从点A 出发,沿边AB 向点B 以1 cm/s 的速度移动(不与点B 重合),同时动点Q 从点B 出发,沿边BC 向点C 以2 cm/s 的速度移动(不与点C 重合).当四边形APQC 的面积最小时,经过的时间为( ) A. 1 s B. 2 s C. 3 s D. 4 s 10. 已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的顶点坐标是(﹣1,m ),与x 轴的一个交点在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,有下列结论:①abc >0;②关于x 的方程ax 2+bx +c ﹣m =2没有实数根;③3a +c >0.其中正确的个数是( ) A .3 B .2 C .1 D .0二、填空题(本大题共6小题,每小题4分,共24分) 11. 抛物线y =x 2+2x +c 的对称轴是 . 12. 当a = 时,函数y =(a ﹣1)21a x+x ﹣3是二次函数.13. 若二次函数y =x 2﹣4x +n 的图象与x 轴只有一个公共点,则实数n = .14. 点P 1(1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是 .15. 如图,将抛物线y 1=(x +1)2﹣3向右平移2个单位长度得到抛物线y 2,则阴影部分的面积为 .第15题图 第16题图16. 圆形喷水池中心O 处有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,O 为原点建立平面直角坐标系,点A 在y 轴上,x 轴上的C ,D 为水柱的落水点.已知雕塑OA 的高为116米,水柱最高点与OA 的水平距离为5米,落水点C ,D 之间的距离为22米,则喷出水柱的最大高度为 米.三、解答题(本大题共8小题,共66分)17.(6分)已知二次函数y =x 2﹣4x +c 的图象经过点(3,0). (1)求该二次函数的解析式;(2)点P (4,n )向上平移2个单位长度得到点P ',若点P ′落在该二次函数的图象上,求n 的值. 18.(6分)已知二次函数y =x 2-4mx +3m 2(m ≠0).(1)求证:该二次函数的图象与x 轴总有两个公共点; (2)若m>0,且两交点间的距离为2,求m 的值.19.(8分)购进一款防护PM 2.5的口罩,每件成本是5元,为了合理定价,投放市场试销,经调查可知,销售单价是10元时,每天的销量是50件,而销售单价每降低0.1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数解析式; (2)求出销售单价定为多少元时,每天的利润最大,并求出最大利润. 20.(8分)如图,抛物线y =2x 2+bx ﹣2过点A (﹣1,m )和B (5,m ). (1)求b 和m 的值;(2)若抛物线与y 轴交于点C ,求△ABC 的面积.第20题图 第21题图 21.(8分)如图,已知抛物线L 1:y 1=34x 2,将抛物线平移后经过点A (﹣1,0),B (4,0)得到抛物线L 2,与y轴交于点C.(1)求抛物线L2的解析式;(2)已知P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC,若存在,求点P的坐标;若不存在,请说明理由.22.(8分)已知抛物线y=﹣x2+bx+c的顶点坐标为(2,7).(1)求b,c的值;(2)已知点A,B落在抛物线上,点A在第二象限,点B在第一象限.若点B的纵坐标比点A的纵坐标大3,设点B的横坐标为m,求m的取值范围.23.(10分)图①是一座抛物线形拱桥侧面示意图,水面宽AB与桥长CD均为24 m,在到点D的距离为6米的E处,测得桥面到桥拱的距离EF为1.5 m.以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.①②①②第23题图第24题图24.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B两点,顶点为C(1,﹣1),E为对称轴上一点,D,F为抛物线上的点(点D位于对称轴左侧),且四边形CDEF为正方形.(1)求该抛物线的解析式;(2)如图①,求正方形CDEF的面积;(3)如图②,连接DF,与CE交于点M,与y轴交于点N.若P为抛物线上一点,Q为直线BN上一点,且P,Q两点均位于直线DF下方,当△MPQ是以点M为直角顶点的等腰直角三角形时,求点P的坐标.题报第②期 二次函数自我评估参考答案答案详解三、17. 解:(1)将(3,0)代入y =x 2﹣4x +c ,得9﹣12+c =0,解得c =3. 所以该二次函数的解析式为y =x 2﹣4x +3.(2)点P (4,n )向上平移2个单位长度得到点P '(4,n +2). 将P ′(4,n +2)代入y =x 2﹣4x +3,得16﹣16+3= n +2,解得n =1.18.(1)证明:令y =0,则x 2-4mx +3m 2=0(m ≠0).因为Δ=(-4m )2﹣4×3m 2=4m 2>0,所以方程x 2-4mx +3m 2=0(m≠0)有两个不等的实数根.所以无论m 取何值,该函数的图象与x 轴总有两个公共点. (2)解:解方程x 2-4mx +3m 2=0,得x 1=m ,x 2=3m .所以函数y =x 2-4mx +3m 2的图象与x 轴两个交点的坐标为(m ,0),(3m ,0).因为m >0,两交点间距离为2,所以3m-m =2,解得m =1. 19. 解:(1)根据题意,得y =(x ﹣5)105050.1x -⎛⎫+⨯⎪⎝⎭=﹣50x 2+800x ﹣2750(5≤x ≤10).所以每天的销售利润y (元)与销售单价x (元)之间的函数解析式是y =﹣50x 2+800x ﹣2750(5≤x ≤10). (2)由(1),知y =﹣50x 2+800x ﹣2750=﹣50(x ﹣8)2+450.因为﹣50<0,5≤x ≤10,所以当x =8时,y 有最大值,最大值为450. 所以销售单价定为8元时,每天的利润最大,最大利润是450元.20. 解:(1)因为A (﹣1,m ),B (5,m )是抛物线y =2x 2+bx ﹣2上的两点,所以对称轴为x=15222b -+-=⨯,得b =﹣8.所以抛物线的解析式为y =2x 2﹣8x ﹣2.将A (﹣1,m )代入y =2x 2﹣8x ﹣2,得m =2+8﹣2=8.(2)令x=0,得y =﹣2,所以点C 的坐标为(0,﹣2).所以OC =2. 因为A (﹣1,8),B (5,8),所以AB =6.所以S △ABC =12×6×(2+8)=30. 21. 解:(1)设抛物线L 2的解析式为y=34x 2+bx+c. 将A (﹣1,0),B (4,0)代入,得3041240b c b c ⎧-+=⎪⎨⎪++=⎩,,解得943.b c ⎧=-⎪⎨⎪=-⎩,所以抛物线L 2的解析式为y=34x 294-x-3.(2)存在PD =2OC . 理由:设P 239344a a a ⎛⎫-- ⎪⎝⎭,,D 234a a ⎛⎫⎪⎝⎭,,所以PD=223933444a a a ---=934a +,OC=3.由934a +=2OC=6,解得a=43或a=-4.所以点P 的坐标为41433⎛⎫ ⎪⎝⎭,-或(﹣4,18). 22. 解:(1)因为抛物线y =﹣x 2+bx +c 的顶点坐标为(2,7),所以对称轴为x=()21b-⨯-=2,解得b =4.所以y =﹣x 2+4x +c.将(2,7)代入y =﹣x 2+4x +c ,得﹣4+8+c =7,解得c =3.所以b 的值是4,c 的值是3. (2)因为y =﹣x 2+4x +3的顶点坐标为(2,7),所以抛物线开口向下,对称轴为x =2.令x =0,得y =3,所以抛物线与y 轴的交点坐标为(0,3).所以点(0,3)关于对称轴的对称点为(4,3). 因为点A ,B 落在抛物线上,点A 在第二象限,点B 在第一象限,点B 的纵坐标比点A 的纵坐标大3,所以将y =6代入y =﹣x 2+4x +3,得﹣x 2+4x +3=6,解得x =1或x =3.所以m 的取值范围是0<m <1或3<m <4.第22题图(共享2021-2022学年第二学期答案页第8期大报第20期“专项五”3题答案) 23. 解:(1)由题意,得F (6,-1.5). 设抛物线的解析式为y 1=a 1x 2.将F (6,-1.5)代入,得62·a 1=-1.5,解得a 1=124-. 所以抛物线的解析式为y 1=124-x 2.当12x =时,y 1=-6,所以桥拱顶部离水面的距离为6 m . (2)①由题意,得右侧抛物线的顶点为(6,1).设右侧抛物线的解析式为y 2=a 2(x-6)2+1.将H (0,4)代入,得a 2(0-6)2+1=4,解得a 2=112. 所以右侧抛物线的解析式为y 2=112(x-6)2+1. ②设彩带的长度为h m ,则h =y 2-y 1=112(x-6)2+1-2124x ⎛⎫-⎪⎝⎭=18x 2–x+4=18(x–4)2+2. 因为18>0,所以h 有最小值.当x=4时,h 取得最小值,为2.所以彩带长度的最小值是2 m .24. 解:(1)设抛物线的解析式为y =a (x ﹣1)2﹣1.将A (﹣1,0)代入,得a =14,所以y =14x 2-12x -34.(2)如图①,过点F 作FR ⊥EC 于点R . 设F 2113424t t t ⎛⎫-- ⎪⎝⎭,,则R 2113424t t ⎛⎫-- ⎪⎝⎭1,,所以RC =2111424t t -+,RF =t ﹣1. 因为四边形CDEF 是正方形,所以RF =RC .所以2111424t t -+=t ﹣1.所以t =1(舍去)或t =5.所以F (5,3).所以RF =4.所以CF 2=32.所以正方形CDEF 的面积是32. (3)令y=0,则14x 2-12x -34=0,解得x=-1或x=3.所以B (3,0). 由(2)可得N (0,3),M (1,3),所以直线BN 的解析式为y =﹣x +3.设Q (m ,3﹣m ),如图②,过点Q 作QG ⊥DF 于点G ,作PT ⊥DF 于点T .因为△MPQ 是以M 为直角顶点的等腰直角三角形,所以MP =QM ,∠TMP +∠GMQ =90°,∠TMP +∠TPM =90°.所以∠TPM =∠GMQ .所以△MTP ≌△QGM .所以PT =MG ,MT =QG .所以PT =MG =m ﹣1,MT =QG =m.所以P (1﹣m ,4﹣m ).因为点P 在抛物线上,所以4﹣m =14(1﹣m )2-12(1﹣m )-34,解得m =﹣2±因为m >0,所以m =﹣2+所以P (3--.所以当△MPQ 是以M 为直角顶点的等腰直角三角形时,点P 的坐标为(3--.① ② 第24题图。
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。
人教版九年级数学上册《第二十二章二次函数》测试卷-带参考答案一、单选题1.将二次函数化为顶点式正确的是()A.B.C.D.2.若将抛物线先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.B.C.D.3.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.B.C.D.4.如图,小强在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮筐底的距离l是()A.3m B.3.5m C.4m D.4.5m5.函数,当时,此函数的最小值为,最大值为1,则m的取值范围是()A.B.C.D.6.二次函数与x轴的两个交点的横坐标分别为m和n,且,则下列结论正确的是()A.B.C.D.7.如图,抛物线与轴交于点,点的坐标为,在第四象限抛物线上有一点,若是以为底边的等腰三角形,则点的横坐标为()A.B.C.D.或8.已知二次函数的部分图象如图所示,图象经过点,其对称轴为直线.下列结论:①;②若点,均在二次函数图象上,则;③关于x的一元二次方程有两个相等的实数根;④满足的x的取值范围为.其中正确结论的个数为().A.1个B.2个C.3个D.4个二、填空题9.抛物线的顶点在轴上,则.10.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,如果水面下降0.5m,那么水面宽度增加m.11.函数是描述现实世界中变化规律的数学模型,运用函数知识可以解决实际问题,如飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式形,则飞机着陆后滑行的最大距离是m.12.已知点、和都在函数的图象上,则、和的大小关系为(用“”连接).13.如图,抛物线与x轴相交于点、点,与y轴相交于点C,点D 在抛物线上,当轴时,.三、解答题14.如图,一辆宽为米的货车要通过跨度为米,拱高为米的单行抛物线隧道从正中通过,抛物线满足表达式保证安全,车顶离隧道的顶部至少要有米的距离,求货车的限高应是多少.15.电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中,且x为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?16.教科书中例1:有一个窗户形状如图①所示,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这道例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形(如图②),材料总长仍为6 m,利用图②,解答下列问题:(1)若AB为1m,求此时窗户的透光面积.(2)与教科书中例1比较,改变窗户形状后,窗户的透光面积的最大值有没有变大?请通过计算说明.17.某杂技团进行杂技表演,演员从跷跷板的右端处弹跳起经过最高点后下落到右端的椅子处,其身体看成一点运动的路线是一条抛物线的一部分,如图,已知,演员起跳点的高度,演员离开地面的最大高度是,此时,演员到起跳点的水平距离为.(1)求该抛物线的解析式;(2)已知人梯高,为了成功完成此次表演,那么人梯到起跳点的水平距离应为多少18.如图,抛物线与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)若点P是抛物线段上的一点,当的面积最大时求出点P的坐标,并求出面积的最大值.(3)点F是抛物线上的动点,作交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案:1.B2.A3.A4.D5.C6.C7.A8.B9.2510.2 ﹣411.60012.13.414.解:当时米.答:货车的限高应是米.15.(1)解:设y与x之间的函数关系式为由已知得解得因此y与x之间的函数关系式为(其中,且x为整数);(2)解:设每周销售这款玩具所获的利润为W由题意得W关于x的二次函数图象开口向上,且x为整数当时,W取最大值,最大值为1800即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.16.(1)解:由已知可得:AD==则S=1×=;(2)解:设AB= xm,则AD=(3-x)m,AF=(3-x)m∵AB>0,AD>0,AF>0∴0<x<设窗户的面积为S由已知可得:S= AB×AD= x(3-x)=-x2+3x=-(x-)2+当x=时,S有最大值,为∵>1.05∴现在窗户透光的最大值变大.17.(1)解:根据题意可知,抛物线的顶点坐标为设抛物线的解析式为把代入得:解得:抛物线的解析式为(2)解:当时解得:不符合题意,舍去答:人梯到起跳点的水平距离应为.18.(1),和(2)解:如图,连接设点当时,即点P的坐标为时,有最大值;(3)解:存在.①如图,当四边形为时抛物线对称轴为直线的坐标为②如图,当四边形为时,作于点G和和综上所述,点F的坐标为或或。
人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)人教版九年级上册数学第二十二章二次函数综合训练题一、单选题1.在下列表达式中,x是自变量,是二次函数的是()A.B.C.D.2.下列二次函数的图象与x轴没有交点的是()A.B.C.D.3.对于二次函数,当时,y随x的增大而增大,则满足条件的m的取值范围是()A.B.C.D.4.已知二次函数的图像上有三点,则的大小关系为()A.B.C.D.5.将抛物线向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.B.C.D.6.抛物线的部分图象如图所示,则一元二次方程的根为()A.B.,C.,D.,7.根据下列表格的对应值,判断方程(,、、为常数)一个解的范围是()A.B.C.D.8.如图,抛物线的对称轴为直线,与x轴的一个交点坐标为,如图所示,下列结论:①;②方程的两个根是;③;④当时,x的取值范围是;⑤当时,y随x增大而增大,其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题9.抛物线与y轴的交点坐标为.10.已知二次函数的图象经过点,且顶点坐标为,则二次函数的解析式为.11.抛物线向上平移1个单位长度,再向左平移3个单位长度后,得到的抛物线顶点坐标是.12.抛物线的二次项系数是;一次项系数是.13.已知函数的图象过原点,则a的值为14.若抛物线的图象与坐标轴只有两个公共点,则m的值为.15.一名学生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则该学生推铅球的水平距离为.16.如图,抛物线与x轴交于两点,与y轴交于C点,在该抛物线的对称轴上存在点Q使得的周长最小,则的周长的最小值为.三、解答题17.抛物线经过点.(1)求这个二次函数的关系式;(2)为何值时,的值随着的增大而增大?18.抛物线的对称轴是直线,且过点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.19.如图,抛物线与x轴交于A、B两点,与y轴交于C点.(1)求A点和点B的坐标;(2)判断的形状,证明你的结论;(3)直接写出当时,自变量x的取值范围.20.如图,抛物线与x轴交于,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上运动到什么位置时,满足,并求出此时P点的坐标;(3)点Q是直线下方抛物线上一点,当Q运动到什么位置,的面积最大,求出面积的最大值和此时点Q的坐标.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:… 0 1 2 …… 0 5 …(1)直接写出表格当中的m值:_________;(2)直接写出这个二次函数的表达式_________;(3)在图中画出这个二次函数的图象.(4)直接写出当时,y的取值范围是_________.(5)直接写出当时,x的取值范围是_________.22.有一长为的篱笆,一面利用墙(墙的最大可用长度a为),围成中间隔着一道篱笆的长方形花圃,花圃的宽为,面积为.(1)求S关于x的函数解析式;(2)如果要围成面积为的花圃,的长是多少m?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?24.如图是二次函数的图象,其顶点坐标为.(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由.(3)在y轴上存在一点Q,使得周长最小,求此时构成的的面积.参考答案:1.D2.B3.D4.B5.D6.D7.C8.D9.10.11.12. 1 413.214.15.16./17.(1)(2)18.(1);(2);19.(1)A、B的坐标分别为:,,(2)是直角三角形,(3)有图像可得:时,或.20.(1)(2)或(3)当轴时,的面积最大,最大值为1,此时点Q的坐标为21.(1)0(2)(4)(5)22.(1)(2)花圃的长为(3)能;围法:花圃的长为,宽为,这时有最大面积23.(1)(2)当售价为65元时,每月销售该商品的利润最大,最大利润为6250元.24.(1),(2)存在,或(3)3。
人教版九年级数学上册第二十二章《二次函数》测试卷(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.抛物线的对称轴是()A.直线B.直线C.轴D.直线2.如果二次函数的最小值为负数,则的取值范围是()A. B. C. D.3.二次函数的图象如图所示,对称轴,下列结论中正确的是()A. B.C. D.4.已知二次函数的图象如图所示,有下列个结论:①;②;③;④其中正确的结论有()A.个B.个C.个D.个5.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+66.下列函数解析式中,一定为二次函数的是()A.y=x+3 B.y=ax2+bx+c C.y=t2﹣2t+2 D.y=x2+7.若二次函数的图象过,,,则,,的大小关系是()A. B.C. D.8.一学生推铅球,铅球行进高度与水平距离之间的关系是,则铅球落地水平距离为()A. B. C. D.9.已知抛物线经过三点,,则,,的大小关系为()A. B.C. D.10.如图是二次函数图象的一部分,其对称轴是,且过点,下列说法:①;②;③;④若,是抛物线上两点,则,其中说法正确的是()A.①②B.②③C.①②④D.②③④二、填空题(每题3分,共24分) 11.经过原点的抛物线与x轴交于另一点,该点到原点的距离为2,且该抛物线经过(3,3)点,则该抛物线的解析式为.12.若实数a、b满足a+b2=2,则a2+5b2的最小值为.13.某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,若销售价每涨1元,则月销售量减少10千克.要使月销售利润达到最大,销售单价应定为元.14.已知直线y=﹣x+1与抛物线y=x2+k一个交点的横坐标为﹣2,则k= .15.抛物线y=x2﹣2x﹣3与交y轴负半轴于C点,直线y=kx+2交抛物线于E、F 两点(E点在F点左边).使△CEF被y轴分成的两部分面积差为5,则k的值为.16.若抛物线y=(a+1)x2﹣(a+1)x+1与x轴有且仅有一个公共点,则a的值为.17.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第象限.18.若二次函数y=x2-3x-4的图象如图所示,则方程x2-3x-4=0的解是__________;不等式x2-3x-4>0的解集是______________;不等式x2-3x-4<0的解集是________________.三.解答题(共46分,19题6分,20 ---24题8分)19. 已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?20. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22. 已知抛物线,如图所示,直线是其对称轴,确定,,,的符号;求证:;当取何值时,,当取何值时.23. 如图,矩形的两边长,,点、分别从、同时出发,在边上沿方向以每秒的速度匀速运动,在边上沿方向以每秒的速度匀速运动.设运动时间为秒,的面积为.求关于的函数关系式,并写出的取值范围;求的面积的最大值.24.某工厂设门市部专卖某产品,该每件成本每件成本元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:销售单位(元)…日销售量…假设每天定的销价是不变的,且每天销售情况均服从这种规律.秋日销售量与销售价格之间满足的函数关系式;门市部原设定两名销售员,担当销售量较大时,在每天售出量超过件时,则必须增派一名营业员才能保证营业有序进行.设营业员每人每天工资为元,求每件产品应定价多少元,才能使每天门市部纯利润最大?(纯利润总销售-成本-营业员工资)参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 C A C A B C C B A A 二、填空题11.y=x2﹣2x或y=x2+x.12.4.13.70.14.﹣1.15.﹣4.16.解:∵y=(a+1)x2﹣(a+1)x+1与x轴有且仅有一个公共点,∴b2﹣4ac=(a+1)2﹣4(a+1)=a2﹣2a﹣3=0,解得:a1=3,a2=﹣1,当a=﹣1,则a+1=0,故舍去.故答案为:3.17.解:根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.18.【答案】x1=4,x2=-1;x>4或x<-1;-1<x<4三.解答题19. 解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.20. 解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.21.【答案】解:∵P(m,n)是抛物线y=x2+1上一动点,∴m2+1=n,∴m2=4n-4,∵点A(0,2),∴AP===n,∴点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,∵AP=2AD,∴PF=2DE,∴OF=2OE,设OE=a,则OF=2a,∴×(2a)2+1=2(a2+1),解得a=,∴a2+1=×2+1=,∴点D的坐标为(,),设OP的解析式为y=kx,则k=,解得k=,∴直线OP的解析式为y=x.【解析】根据点P在抛物线上用n表示出m2,再利用勾股定理列式求出AP,从而得到点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,根据AP=2AD判断出PF=2DE,得到OF=2OE,设OE=a,表示出OF=2a,然后代入抛物线解析式并列出方程求出a的值,再求出点D的坐标,最后利用待定系数法求一次函数解析式解答.22. 解:∵抛物线开口向下,∴,∵对称轴,∴,∵抛物线与轴的交点在轴的上方,∴,∵抛物线与轴有两个交点,∴;证明:∵抛物线的顶点在轴上方,对称轴为,∴当时,;根据图象可知,当时,;当或时,.23. 解:∵,,,∴,即;由知,,∴,∵当时,随的增大而增大,而,∴当时,,即的最大面积是.24.解:经过图表数据分析,日销售量与销售价格之间的函数关系为一次函数,设,经过、,代入函数关系式得,,解得:,,故;设每件产品应定价元,利润为,当日销售量时,,解得:,由题意得,∵,∴取时,取得最大,元;当日销售量时,,解得:,由题意得,∵,∴取时,取得最大,元;综上可得:当每件产品应定价元,才能使每天门市部纯利润最大.。
人教版九年级数学上册第二十二章《二次函数》测试题(含答案)一、单选题1.下列函数中,y 是x 的二次函数的是( ) A .22(1)y x x =--B .(2)y x x =-+C .21y x=D .2x y =2.若函数2221()m m y m m x --=+是二次函数,则m 的值是( ) A .2B .-1或3C .-1D .33.已知二次函数y =(a ﹣1)x 2﹣x +a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定4.苹果熟了,从树上落下所经过的路线s 与下落的时间t 满足s=212gt (g 是不为0的常数),则s 与t 的函数图象大致是( )A .B .C .D .5.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .132x =,25x 2=D .1x 4=-,2x 0=6.由二次函数22(3)1y x =-+可知( ) A .其图象的开口向下 B .其图象的对称轴为3x =- C .其最大值为1D .当3x <时,y 随x 的增大而减小7.二次函数y =﹣2x 2+4x +1的图象如何平移可得到y =﹣2x 2的图象( ) A .向左平移1个单位,向上平移3个单位 B .向右平移1个单位,向上平移3个单位 C .向左平移1个单位,向下平移3个单位 D .向右平移1个单位,向下平移3个单位8.如果二次函数2(0)y ax bx c a =++≠的图像如图所示,那么( )A .a 0,b 0,c 0<>>B .0,0,0a b c >>>C .0,0,0a b c ><<D .0,0,0a b c >><9.已知函数y =kx 2﹣7x ﹣7的图象和x 轴有交点,则k 的取值范围是( )A .74k >-B .74k ≥-C .74k ≥-且k ≠0D .74k >-且k ≠010.根据表格中代数式ax 2+bx +c =0与x 的对应值,判断方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围是( )x 6.17 6.18 6.19 6.20 ax 2+bx +c ﹣0.03﹣0.010.020.06A .6<x <6.17B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.2011.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截得的线段长为2.你认为四人的说法中,正确的有( )A .1个B .2个C .3个D .4个12.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( ) A .90元,4500元 B .80元,4500元 C .90元,4000元 D .80元,4000元二、填空题13.若二次函数y =(m +2)23mx -的图象开口向下,则m =______.14.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上,则m -n 的最大值为_________.15.抛物线223(0)y ax ax a =--≠与x 轴交于两点,分别是()0m ,,(),0n ,则m n +的值为_______.16.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为______.17.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.三、解答题18.已知抛物线y =ax 2-2ax -6+a 2(a ≠0) (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其对应的函数的解析式.19.已知二次函数2y x px q +=+的图象经过(0,1),(2,1)A B -两点. (1)求,p q 的值.(2)试判断点(1,2)P -是否在此函数的图象上.20.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为区域ABCD 的面积为y m 2. (1)求y 与x 之间的函数关系式;(2)当x 为何值时,y 有最大值?最大值是多少?21.已知二次函数2123y x x =--的图像与x 轴交于A 、B 两点(A 在B 的左侧),与y轴交于点C ,顶点为D .(1)求点A 、B 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图像; (2)设一次函数()20y kx b k =+≠的图像经过B 、C 两点,请直接写出满足12y y <的x 的取值范围.22.已知,如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求①MCB 的面积.23.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?24.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x(元/件)(x≥24),每天销售利润为y(元).(1)直接写出y与x的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.参考答案1.BA . 22(1=)2+1y x x x =---是一次函数,不合题意;B . 2(2)=2y x x x x =-+--是二次函数,合题意;C . 21y x =不是二次函数,不合题意; D . 2x y =不是函数,不合题意; 故选:B . 2.D根据题意得:22212m m m m ⎧+≠⎨--=⎩解得:m=3. 故选:D . 3.C解:①二次函数y =(a ﹣1)x 2﹣x +a 2﹣1 的图象经过原点, ①a 2﹣1=0, ①a =±1, ①a ﹣1≠0, ①a ≠1, ①a 的值为﹣1. 故选:C 4.B 解:由21,2s gt =可得:s 是t 的二次函数,且函数图像经过原点,图像的开口向上, 所以:A 错误,B 正确,,C D 错误, 故选:.B 5.A解:①二次函数y=ax 2+1的图象经过点(-2,0), ①4a+1=0,①a=-14,①方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A . 6.D解:22(3)1y x =-+,∴抛物线开口向上,对称轴为3x =,顶点坐标为(3,1), ∴函数有最小值1,当3x <时,y 随x 的增大而减小, 故选:D . 7.C解:二次函数y =﹣2x 2+4x +1的顶点坐标为(1,3),y =﹣2x 2的顶点坐标为(0,0), 只需将函数y =﹣2x 2+4x +1的图象向左移动1个单位,向下移动3个单位即可. 故选:C . 8.C解:①图象开口方向向上, ①a >0;①图象的对称轴在y 轴的右边上, ①2ba->0, ①a >0, ①b <0;①图象与y 轴交点在y 轴的负半轴上, ①c <0;①a >0,b <0,c <0. 故选:C . 9.B解:当0k =时,函数为77y x =--,为一次函数,与x 轴有交点,符合题意; 当0k ≠,函数为277y kx x =--,为二次函数, 因为图像与x 轴有交点所以,2(7)470k ∆=-+⨯≥,解得74k ≥-且0k ≠综上,74k ≥-故选B 10.C解:①当x =6.18时,y =-0.01<0;当x =6.19时,y =0.02>0,①当x 在6.18<x <6.19的范围内取某一值时,对应的函数值为0,即ax 2+bx +c =0,①方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围为6.18<x <6.19. 故选:C . 11.C解:①抛物线过(1,0),对称轴是x =2,① 30b 22a a b ++=⎧⎪⎨-=⎪⎩ ,解得a =1,b =-4,①y =x 2-4x +3,当x =3时,y =0,所以小华正确, 当x =4时,y =3,小彬正确, a =1,小明也正确,抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x =2,此时答案不唯一,所以小颖也错误, 故答案为:C . 12.B解:设每月总利润为w , 依题意得:(50)w y x =-(5550)(50)x x =-+- 2580027500x x =-+-25(80)4500x =--+50-<,此图象开口向下,又50x ≥,∴当80x =时,w 有最大值,最大值为4500元.故选:B . 13.5①y =(m +2)23m x -是二次函数,①m 2-3=2, 解得:5m =± ①二次函数y =(m +2)23m x -的图象开口向下,①m +2<0, ①2m <-,52>-,52--, ①5m =- 故答案为:5-14.154-解:二次函数y =x 2+ax +4以y 轴为对称轴 02a∴-= ,即0a = , ∴ 二次函数解析式为24y x =+ ,点P (m ,n )在二次函数y =x 2+ax +4的图象上, 24n m ∴=+ ,()2221154424m n m m m m m ⎛⎫∴-=--=---=--- ⎪⎝⎭ ,∴ m -n 的最大值为154-. 故答案为:154-. 15.2解:①抛物线y =ax 2-2ax -3与x 轴交于两点,分别是(m ,0),(n ,0), ①2.2am n a-+=-=. 故答案是:2. 16.12x =-,21x =解:①抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,①方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,即关于x 的方程20ax bx c --=的解为12x =-,21x =. 故答案为x 1=-2,x 2=1. 17.10m解:根据题意,以C 为坐标原点建立如图所示的平面直角坐标系,则B (12,﹣8), 设该抛物线的表达式为y =ax 2,将B (12,﹣8)代入,得:﹣8=a ·122, 解得:a =118-, ①该抛物线的表达式为y =118-x 2, 当x =18时,y =118-×182=﹣18,①E (18,﹣18), ①点E 到直线AB 的距离为﹣8﹣(﹣18)=10m ,故答案为:10m .18.(1)222226(1)6y ax ax a a x a a =--+=-+--, ∴对称轴为直线1x =;(2)由题可知,当抛物线顶点在x 轴上时, 260a a --=, (3)(2)0a a -+=,解得:3a =或2a =-,当3a =时,函数解析式为2363y x x =-+; 当2a =-时,函数解析式为2242y x x =-+-. 19.解:(1)把A (0,1),B (2,-1)代入y =x 2+px +q ,得1421q p q =⎧⎨++=-⎩, 解得:31p q =-⎧⎨=⎩,①p ,q 的值分别为-3,1;(2)把x =-1代入y =x 2-3x +1,得y =5, ①点P (-1,2)不在此函数的图象上. 20.解:(1)设BC 的长度为x m ,则AB =13(40﹣x )m ,则矩形区域ABCD 的面积y =13x (40﹣x )=﹣13x 2+403x ;(2)①y =﹣13x 2+403x =13-(x ﹣20)2+4003 ,①当x =20时,y 有最大值,最大值是4003m 2. 21.解:(1)令y=0时,则有2023x x -=-,解得:121,3x x =-=, ①()1,0A -;()3,0B ;由二次函数2123y x x =--可得顶点式为()2114y x =--, ①()1,4D -,图像如图所示:(2)由题意画出直线()20y kx b k =+≠的图像,如图所示,则由图像可得:当12y y <时,03x <<.22.(1)①A (﹣1,0),C (0,5),(1,8)三点在抛物线y=ax 2+bx+c 上, ①058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解方程组,得145a b c =-⎧⎪=⎨⎪=⎩,故抛物线的解析式为y=﹣x 2+4x+5;(2)①y=﹣x 2+4x+5=﹣(x ﹣5)(x+1)=﹣(x ﹣2)2+9,①M (2,9),B (5,0),设直线BC 的解析式为:y=kx+b ,550b k b =⎧⎨+=⎩,解得,15k b =-⎧⎨=⎩则直线BC 的解析式为:y=﹣x+5.过点M 作MN①y 轴交BC 轴于点N ,则①MCB 的面积=①MCN 的面积+①MNB 的面积=12MN OB ⋅. 当x=2时,y=﹣2+5=3,则N (2,3),则MN=9﹣3=6, 则165152MCB S =⨯⨯=. 23.(1)解:根据题意,得65557545k b k b +=⎧⎨+=⎩,解得:1120k b =-⎧⎨=⎩, ①所求一次函数的表达式为y =-x +120;(2)解:W =(x -60)•(-x +120)=-x 2+180x -7200=-(x -90)2+900,①抛物线的开口向下,①当x <90时,W 随x 的增大而增大,①60≤x ≤60×(1+45%),①60≤x ≤87,①当x =87时,W 有最大值,此时W =-(87-90)2+900=891.答:销售单价定为87元时,商场可获得最大利润,最大利润是891元. 24.解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由()2210640880010321440y x x x =-+-=--+可得100-<, ①该二次函数的图象开口向下,对称轴为直线32x =,①每件小商品的售价不超过36元,①当32x =时,该商场每天销售此商品的利润为最大,最大值为1440; 答:该商场每天销售此商品的最大利润为1440元.。
2022-2023学年人教版九年级数学上册《第22章二次函数》单元综合测试题(附答案)一、选择题(本大题共12小题,共36分)1.下列函数中不属于二次函数的是()A.y=(x+1)(x﹣2)B.y=(x+1)2C.y=2(x+2)2﹣2x2D.y=1﹣x22.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+2 3.已知抛物线y=x2﹣x+1,与x轴的一个交点为(m,0),则代数式m2﹣m+2022的值为()A.2020B.2021C.2022D.20234.将抛物线y=2(x﹣4)2﹣1先向右平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣35.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=36.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)7.已知抛物线y=a(x﹣2)2+k(a>0,a,k为常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.9.抛物线y=﹣x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.x<﹣4或x>1B.x<﹣3或x>1C.﹣4<x<1D.﹣3<x<1 10.已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()A.ac<0B.b<0C.b2﹣4ac<0D.a+b+c<0 11.若二次函数y=ax2+bx+c(a<0)图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值612.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0二、填空题(本大题共6小题,共24分)13.顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为.14.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.把二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,则y=ax2+bx+c图象顶点坐标是.16.如图,一为运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+,此运动员将铅球推出m.17.是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是.18.如图,线段AB=8,点C是AB上一点,点D、E是线段AC的三等分点,分别以AD、DE、EC、CB为边作正方形,则AC=时,四个正方形的面积之和最小.三、解答题(本大题共7小题,共60分)19.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象写出A、B、C三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴.20.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出方程ax2+bx+c<0时x的取值范围;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.22.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,﹣m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是直线x=﹣)25.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案一、选择题(本大题共12小题,共36分)1.解:A、y=(x+1)(x﹣2)是二次函数,故此选项不合题意;B、y=(x+1)2是二次函数,故此选项不合题意;C、y=2(x+2)2﹣2x2=8x+8不是二次函数,故此选项符合题意;D、y=1﹣x2是二次函数,故此选项不合题意;故选:C.2.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.3.解:∵抛物线y=x2﹣x+1与x轴的一个交点为(m,0),∴m2﹣m+1=0,∴m2﹣m+2022=m2﹣m+1+2021=2021.故选:B.4.解:抛物线y=2(x﹣4)2﹣1的顶点坐标为(4,﹣1),∵向右平移4个单位长度,再向下平移2个单位长度,∴平移后的函数图象的顶点坐标为(8,﹣3),∴平移后所得抛物线解析式为y=2(x﹣8)2﹣3,故选:D.5.解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是直线x==1.故选:A.6.解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.7.解:抛物线y=a(x﹣2)2+k(a>0,a,k为常数)的对称轴为直线x=2,所以A(﹣3,y1)到直线x=2的距离为5,B(3,y2)到直线x=2的距离为1,C(4,y3)到直线的距离为2,所以y2<y3<y1.故选:C.8.解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选:B.9.解:函数的对称轴为:x=﹣1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(﹣3,0),故:y<0时,x<﹣3或x>1,故选:B.10.解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵﹣>0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选:B.11.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.12.解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选:B.二、填空题(本大题共6小题,共24分)13.解:设顶点式y=a(x+2)2﹣5,将点(1,﹣14)代入,得a(1+2)2﹣5=﹣14,解得a=﹣1,∴y=﹣(x+2)2﹣5,即y=﹣x2﹣4x﹣9.14.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.15.解:y=2(x﹣1)2的顶点坐标为(1,0),∵二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,∴二次函数y=ax2+bx+c的解析式为:y=2(x+1)2﹣3,∴二次函数y=ax2+bx+c的顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).16.解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.17.解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(﹣2,﹣2)点,故﹣2=4a,a=﹣,故y=﹣.18.解:设AC为x,四个正方形的面积和为y.则BC=8﹣x,AD=DE=EC=,∴y=3×()2+(8﹣x)2=x2﹣16x+64=,∴x=﹣=6时,四个正方形的面积之和最小.故答案为6.三、解答题(本大题共7小题,共60分)19.解:(1)根据二次函数的图象可知:A(﹣1,0),B(0,﹣3),C(4,5),把A(﹣1,0),B(0,﹣3),C(4,5)代入y=ax2+bx+c可得,解得.即二次函数的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=y=(x﹣1)2﹣4,∴此抛物线的顶点坐标(1,﹣4),和对称轴x=1.20.解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.21.解:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴y=(x﹣1)2﹣4令y=0得(x﹣1)2﹣4=0令y=0得(x﹣1)2﹣4=0解得x1=3,x2=﹣1∴A(﹣1,0),B(3,0)(2)∵△P AB与△MAB同底,且S△P AB=S△MAB,∴|y P|=×4=5,即y P=±5又∵点P在y=(x﹣1)2﹣4的图象上∴y P≥﹣4∴y P=5,则(x﹣1)2﹣4=5,解得x1=4,x2=﹣2∴存在合适的点P,坐标为(4,5)或(﹣2,5).22.解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.23.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.24.解:(1)设二次函数的解析式为y=a(x﹣2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=﹣.所以二次函数的解析式为y=﹣(x﹣2)2+1;(2)∵抛物线y=﹣(x﹣2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2;(3)∵点P(m,﹣m)(m≠0)为抛物线y=﹣(x﹣2)2+1上一点,∴﹣m=﹣(m﹣2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,﹣8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(﹣4,﹣8).25.解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).。
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。
第二十二章 二次函数 单元复习与检测题(含答案)一、选择题1、下列结论正确的是( )A.二次函数中两个变量的值是非零实数;B.二次函数中变量x 的值是所有实数;C.形如y=ax 2+bx+c 的函数叫二次函数;D.二次函数y=ax 2+bx+c 中a,b,c 的值均不能为零 2、抛物线的顶点在( )A .第一象限B .第二象限C .轴上D .轴上3、已知抛物线y=x 2﹣8x+c 的顶点在x 轴上,则c 等于( ) A .4B .8C .﹣4D .164、把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ).A . ()231y x =+-B .()233y x =++C .()231y x =--D .()233y x =-+ 5、关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点C .对称轴是直线x=1D .当x >1时,y 随x 的增大而减小6、二次函数223y x x =--的图象如上图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >37、将函数y=x 2+6x+7进行配方正确的结果应为( ) A 、y=(x+3)2+2 B 、y=(x-3)2+2C 、y=(x+3)2-2D 、y=(x-3)2-28、抛物线y=a (x-h )2+k 向左平移2个单位,再向下平移3个单位得到y=x 2+1,则h 、k 的值是( )A .h=-2,k=-2B .h=2,k=4C .h=1,k=4D .h=2,k=-2 9、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =- D 、2(1)y a x =- 10、关于平行四边形的对称性的描述,错误的是( )A .平行四边形一定是中心对称图形;B .平行四边形一定是轴对称图形;C .平行四边形的对称中心是两条对角线的交点;D .平行四边形的对称中心只有一个二、填空题11、用一根长为8m 的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.12、若点P 和Q (1,)都在抛物线上,则线段PQ 的长为 。
二次函数综合测试卷一、填空:(30分)1.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.2.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x2上.3.已知二次函数y=x2-2(k+1)x+k2+2的图象与x轴交点的横坐标分别为x1,x2,且(x1+1)(x2+1)=8,则k的值为__________.4.如果y与x2成正比例,并且它的图象上一点P的横坐标a和纵坐标b分别是方程x2-x-6=0的两根,那么这个函数的解析式为_________.5.抛物线y=x2-4x+11的对称轴是直线________,顶点坐标为________.6.如果抛物线y=-23x2+(m+2)x+27m的对称轴为直线x=32,则m的值为_________.7.把函数y=5x2+10mx+n的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x2+30x+44,则m=_______,n=_______.8.二次函数y=a x2+bx+c中的a、b、c满足条件________时,•它的图象经过坐标系中的四个象限.9.开口向下的抛物线y=a(x+1)(x-4)与x轴交于A、B两点,与y•轴交于点C.•若∠ACB=90°,则a的值为________.10.如图,二次函数y=x2-ax+a-5的图象交x轴于点A和B,交y轴于点C,当线段AB•的长度最短时,点C的坐标为________.二、选择题:(20分)11.在同一直角坐标系内,二次函数y1=ax2+bx+c与y2=cx2+bx+a的图象大致为()12.在同一直角坐标系内,函数y=ax2+bx与y=bx(b≠0)的图象大致为()13.给出下列四个函数:y=-2x,y=2x-1,y=3x(x>0),y=-x2+3(x>0),其中y随x•的增大而减小的函数有()A.3个 B.2个 C.1个 D.0个14.当m取任何实数时,抛物线y=-2(x-m)2-m的顶点所在的直线为()A.x轴 B.y轴 C.y=x D.y=-x15.当m取任何实数时,抛物线y=-2(x+m)2-m2的顶点所在的曲线为()A.y=x2 B.y=-x2 C.y=x2(x>0) D.y=-x2(x>0)16.已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于x轴对称,则a、b、c•的值分别是() A.-1,4,-3 B.-1,-4,-3 C.-1,4,3 D.-1,-4,317.已知抛物线y=a x2+bx+c(a≠0)与抛物线y=x2-4x+3关于y轴对称,则函数y=ax2+bx+c的解析式为()A.y=x2+4x+3 B.y=x2-4x-3 C.y=x2+4x-3 D.y=-x2-4x+318.从一张矩形纸片ABCD的较短边AD上找一点E,过这点剪下两个半圆,它们的直径分别是AE、DE,要使剪下的两个半圆的面积和最小,点E应选在()A.边AD的中点外 B.边AD的13处 C.边AD的14处 D.边AD的15处19.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,x n,如果用x作为这条路线长度的近似值,当x=p时,(x-x1)2+(x-x2)2+…+(x-x n)2最小,则p的值为()A.1n(x1+x2+…+x n) B.1n(x1-x2-…-x n)C.1nn+(x1+x2+…+x n) D.1nn+(x1+x2+…+x n)20.已知函数y=-(x-1)2-(x-3)2-(x-5)2-(x-7)2,当x=p时,函数y取得最大值,则p•的值为()A.4 B.8 C.10 D.16三、解答题:(90分)1.如图,△OAB是边长为2的等边三角形,直线x=t•截这个三角形所得位于直线左方的图形面积为y.(1)写出以自变量为t的函数y的解析式;(2)画出(1)中函数y的图象.2.如图,AB是半径为R的圆的直径,C为直径AB上的一点,•过点C•剪下两个正方形ADCE和BFCG,它们的对角线分别是AC、CB.要使剪下的两个正方形的面积和最小,•点C应选在何处?3.已知一个二次函数的图象过点A(-1,10),B(1,4),C(2,7),点D和B•关于抛物线的对称轴对称,问是否存在与抛物线只有一个公共点D的直线?如果存在,求出符合条件的直线;如不存在,请说明理由.4.如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n,方程x2-mx+n=0的两根倒数和为-2.(1)求n的值;(2)求此抛物线的解析式;(3)设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF•为直径的圆恰好与x轴相切,若存在,求出此圆的半径;若不存在,说明理由.5.某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过x度,•那么这个月这户居民只交10元用电费.如果超过x度,这个月除了要交10元用电费外,超过部分按每度元交费.(1)该厂某户居民1月份用电90度,超过了x度的规定,试用x的代数式表示超过部分应交的电费(元);(2)下表是这户居民2月、3月的用电情况和交费情况,请根据表中的数据,•求出电厂规定的这个标准x度.月份用电量(度)交电费总数(元)2月 80 253月 45 106.如图(1),平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A•点坐标为(10,0),C点坐标为(0,6).D是BC边上的动点(与点B、C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,使△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.(1)如图②,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;(3)一般地,请你猜想直线DE与抛物线y=-124x2+6的公共点的个数,•在图②的情形中通过计算验证你的猜想;如果直线DE与抛物线y=-124x2+6始终有公共点,请在图①中作出这样的公共点.附加题:(10分)当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+3m-2. ① 得y=(x-m )2+3m-2 ②抛物线的顶点坐标为(m ,3m-2),即32x my m =⎧⎨=-⎩ 当m 的值变化时,x ,y 的值也随之变化,•因而y 值也随x 值的变化而变化.将③代入④,得y=3x-2 ⑤可见不论m 取任何实数抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=3x-2,即抛物线①的顶点总在直线y=3x-2上.在上述过程中,由①到②所用的数学方法是__________;由③、④到⑤所用的数学方法是________.请解答:求出抛物线y=x 2-4mx+4m 2-2m•的顶点的纵坐标y 和横坐标x 之间的关系式.答案:一、填空: 1.y=-16x 2+56x-1 (52,124)2.13±63 3.14.y=-29x 2和y=34x 25.x=2 (2,7) 6.0 7.1 18.a 、c 异号,b 为任何实数 9.-10.(0,-3)(设A (x 1,0),B (x 2,0).(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=a 2-4a+20=(a-2)2+16.当a=2时,•线段AB 的长度最短为4,此时y=x 2-2x-3,点C 的坐标为(0,-3) 二、选择题:11.D 12.D 13.A 14.D 15.B 16.A 17.A 18.A 19.A 20.A 三、解答题:1.(1)y=223(01)23(2)3(2)2t t t t ⎧≤≤⎪⎪⎨⎪--+≤≤⎪⎩(2)如第1题图.2.设AC 长为x ,BC 长为2R-x ,S 正方形ADCE =12x 2,S 正方形BFCG =12(2R-x )2. 两个正方形面积之和为y=12x 2+12(2R-x )2=x 2-2Rx+2R 2=(x-R )2+R 2, 当x=R 时,两个正方形面积之和有最小值R 2,此时点C 应选在AB•的中点处,即圆心.3.过点A 、B 、C 的抛物线的解析式为y=2x 2-3x+5,其对称轴为直线x=34. 因D 和B 关于直线x=34对称,所以D 点坐标为(12,4). 与抛物线只有一个公共点D 的直线有两条:(1)平行于y 轴,即直线x=12. (2)不平行于y 轴,设直线为y=kx+b ,因为过D 点,所以4=12k+b . 即k=8-2b ,(8-2b )x+b=2x 2-3x+5.2x 2+(2b-11)x+5-b=0.方程有两个相等的实数根,△=(2b-11)2-8(5-b )=0,解得b=92,k=-1.所以y=-x+92.符合条件的直线为y=-x+92和x=12. 4.(1)设A (x 1,0),B (x 2,0),则OA=-x 1,OB=x 2.因为AB 是直径,OC ⊥AB ,所以CO 2=OA·OB ,•即n 2=-x 1x 2. 又x 1x 2=n ,所以n 2=-n ,n=-1,n=0(舍去). (2)11x +21x =1212x x x x +=-2,又x 1+x 2=m ,x 1x 2=-1,1m -=-2,m=2, 所求的抛物线的解析式为y=x 2-2x-1.(3)由(2)得抛物线的对称轴为x=1.设满足条件的圆的半径为│a │, 则点F•的坐标为(1+│a │,a ),点F 在抛物线上,a=(1+│a │)2-2(1+│a │)-1,即a 2-a-2=0,a 1=2,a 2=-1, 所求的圆的半径为1或2,故存在以EF 为直径的圆,恰好与x 轴相切. 5.(1)100x(90-x )元 (2)表格中的数据告诉我们,这户居民2月份用电超标,3•月份用电不超标, 可见45≤x<80,列出方程10+100x(80-x )=25,即x 2-80x+150=0,解得x 1=30,x 2=50. 因45≤x<80,所以x=30,电厂规定的标准是30度.6.(1)解:根据题意,可知D (6,6),E (10,2),直线DE 的函数关系式为y=-x+12. (2)解:根据题意,可知∠CDO=∠ODF ,∠BDE=∠GDE .∠CDO+∠ODF+∠BDE+∠GDE=180°,•∠CDO+∠BDE=90°,∠COD+∠CDO=90°,∠COD=∠BDE .又∠COD=∠DBE=90°,△COD ≌△BDE .CE COBE BD=. 根据题意,可知BE=6-b ,BD=10-a ,6610a b a =--,b+16a 2-53a+6=16(a-5)2+116. 当a=5时,b 最小值=116.(3)猜想:直线DE 与抛物线y=-124x 2+6只有1个公共点. 证明:由(1)可知,DE 所在直线为y=-124x+12. 代入抛物线y=-x 2+6,消去y ,得-124x 2+6=-x+12.化简,得x 2-24x+144=0,△=0. 直线DE 与抛物线y=-124x 2+6只有1个公共点. 作法一:延长OF 交DE 于点H ,作法二:在DB 上取点M ,使DM=CD ,过M 作MH ⊥BC ,交DE 于点H . 附加题:配方法; 消元法; y=-4x.。
人教版九年级上册数学二次函数综合训练题一.选择题(共10小题)1.如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A.5 B.4 C.3 D.22.如图,点M是抛物线y=ax2(x>0)上的任意一点,MA⊥x轴于点A,MB⊥y轴于点B,连接AB,交抛物线于点P,则的值是()B.C.D.A.3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④ C.①②③D.①②③④4.已知二次函数y=x2﹣2ax+6,当﹣2≤x≤2时,y≥a,则实数a的取值范围是()A.B.﹣2≤a≤2 C.D.0≤a≤25.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y ﹣1 ﹣0.49 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.36.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为()A.15 B.18 C.21 D.247.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+3上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.3 D.48.如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+B.1﹣C.﹣1 D.1﹣或1+9.二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中可能的图象为()A.B.C.D.10.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(﹣1,﹣4)C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(1,4)二.填空题(共6小题)11.已知函数y=,其图象如图中的实线部分,图象上两个最高点分别是A,B,连接AB,则图中曲四边形ABCO(阴影部分)的面积是.12.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=﹣x2﹣5x+c经过点B、C,则菱形ABCD的面积为.13.如图,在平面直角坐标系中,抛物线y=﹣x2+4x的顶点为A,与x轴分别交于O、B两点,过顶点A分别作AC⊥x轴于点C,AD⊥y轴于点D,连接BD,交AC于点E,则△ADE与△BCE的面积和为.14 如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.15.如图,在平面直角坐标系中,抛物线y=a(x﹣3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=﹣x2﹣2于点B,则A、B两点间的距离为.16.如图,在平面直角坐标系中,正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,抛物线y=﹣x2+3bx+2b+经过B、C两点,则正方形OABC的周长为.三.解答题(共10小题)17.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.19.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;(2)在抛物线上有一点P,满足S△AOP=1,请直接写出点P的坐标.20.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.21.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.22.如图,二次函数y=ax2﹣2ax+3(a≠0)的图象与x、y轴交于A、B、C三点,其中AB=4,连接BC.(1)求二次函数的对称轴和函数表达式;(2)若点M是线段BC上的动点,设点M的横坐标为m,过点M作MN∥y轴交抛物线于点N,求线段MN的最大值;(3)当0≤x≤t时,则3≤y≤4,直接写出t的取值范围.23.如图1为抛物线桥洞,已知底面宽AB=16m,与拱顶M的距离4m.(1)在图2中,建立适当的坐标系,求抛物线的解析式;(2)若水深1米,求水面CD的宽度(结果用根号表示)24.如图,已知等腰直角△ABC的直角边长与正方形DEFG的边长均为8cm,EF与AC在同一条直线上,开始时点A与点F重合,让△ABC向左移动,运动速度为1cm/s,最后点A与点E重合.(1)试写出两图形重叠部分的面积y(cm2)与△ABC的运动时间x(s)之间的关系式;(2)当点A向左运动2.5s时,重叠部分的面积是多少?25.如图,对称轴为直线x=﹣1的抛物线y=x2+bx+c与x轴相交于A,B两点,其中A点的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,点C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.如图,抛物线y=(x+1)2﹣4与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求A、C两点的坐标;(2)抛物线的对称轴上存在一点P,使得△PBC的周长最小,求此时点P的坐标及最小周长;(3)点M是抛物线上一动点,且在第三象限,当四边形AMCO的面积最大时,求出四边形AMCO的最大面积及此时点M的坐标.答案一、选择1.C.2.A.3.C.4.C5.C.6.B.7.B.8.A9.A.10.A.二.填空题11.2.12.20.13.4.14.15.15.7.16.8.三.解答题17.解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.18.解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得,,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|y P|=4×AB×,∴|y P|=9,y P=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).19.解:(1)将A(﹣2,0)、O(0,0)代入解析式y=﹣x2+bx+c,得c=0,﹣4﹣2b+c=0,解得c=0,b=﹣2,所以二次函数解析式:y=﹣x2﹣2x=﹣(x+1)2+1,所以,顶点B坐标(﹣1,1);(2)∵AO=2,S△AOP=1,∴P点的纵坐标为:±1,∴﹣x2﹣2x=±1,当﹣x2﹣2x=1,解得:x1=x2=﹣1,当﹣x2﹣2x=﹣1时,解得:x1=﹣1+,x2=﹣1﹣,∴点P的坐标为(﹣1,1)或(﹣1+,﹣1))或(﹣1﹣,﹣1).20.解:(1)∵OM=ON=4,∴M点坐标为(4,0),N点坐标为(0,4),设抛物线解析式为y=a(x﹣4)2,把N(0,4)代入得16a=4,解得a=,所以抛物线的解析式为y=(x﹣4)2=x2﹣2x+4;(2)∵点A的横坐标为t,∴DM=t﹣4,∴CD=2DM=2(t﹣4)=2t﹣8,把x=t代入y=x2﹣2x+4得y=t2﹣2t+4,∴AD=t2﹣2t+4,∴l=2(AD+CD)=2(t2﹣2t+4+2t﹣8)=t2﹣8(t>4).21.解:(1)y=﹣x2﹣2x+3=﹣(x+1)2+4,顶点坐标为(﹣1,4),对称轴x=﹣1;(2)令y=0,得﹣x2﹣2x+3=0,解得:x1=1,x2=﹣3,故与x轴的交点坐标:(1,0),(﹣3,0)(3)画出函数的图象如图:22.解:(1)∵二次函数解析式为y=ax2﹣2ax+3,∴对称轴x=1,∵AB=4,∴A(﹣1,0),B(3,0),把(﹣1,0)代入二次函数的解析式得到a=﹣1,∴二次函数的解析式为y=﹣x2+2x+3.(2)∵直线BC的解析式为y=﹣x+3,设M(m,﹣m+3),则N(m,﹣m2+2m+3),∴NM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴m=时,MN有最大值,最大值为.(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标(1,4),∵y=3时3=﹣x2+2x+3,解得x=0或2,∴0≤x≤t时,则3≤y≤4,∴结合图象可知,1≤t≤2.23.解:(1)建立如图所示的坐标系,设这条抛物线的解析式为y=ax2+4(a≠0).由已知抛物线经过点B(8,0),可得0=a×82+4,有a=﹣,∴抛物线的解析式为y=﹣x2+4.(2)当y=1时,1=﹣x2+4,解得:x=±4,4﹣(﹣4)=8,∴水面CD的宽为8m.24.解(1)重叠部分的面积y与线段AF的长度x之间的函数关系式为y=x2.(2)当点A向左移动2cm,即x=2cm,当x=25时,y=×2.52=3.125(cm2).所以当点A向左移动2.5cm时,重叠部分的面积是3.125cm2.25.解:(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).(2)①将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.∵将x=0代入得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=4S△BOC,∴OC•|a|=OC•OB,即×3×|a|=4××3×1,解得a=±4.当a=4时,点P的坐标为(4,21);当a=﹣4时,点P的坐标为(﹣4,5).∴点P的坐标为(4,21)或(﹣4,5).②如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴当x=﹣时,QD有最大值,QD的最大值=.26.解:(1)令x=0,得y=﹣3,∴点C坐标(0,﹣3).令y=0则(x+1)2﹣4=0,解得x=﹣3或1,∴点A坐标(﹣3,0),B(1,0),∴A(﹣3,0),C(0,﹣3).(2)如图1中,连接AC交对称轴于P,∵PB=PA,∴PB+PC=PB+PA,∴此时PB+PC最短,△PBC的周长最短,设直线AC解析式为y=kx+b则解得,∴直线AC解析式为y=﹣x﹣3,∵对称轴x=﹣1,∴点P坐标(﹣1,﹣2),在Rt△AOC中,∵∠AOC=90°,OA=OC=3,∴AC=3,∵BC===,∴△PBC周长的最小值为3+.(3)如图2中,设M(m,m2+2m﹣3),连接OM.∵S四边形AMCO=S△AOM+S△MOC=×3×(﹣m2﹣2m+3)+×3×(﹣m)=﹣m2﹣m+=﹣(m+)2+,∵﹣<0,∴m=﹣时,四边形AMCO面积最大,最大值为,此时点M(﹣,﹣).。
人教版九年级数学上册《第二十二章二次函数》单元测试卷(附答案)一、选择题1.下列函数中是二次函数的是( )A. y=3x−1B. y=3x2−1C. y=(x+1)2−x2D. y=x3+2x−32.已知点A(−3,y1),B(2,y2),C(3,y3)在抛物线y=2x2−4x+c上,则y1、y2、y3的大小关系是( )A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y2>y3>y13.在同一直角坐标系中,一次函数y=−kx+1与二次函数y=x2+k的大致图象可以是( )A. B. C. D.4.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. y=3(x−1)2−2B. y=3(x+1)2−2C. y=3(x+1)2+2D. y=3(x−1)2+25.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )A. (72,0) B. (3,0) C. (52,0) D. (2,0)6.如图,在△ABC中∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )A. 19cm2B. 16cm2C. 15cm2D. 12cm27.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度ℎ(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…ℎ08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是( )A. 1B. 2C. 3D. 48.小飞研究二次函数y=−(x−m)2−m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=−x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当−1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是( )A. ①B. ②C. ③D. ④9.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为( )A. −1B. −3C. −5D. −710.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1−m,−1−m]的函数的一些结论,其中不正确的是( )A. 当m=−3时,函数图象的顶点坐标是(13,8 3 )B. 当m>0时,函数图象截x轴所得的线段长度大于32C. 当m≠0时,函数图象经过同一个点D. 当m<0时,函数在x>1时,y随x的增大而减小4二、填空题11.请写出一个二次函数表达式,使其图象的对称轴为y轴:______.12.某个函数具有性质:当x<0时,y随x的增大而增大,这个函数的表达式可以是________(只要写出一个符合题意的答案即可).13.若关于x的方程x2−2ax+a−2=0的一个实数根为x1≥1,另一个实数根x2≤−1,则抛物线y=−x2+ 2ax+2−a的顶点到x轴距离的最小值是______.14.若二次函数y=ax2+bx+c的x与y的部分对应值如表,则当x=−1时,y的值为______.x−7−6−5−4−3−2y−27−13−335315.抛物线y=−x2+bx+c的部分图象如图所示,则关于x的一元二次方程−x2+bx+c=0的解为______.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n> ax2+bx+c的解集是________.17.如图,在平面直角坐标系中,二次函数y=−12x2+2x+2的图象与x轴、y轴分别交于A、B、C三点,点D是其顶点,若点P是x轴上一个动点,则CP+DP的最小值为.18.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=−12x2的图象,则阴影部分的面积是________.19.如图,拋物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在抛物线上,则4a−2b+c的值为________.20.当a≤x≤a+1时,函数y=x2−2x+1的最小值为1,则a的值为________.三、解答题21.由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=−2x+1000.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22.在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(−1,0),(2,0).(1)求这个二次函数的表达式;(2)求当−2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2−m)x+2−m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a<3<b,求m的取值范围.23.如图,在平面直角坐标系中,二次函数y=ax2+4x−3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.24.已知抛物线y=ax2+bx+1经过点(1,−2),(−2,13).(1)求a,b的值;(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12−y1,求m的值.25.如图,二次函数y=ax2+bx+2的图像与x轴相交于点A(−1,0),B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图像上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P、C、Q顶点的三角形与▵ABC相似,求点P的坐标.答案和解析1.【答案】B【解析】【分析】此题主要考查了一次函数以及二次函数的定义,正确把握相关定义是解题关键.直接利用一次函数以及二次函数的定义分别分析得出答案.【解答】解:A.y=3x−1是一次函数,故此选项错误;B.y=3x2−1是二次函数,故此选项正确;C.y=(x+1)2−x2化简为y=2x+1,故此选项错误; D.y=x3+2x−3不是二次函数,故此选项错误;故选B.2.【答案】B【解析】【分析】本题考查二次函数的性质,根据二次函数的增减性即可解答.关键是确定抛物线的对称轴为直线x=1,根据点到对称轴的距离的大小即可解答.【解答】解:y=2x2−4x+c=2(x−1)2+c−2,则抛物线的对称轴为直线x=1∵抛物线开口向上,−3<1<2<3且点A(−3,y1)到对称轴的距离比C(3,y3)远∴y1>y3>y2.故选B.3.【答案】A【解析】解:由y=x2+k可知抛物线的开口向上,故B不合题意;若二次函数y=x2+k与y轴交于负半轴,则k<0∴−k>0∴一次函数y=−kx+1的图象经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.根据二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=−kx+1经过的象限,对比后即可得出结论.本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键.4.【答案】A【解析】【分析】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先确定抛物线y=3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(1,−2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2的顶点坐标为(0,0)把点(0,0)先向右平移1个单位,再向下平移2个单位后所得对应点的坐标为(1,−2)所以新抛物线的表达式为y=3(x−1)2−2.故选A.5.【答案】B【解析】【分析】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2根据两个交点关于对称轴直线x=1对称可知:x1+x2=2即x2−1=2,得x2=3∴抛物线与x轴的另一个交点为(3,0)故选:B.6.【答案】C【解析】解:在Rt△ABC中∠C=90°,AB=10cm,BC=8cm∴AC=√ AB2−BC2=6cm.设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm∴S四边形PABQ =S△ABC−S△CPQ=12AC⋅BC−12PC⋅CQ=12×6×8−12(6−t)×2t=t2−6t+24=(t−3)2+15.∵1>0∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选:C.在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6−t)cm,CQ=2tcm 利用分割图形求面积法可得出S四边形PABQ=t2−6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解;本题考查了二次函数的最值以及勾股定理,解题的关键是:利用分割图形求面积法找出S四边形PABQ=t2−6t+24.7.【答案】B【解析】【分析】本题考查二次函数的应用.由题意,抛物线经过(0,0),(9,0)所以可以假设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1,可得ℎ=−t2+9t=−(t−4.5)2+20.25,由此即可一一判断.【解答】解:根据抛物线的对称性可得抛物线经过(9,0),设抛物线的解析式为ℎ=at(t−9),把(1,8)代入可得a=−1∴ℎ=−t2+9t=−(t−4.5)2+20.25∴足球距离地面的最大高度为20.25m,故①错误∴抛物线的对称轴t=4.5,故②正确∵t=9时ℎ=0∴足球被踢出9s时落地,故③正确∵t=1.5时ℎ=11.25,故④错误.∴正确的有②③.8.【答案】C【解析】解:二次函数y=−(x−m)2−m+1(m为常数)①∵顶点坐标为(m,−m+1)且当x=m时∴这个函数图象的顶点始终在直线y=−x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得−(x−m)2−m+1=0其中m≤1解得:x1=m−√ −m+1∵顶点坐标为(m,−m+1)且顶点与x轴的两个交点构成等腰直角三角形∴|−m+1|=|m−(m−√ −m+1)|解得:m=0或1当m=1时,二次函数y=−(x−1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴x1+x22>m∵二次函数y=−(x−m)2−m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=−1<0∴y1>y2故结论③错误;④当−1<x<2时,y随x的增大而增大,且a=−1<0∴m的取值范围为m≥2.故结论④正确.故选:C.根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.9.【答案】C【解析】解:根据题意知点N的横坐标的最大值为4,此时对称轴过B点,点N的横坐标最大,此时的M点坐标为(−2,0)当对称轴过A点时,点M的横坐标最小,此时的N点坐标为(1,0),M点的坐标为(−5,0)故点M的横坐标的最小值为−5故选:C.根据顶点P在线段AB上移动,又知点A、B的坐标分别为(−2,3)、(1,3),分别求出对称轴过点A和B时的情况,即可判断出M 点横坐标的最小值.本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.10.【答案】D【解析】【分析】此题考查二次函数的性质,二次函数与一元二次方程以及二次函数图象上点的坐标特征,熟悉相关知识点是解题的关键.A 、把m =−3代入[2m,1−m,−1−m]求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、通过找到定点,即可解决问题;D 、首先求得对称轴,利用二次函数的性质解答即可. 【解答】解:因为函数y =ax 2+bx +c 的特征数为[2m,1−m,−1−m];A 、当m =−3时y =−6x 2+4x +2=−6(x −13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时令y =0,有2mx 2+(1−m)x +(−1−m)=0,解得:x 1=1,x 2=−12−12m|x 2−x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确;C 、当x =1时y =2mx 2+(1−m)x +(−1−m)=2m +(1−m)+(−1−m)=0函数图象都经过同一个点(1,0),故当m ≠0时,函数图象经过同一个定点此结论正确.D 、当m <0时,y =2mx 2+(1−m)x +(−1−m)是一个开口向下的抛物线,其对称轴是:直线x =m−14m 在对称轴的右边y 随x 的增大而减小.因为当m <0时,m−14m=14−14m >14即对称轴在x =14右边,因此函数在x =14右边先增大到对称轴位置,再减小,此结论错误; 故选:D .11.【答案】y =x 2(答案不唯一)【解析】解:∵图象的对称轴是y 轴 ∴函数表达式为y =x 2(答案不唯一) 故答案为y =x 2(答案不唯一).根据形如y =ax 2+c 的二次函数的性质直接写出即可. 本题考查了二次函数的性质.12.【答案】y =−x 2(答案不唯一)【解析】【分析】本题主要考查的是一次函数的性质,正比例函数的性质,反比例函数的性质,二次函数的性质的有关知识,直接根据函数的性质写出一个符合题意的解析式即可. 【解答】解:∵当x <0时,y 随x 的增大而增大 ∴这个函数的表达式可以为y =−x 2 故答案为y =−x 2(答案不唯一).13.【答案】169【解析】解:∵关于x 的方程x 2−2ax +a −2=0的一个实数根为x 1≥1,另一个实数根x 2≤−1∴{1+2a +a −2≤01−2a +a −2≤0解得:−1≤a ≤13.抛物线y =−x 2+2ax +2−a 的顶点坐标为(a,a 2−a +2)∵a 2−a +2=(a −12)2+74∴当a =13时a 2−a +2取最小值169. 故答案为:169.由一元二次方程根的范围结合图形,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由二次函数的性质可得出抛物线的顶点坐标,利用配方法即可求出抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值.本题考查了抛物线与x 轴的交点、二次函数的性质以及二次函数的最值,通过解一元一次不等式组求出a 的取值范围是解题的关键.14.【答案】−3【解析】【分析】本题主要考查了二次函数的性质,解答本题的关键是根据表格数据得到二次函数图象的对称轴,此题难度不大.根据表格可知,二次函数图象的对称轴为x =−3,进而求出横坐标为−1的点关于x =−3的对称点,进而得到答案. 【解答】解:∵x=−4,y=3;x=−2,y=3;∴二次函数图象的对称轴为直线x=−2−42=−3∵−1−52=−3∴横坐标为−1的点与横坐标为−5的点关于x=−3对称∴当x=−1时y=−3故答案为−3.15.【答案】x1=1,x2=−3【解析】解:观察图象可知,抛物线y=−x2+bx+c与x轴的一个交点为(1,0),对称轴为直线x=−1∴抛物线与x轴的另一交点坐标为(−3,0)∴一元二次方程−x2+bx+c=0的解为x1=1,x2=−3.故答案为x1=1,x2=−3.本题考查二次函数的性质,以及二次函数与一元二次方程.直接观察图象,抛物线与x轴的一个交点为(1,0),对称轴是直线x=−1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程−x2+bx+c=0的解.16.【答案】x<−1或x>4【解析】【分析】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<−1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方∴不等式mx+n>ax2+bx+c的解集为x<−1或x>4.故答案为x<−1或x>4.17.【答案】2√ 10【解析】【分析】本题考查了二次函数的性质、轴对称−最短路线问题以及勾股定理的应用,熟练掌握二次函数的性质、轴对称的性质是解题关键.作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D与x轴交于P点.分别求出C,C′,D,E坐标,可得DE 与C′E的长度,进而可求C′D,即可解答.【解答】解:如图,作DE⊥y轴于点E,取点C关于x轴的对称点C′,连接C′D交x轴于点P则C′D的长就是CP+DP的最小值.把x=0代入y=−12x2+2x+2,得y=2∴C(0,2)∴C′(0,−2).∵y=−12x2+2x+2=−12(x−2)2+4∴点D(2,4),E(0,4)∴DE=2,C′E=6.在Rt△C′DE中C′D=√ 22+62=2√ 10即CP+DP的最小值为2√ 10.18.【答案】2π【解析】解:∵12与−12互为相反数∴C1与C2的图象关于x轴对称∴x轴下方阴影部分的面积正好等于x轴上方空白部分的面积则阴影部分的面积S=12×π×22=2π.故答案为2π.根据二次函数的性质可知C1与C2的图象关于x轴对称,从而得到x轴下方阴影部分的面积正好等于x轴上方空白部分的面积,所以,阴影部分的面积等于⊙O的面积的一半,然后列式计算即可得解.本题考查了二次函数的性质,根据函数的对称性判断出阴影部分的面积等于⊙O的面积的一半是解题的关键,也是本题的难点.19.【答案】0【解析】【分析】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0)∴与x轴的另一个交点Q(−2,0)把(−2,0)代入解析式得:0=4a−2b+c∴4a−2b+c=0故答案为0.20.【答案】2或−1【解析】【分析】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2−2x+1=1解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1∴a=2或a+1=0∴a=2或a=−1故答案是2或−1.21.【答案】解:(1)由题意得:w=(x−200)y=(x−200)(−2x+1000)=−2x2+1400x−200000;(2)令w=−2x2+1400x−200000=40000解得:x=300或x=400故要使每月的利润为40000元,销售单价应定为300或400元;(3)y =−2x 2+1400x −200000=−2(x −350)2+45000当x =250时y =−2×2502+1400×250−200000=25000; 故最高利润为45000元,最低利润为25000元.【解析】(1)根据销售利润=每天的销售量×(销售单价−成本价),即可列出函数关系式; (2)令y =40000代入解析式,求出满足条件的x 的值即可; (3)根据(1)得到销售利润的关系式,利用配方法可求最大值.本题考查了二次函数的实际应用,难度适中,解答本题的关键是熟练掌握利用配方法求二次函数的最大值.22.【答案】解:(1)由二次函数y =x 2+px +q 的图象经过(−1,0)和(2,0)两点∴{1−p +q =04+2p +q =0,解得{p =−1q =−2 ∴此二次函数的表达式y =x 2−x −2; (2)∵抛物线开口向上 对称轴为直线x =−1+22=12∴在−2≤x ≤1范围内当x =−2时,函数有最大值为:y =4+2−2=4; 当x =12时函数有最小值:y =1412−2=−94∴最大值与最小值的差为:4−(−94)=254;(3)∵y =(2−m)x +2−m 与二次函数y =x 2−x −2图象交点的横坐标为a 和b ∴x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0 ∵a <3<b ∴a ≠b∴Δ=(m −3)2−4×(m −4)=(m −5)2>0 ∴m ≠5∵a <3<b当x =3时(2−m)x +2−m >x 2−x −2把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1∴m 的取值范围为m <1.【解析】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质,数形结合是解题的关键.(1)由二次函数的图象经过(−1,0)和(2,0)两点,组成方程组再解即可求得二次函数的表达式;(2)求得抛物线的对称轴,根据图象即可得出当x =−2时,函数有最大值4;当x =12时函数有最小值−94,进而求得它们的差;(3)由题意得x 2−x −2=(2−m)x +2−m ,整理得x 2+(m −3)x +m −4=0,因为a <3<b ,a ≠b ,Δ=(m −3)2−4×(m −4)=(m −5)2>0,把x =3代入(2−m)x +2−m >x 2−x −2,解得m <1. 23.【答案】解:(1)把B(1,0)代入y =ax 2+4x −3,得0=a +4−3,解得a =−1∴y =−x 2+4x −3=−(x −2)2+1∴A(2,1)∵对称轴直线x =2,B ,C 两点关于x =2对称∴C(3,0)∴当y >0时1<x <3.(2)∵D(0,−3)∴点D 平移到A ,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y =−(x −4)2+5. 【解析】本题考查抛物线与x 轴的交点,二次函数的性质,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)利用待定系数法求出a ,再求出点C 的坐标即可解决问题.(2)由题意点D 平移的A ,抛物线向右平移2个单位,向上平移4个单位,由此可得抛物线的解析式.24.【答案】解:(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1得,{−2=a +b +113=4a −2b +1解得:{a =1b =−4;(2)由(1)得函数解析式为y =x 2−4x +1 把x =5代入y =x 2−4x +1得y 1=6∴y 2=12−y 1=6∵y 1=y 2,对称轴为x =2∴m +52=2∴m =−1.【解析】本题考查了二次函数图象上点的坐标特征和待定系数法求解析式,解方程组,正确理解题意是解题的关键.(1)把点(1,−2),(−2,13)代入y =ax 2+bx +1解方程组即可得到结论;(2)把x =5代入y =x 2−4x +1得到y 1=6,于是得到y 1=y 2,再根据对称轴x =2,即可得到结论.25.【答案】解:(1)抛物线解析式为y =a(x +1)(x −4)即y =ax 2−3ax −4a ,则−4a =2 解得a =−12所以抛物线解析式为y =−12x 2+32x +2;(2)①作PN ⊥x 轴于N ,交BC 于M ,如图BC =√ 22+42=2√ 5当x =0时y =−12x 2+32x +2=2,则C(0,2)设直线BC 的解析式为y =mx +n ,把C(0,2),B(4,0)得 {n =24m +n −0,解得{m =−12n =2∴直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2)则M(t,−12t +2)∴PM =−12t 2+32t +2−(−12t +2)=−12t 2+2t ∵∠NBM =∠NPQ∴△PQM∽△BOC∴PQ :OB =PM :BC 即PQ =2√ 5∴PQ =−√ 55t 2+√ 54t =−√ 55(t −2)2+4√ 55∴当t =2时,线段PQ 的最大值为4√ 55;②当∠PCQ =∠OBC 时△PCQ∽△CBO 此时PC//OB ,点P 和点C 关于直线x =32对称 ∴此时P 点坐标为(3,2);当∠CPQ =∠OBC 时△CPQ∽△CBO∵∠OBC =∠NPQ∴∠CPQ =∠MPQ ,而PQ ⊥CM ∴△PCM 为等腰三角形∴PC =PM∴t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2解得t =32,此时P 点坐标为(32,258)综上所述,满足条件的P 点坐标为(3,2)或(32,258). 【解析】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质和等腰三角形的性质;会利用待定系数法求一次函数和二次函数的解析式.能运用相似比计算线段的长或表示线段之间的关系;能利用分类讨论的思想解决数学问题.(1)设交点式y =a(x +1)(x −4),再展开可得到−4a =2,解得a =−12,然后写出抛物线解析式; (2)①作PN ⊥x 轴于N ,交BC 于M ,如图,先利用待定系数法求出直线BC 的解析式为y =−12x +2,设P(t,−12t 2+32t +2),则M(t,−12t +2),用t 表示出PM =−12t 2+2t ,再证明△PQM∽△BOC ,利用相似比得到PQ =−√ 55t 2+√ 54t ,然后利用二次函数的性质解决问题;②讨论:当∠PCQ =∠OBC 时△PCQ∽△CBO ,PC//x 轴,利用对称性可确定此时P 点坐标;当∠CPQ =∠OBC 时△CPQ∽△CBO ,则∠CPQ =∠MPQ ,所以△PCM 为等腰三角形,则PC =PM ,利用两点间的距离公式得到t 2+(−12t 2+32t +2−2)2=(−12t 2+2t)2,然后解方程求出t 得到此时P 点坐标.。
人教版九年级数学上册22章二次函数综合训练一、选择题(本大题共8道小题)1. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3) B.(1,-3)C.(-1,3) D.(-1,-3)2. 二次函数y=x2-2x-2的图象与坐标轴的交点个数是()A.0 B.1 C.2 D.33. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个4. 抛物线y=-3x2+6x+2的对称轴是()A.直线x=2 B.直线x=-2C.直线x=1 D.直线x=-15. 已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-26. 若A(-1,0)为抛物线y=-3(x-1)2+c上一点,则当y≥0时,x的取值范围是()A .-1<x <3B .x <-1或x >3C .-1≤x ≤3D .x ≤-1或x ≥37. 2019·资阳如图是函数y =x 2-2x -3(0≤x ≤4)的图象,直线l ∥x 轴且过点(0,m ),将该函数在直线l 上方的图象沿直线l 向下翻折,在直线l 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m ≥1B .m ≤0C .0≤m ≤1D .m ≥1或m ≤08. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题(本大题共8道小题)9. 已知函数y =-x 2-2x ,当________时,函数值y 随x 的增大而增大.10. 若函数y =x 2+2x -m 的图象与x 轴有且只有一个交点,则m 的值为________.11. 如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a -2b +c 的值为________.12. 抛物线y=3x2-8x+4与x轴的两个交点坐标分别为______________.13. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是____________.14. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)15. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.16. 2018·湖州如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题(本大题共6道小题)17. 判断下列二次函数的图象与x轴的公共点的个数及公共点的坐标.(1)y=12x2+x+1;(2)y=-3x2-6x-3;(3)y=-3x2-x+4.18. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.19. 如图,正方形ABCD的顶点A在抛物线y=x2上,点B,C在x轴的正半轴上,且点B的坐标为(1,0).(1)求点D的坐标;(2)将抛物线y=x2适当平移,使得平移后的抛物线同时经过点B与点D,求平移后抛物线的解析式,并说明你是如何平移的.20. 已知一条双向公路隧道,其横断面由抛物线和矩形ABCD的三边组成,隧道的最大高度为4.9米,AB=10米,BC=2.4米,现把隧道横断面放在如图所示的平面直角坐标系中,有一辆高为4米,宽为2米的装有集装箱的汽车要通过该隧道,如果不考虑其他因素,汽车的右侧至少离开隧道石壁多少米才不至于碰到隧道顶部?21. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg.经销一段时间后得到如下数据:销售单价x(元/kg)120130 (180)每天销量y(kg)10095 (70)设y与x(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?22. 如图,抛物线y=ax2+2x+c(a≠0)经过点A(0,3),B(-1,0).请回答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长;(3)在抛物线的对称轴上是否存在点M,使得△MBC的面积是4?若存在,请求出点M的坐标;若不存在,请说明理由.人教版九年级数学上册22章二次函数综合训练-答案一、选择题(本大题共8道小题)1. 【答案】A2. 【答案】D3. 【答案】B[解析] 设利润为y 元,涨价x 元,则有y =(100+x -90)(500-10x)=-10(x -20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.4. 【答案】C5. 【答案】A[解析] ∵抛物线与x 轴的一个交点的坐标是(1,0),对称轴是直线x =-1,∴抛物线与x 轴的另一个交点的坐标是(-3,0).故一元二次方程ax 2+bx +c =0的解是x 1=-3,x 2=1.故选A.6. 【答案】C7. 【答案】C8. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y=12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.二、填空题(本大题共8道小题)9. 【答案】x ≤-1【解析】∵函数y =-x 2-2x ,其图象的对称轴为x =-b2a =-1,且a =-1<0,∴在对称轴的左边y 随x 的增大而增大,∴x ≤-1.10. 【答案】-1[解析] 依题意可知Δ=0,即b 2-4ac =22-4×1×(-m)=0,解得m =-1.11. 【答案】0【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.12. 【答案】⎝⎛⎭⎪⎫23,0,(2,0) [解析] 令y =0,则3x 2-8x +4=0,解方程得x 1=23,x 2=2,∴抛物线y =3x 2-8x +4与x 轴的两个交点坐标分别为⎝ ⎛⎭⎪⎫23,0,(2,0).13. 【答案】x 1=-2,x 2=1[解析] 方程ax 2=bx +c 的解即抛物线y =ax 2与直线y =bx +c 交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax 2=bx +c 的解是x 1=-2,x 2=1.14. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.15. 【答案】1.6秒 【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t =1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒, 所以此时第一个小球抛出后t =1.1+0.5=1.6秒时与第二个小球的离地高度相同.16. 【答案】-2[解析] ∵四边形ABOC 是正方形,∴点B 的坐标为(-b 2a ,-b2a ). ∵抛物线y =ax 2过点B ,∴-b 2a =a (-b2a )2,解得b 1=0(舍去),b 2=-2.三、解答题(本大题共6道小题)17. 【答案】解:(1)y =12x 2+x +1, ∵Δ=1-4×12×1=-1<0,∴抛物线与x 轴没有公共点. (2)y =-3x 2-6x -3,∵Δ=(-6)2-4×(-3)×(-3)=0, ∴抛物线与x 轴有一个公共点, 坐标为(-1,0). (3)y =-3x 2-x +4,∵Δ=(-1)2-4×(-3)×4=49>0,∴抛物线与x 轴有两个公共点,坐标分别为(1,0),(-43,0).18. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).19. 【答案】解:(1)∵B (1,0),点A 在抛物线y =x 2上, ∴A (1,1).又∵在正方形ABCD 中,AD =AB =1, ∴D (2,1).(2)设平移后抛物线的解析式为y =(x -h )2+k .把(1,0),(2,1)代入,得⎩⎨⎧0=(1-h )2+k ,1=(2-h )2+k , 解得⎩⎨⎧h =1,k =0,∴平移后抛物线的解析式为y =(x -1)2,该抛物线可由原抛物线向右平移1个单位长度得到.20. 【答案】解:由题意,知AB =10米,BC =2.4米, ∴C(10,0),B(10,-2.4),A(0,-2.4). 由题意,知抛物线的顶点坐标为(5,2.5). 设抛物线的解析式为y =a(x -5)2+2.5. 将(10,0)代入解析式, 得0=a(10-5)2+2.5, 解得a =-110,∴y =-110(x -5)2+2.5=-110x 2+x.此公路为双向公路,当汽车高为4米时,在抛物线隧道中对应的纵坐标y =4-2.4=1.6,由1.6=-110x 2+x ,解得x 1=2,x 2=8.故汽车要通过隧道,其右侧至少要离开隧道石壁2米才不至于碰到隧道顶部.21. 【答案】解:(1)y =-12x +160,120≤x ≤180.(3分)(2)设销售利润为W 元,则W =y(x -80)=(-12x +160)(x -80),(4分)即W =-12x 2+200x -12800=-12(x -200)2+7200.(5分)∵-12<0,∴当x <200时,W 随x 的增大而增大, 又120≤x ≤180,∴当x =180时,W 取最大值,此时,W =-12(180-200)2+7200=7000.答:当销售单价为180元时,销售利润最大,最大利润是7000元.(8分)22. 【答案】(1)∵抛物线y =ax 2+2x +c 经过点A (0,3),B (-1,0), ∴⎩⎨⎧c =3a +2×(-1)+c =0 解得⎩⎨⎧a =-1c =3∴抛物线的解析式为y =-x 2+2x +3;(2)∵y =-x 2+2x +3=-(x -1)2+4,B (-1,0), ∴点D 的坐标是(1,4),点E 的坐标是(1,0), ∴DE =4,BE =2,∴BD =DE 2+BE 2=42+22=25, 即BD 的长是25;(3)假设在抛物线的对称轴上存在点M ,使得△MBC 的面积是4, 设点M 的坐标为(1,m ), ∵B (-1,0),E (1,0), ∴点C 的坐标为(3,0), ∴BC =4,∵△MBC 的面积是4,∴S △MBC =BC ×|m |2=4×|m |2=4,解得m =±2,即点M 的坐标为(1,2)或(1,-2).。
人教版九年级数学上册第二十二章二次函数综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知学校航模组设计制作的火箭升空高度h (m )与飞行时间t (s )满足函数表达式h =﹣t 2+24t +1,则下列说法中正确的是( )A .点火后1s 和点火后3s 的升空高度相同B .点火后24s 火箭落于地面C .火箭升空的最大高度为145mD .点火后10s 的升空高度为139m2、关于函数()2231y x =++,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x =3;③当x ≥0时,y 随x 的增大而增大;④当x ≤0时,y 随x 的增大而减小,其中正确的有( )个.A .1B .2C .3D .4 3、已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABP ABP ABP S S S m ===,则m 的值是( )A .1B .32C .2D .44、抛物线y=ax 2+bx+3(a≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d≤1,则实数m 的取值范围是( )A .m≤2或m≥3B .m≤3或m≥4C .2<m <3D .3<m <4 5、如图,抛物线()21:12G y a x =++与抛物线()22:21H y x =---交于点()1,2B -,且它们分别与y 轴交于点D 、E .过点B 作x 轴的平行线,分别与两抛物线交于点A 、C ,则以下结论:①无论x 取何值,2y 总是负数;②抛物线H 可由抛物线G 向右平移3个单位,再向下平移3个单位得到;③当31x -<<时,随着x 的增大,12y y -的值先增大后减小;④四边形AECD 为正方形.其中正确的是( )A .①②B .①②④C .③④D .①②③6、抛物线2y x bx c =-++经过(0,3)-,对称轴直线1x =-,关于x 的方程20x bx c n -++-=在41x -<<的范围有实数根,则n 的范围( )A .112n -<<-B .63n -<<-C .112n -<≤-D .116n -<<-7、关于抛物线:23(1)2y x =-++,下列说法正确的是( ).A .它的开口方向向上B .它的顶点坐标是(1,2)C .当1x <-时,y 随x 的增大而增大D .对称轴是直线1x =8、二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D .9、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( )A .90元,4500元B .80元,4500元C .90元,4000元D .80元,4000元 10、把抛物线()2321y x =-+的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是( )A .()2313y x =-+B .()2311y x =--C .()2333y x =-+ D .()2331y x =-- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A 在抛物线y =x 2﹣2x +2上运动.过点A 作AC⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为_____.2、如果抛物线y =(m ﹣1)x 2有最低点,那么m 的取值范围为_____.3、抛物线()2221y x k x k =+--(k 为常数)与x 轴交点的个数是__________.4、定义:由a ,b 构造的二次函数()2y ax a b x b =+++叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数()2y ax a b x b =+++的“本源函数”(a ,b 为常数,且0a ≠).若一次函数y =ax +b 的“滋生函数”是231y ax x a =-++,那么二次函数231y ax x a =-++的“本源函数”是______.5、如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)a 的值为______,图象的顶点坐标为______;(2)若点(),Q m n 在该二次函数图象上,且点Q 到y 轴的距离小于2,则n 的取值范围为______.三、解答题(5小题,每小题10分,共计50分)1、2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量y (kg )与销售单价x (元)满足的函数关系式为640(1014)20920(1430)x y x x <≤⎧=⎨-+<≤⎩(其中1030x <) (1)分别求出销售单价为12元、20元时每天的销售利润.(2)当销售单价为多少元时,每天的销售利润最大?最大利润是多少?2、为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)3、2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x (元),每天的销售量为y (件).(1)求每天的销售量y (件)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?4、已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数,求m 的值(2)若这个函数是二次函数,求m 的取值范围.5、如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式;(2)若直线y=kx23(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值43m,求m的值.-参考答案-一、单选题1、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项.【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C .【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.2、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性.【详解】解:∵()2231y x =++,∴该函数图象开口向上,有最小值1,故①正确;函数图象的对称轴为直线3x =-,故②错误;当x ≥0时,y 随x 的增大而增大,故③正确;当x ≤﹣3时,y 随x 的增大而减小,当﹣3≤x ≤0时,y 随x 的增大而增大,故④错误. 故选:B .【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质.3、C【解析】【分析】由题意易得点123,,P P P 的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解.【详解】解:假设点A 在点B 的左侧,∵二次函数2286y x x =-+的图象交x 轴于,A B 两点,∴令0y =时,则有20286x x =-+,解得:121,3x x ==,∴()()1,0,3,0A B ,∴312AB =-=,∵图象上有且只有123,,P P P 三点满足123ABP ABP ABP S S S m ===, ∴点123,,P P P 的纵坐标的绝对值相等,如图所示:∵()22286222y x x x =-+=--, ∴点()12,2P -, ∴112222ABP m S ==⨯⨯=; 故选C .【考点】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.4、B【解析】【分析】把A (4,4)代入抛物线y=ax 2+bx+3得4a+b=14,根据对称轴x=-2b a ,B (2,m ),且点B 到抛物线对称轴的距离记为d ,满足0<d≤1,所以0<|2-(-2b a )|≤1,解得a≥18或a≤-17,把B (2,m )代入y=ax 2+bx+3得:4a+2b+3=m ,得到a=78-4m ,所以78-4m ≥18或78-4m ≤-18,即可解答. 【详解】把A(4,4)代入抛物线y=ax 2+bx+3得:16a+4b+3=4,∴16a+4b=1, ∴4a+b=14, ∵对称轴x=−2b a,B(2,m),且点B 到抛物线对称轴的距离记为d ,满足0<d≤1, ∴0<|2−(−2b a)|≤1 ∴0<|42a b a|≤1, ∴|18a|≤1, ∴a≥18或a≤−18, 把B(2,m)代入y=ax 2+bx+3得:4a+2b+3=m ,2(2a+b)+3=m ,2(2a+14−4a)+3=m , 72−4a=m , a=78-4m , ∴78-4m ≥18或78-4m ≤-18, ∴m≤3或m≥4.故答案选:B.【考点】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质.5、B【解析】【分析】①根据非负数的相反数或者直接由图像判断即可;②先求抛物线G 的解析式,再根据抛物线,G H 的顶点坐标,判断平移方向和平移距离即可判断②;③先根据题意得出31x -<<时,观察图像可知12y y >,然后计算12y y -,进而根据一次函数的性质即可判断;④分别计算出,,,A E C D 的坐标,根据正方形的判定定理进行判断即可.【详解】①2(2)0x -≥,2(2)0x ∴--≤,∴()22211y x =---≤-, ∴无论x 取何值,2y 总是负数,故①正确; ②抛物线()21:12G y a x =++与抛物线()22:21H y x =---交于点()1,2B -, 1,2x y ∴==,即22(11)2a -=++,解得1a =-,∴抛物线()21:12G y x =-++,∴抛物线G 的顶点(1,2)-,抛物线H 的顶点为(2,1)-,将(1,2)-向右平移3个单位,再向下平移3个单位即为(2,1)-,即将抛物线G 向右平移3个单位,再向下平移3个单位可得到抛物线H ,故②正确; ③()1,2B -,将2y =-代入抛物线()21:12G y x =-++, 解得123,1x x =-=,(3,2)A ∴--,将2y =-代入抛物线()22:21H y x =---, 解得123,1x x ==,(3,2)C ∴-,31x -<<,从图像可知抛物线G 的图像在抛物线H 图像的上方,12y y ∴>2212(1)2[(2)1]66y y x x x -=-++----=-+∴当31x -<<,随着x 的增大,12y y -的值减小,故③不正确;④设AC 与y 轴交于点F ,()1,2B -,(0,2)F ∴-,由③可知(3,2)A ∴--,(3,2)C -,AF CF ∴=,6AC =,当0x =时,121,5y y ==-,即(0,1),(0,5)D E -,6DE ∴=,3DF EF ==,∴四边形AECD 是平行四边形,,AC DE AC DE =⊥,∴四边形AECD 是正方形,故④正确,综上所述,正确的有①②④,故选:B .【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.6、C【解析】【分析】由题意先得出抛物线的解析式,进而利用根的判别式以及二次函数图象的性质进行分析计算即可.【详解】解:∵抛物线2y x bx c =-++经过(0,3)-,∴将(0,3)-代入可得3c =-,∵对称轴直线1x =-, ∴122b b a -==-,解得2b =-, ∴抛物线为223y x x -=--,∴2230x x n +++=,∵关于x 的方程20x bx c n -++-=在41x -<<的范围有实数根,∴24480b ac n ∆=-=--≥,解得2n ≤-,且同时满足当4x =-,0y <以及当1,0x y =>,解得116n n <-⎧⎨>-⎩(舍去), 或者当4x =-,0y >以及当1,0x y =<,解得116n -<<-,综上可得n 的范围为:112n -<≤-.故选:C .【考点】本题考查二次函数与一元二次方程的结合,熟练掌握二次函数图象的性质并运用数形结合思维分析是解题的关键.7、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 选项:∵30-<,∴抛物线23(1)2y x =-++的开口向下,故A 错误;B 选项:抛物线23(1)2y x =-++的顶点坐标是(-1,2),故B 错误;C 选项:对抛物线23(1)2y x =-++,当1x <-时,y 随x 增大而增大,故C 正确;D 选项:抛物线23(1)2y x =-++的对称轴是直线1x =-,故D 错误.故选:C .【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.8、A【解析】【分析】先分析二次函数21y ax bx =++的图像的开口方向即对称轴位置,而一次函数2y ax b =+的图像恒过定点(,0)2b a-,即可得出正确选项. 【详解】二次函数21y ax bx =++的对称轴为2b x a =-,一次函数2y ax b =+的图像恒过定点(,0)2b a-,所以一次函数的图像与二次函数的对称轴的交点为(,0)2b a -,只有A 选项符合题意. 故选A .【考点】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数2y ax b =+的图像恒过定点(,0)2b a-,本题蕴含了数形结合的思想方法等. 9、B【解析】【分析】 设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【详解】解:设每月总利润为w ,依题意得:(50)w y x =-(5550)(50)x x =-+-2580027500x x =-+-25(80)4500x =--+50-<,此图象开口向下,又50x ≥,∴当80x =时,w 有最大值,最大值为4500元.故选:B .【考点】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.10、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线()2=-+的顶点坐标为(2,1),321y x∴向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)∴所得抛物线解析式是()2313=-+.y x故选:A.【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便.二、填空题1、1【解析】【分析】由矩形的性质可知BD=AC,再结合顶点到x轴的距离最近可知当点A在顶点处时满足条件,求得抛物线的顶点坐标即可求得答案.【详解】解:∵AC⊥x轴,∴当点A为抛物线顶点时,AC有最小值,∵抛物线y=x2﹣2x+2=(x−1)2+1,∴顶点坐标为(1,1),∴AC的最小值为1,∵四边形ABCD为矩形,∴BD=AC,∴BD的最小值为1,故答案为:1.【考点】本题主要考查了二次函数的性质及矩形的性质,确定出AC最小时的位置是解题的关键.2、m>1【解析】【分析】直接利用二次函数的性质得出m-1的取值范围进而得出答案.【详解】解:∵抛物线y=(m-1)x2有最低点,∴m-1>0,解得:m>1.故答案为m>1.【考点】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键.3、2【分析】求出∆的值,根据∆的值判断即可.【详解】解:∵∆=4(k-1)2+8k=4k 2+4>0,∴抛物线与x 轴有2个交点.故答案为:2.【考点】本题考查了二次函数与坐标轴的交点问题,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴的交点横坐标是一元二次方程ax 2+bx +c =0的根.当∆=0时,二次函数与x 轴有一个交点,一元二次方程有两个相等的实数根;当∆>0时,二次函数与x 轴有两个交点,一元二次方程有两个不相等的实数根;当∆<0时,二次函数与x 轴没有交点,一元二次方程没有实数根.4、2-1y x =﹣【解析】【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数231y ax x a =-++的本源函数.【详解】解:由题意得3=++1=a b a b ⎧⎨⎩﹣ 解得=2=1a b ⎧⎨⎩﹣﹣∴函数231y ax x a =-++的本源函数是2-1y x =﹣. 故答案为:2-1y x =﹣.本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”. 5、 2a = ()1,2- 211n ≤<【解析】【分析】(1)把P (−2,3)代入23y x ax =++中,即可求解;(2)由|m |<2,结合二次函数的图像和性质,即可求n 的范围.【详解】解:(1)把P (−2,3)代入23y x ax =++中,得:()23223a =--+,∴a =2,∴223y x x =++=(x +1)2+2;∴图象的顶点坐标为(−1,2);(2)点Q 到y 轴的距离小于2,∴|m |<2,∴−2<m <2,∴当m =-1时,y 的最小值= 2,当m =2时,y 的最大值= 11,∴2≤n <11.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,找到二次函数图像的对称轴,是解题的关键.三、解答题1、(1)销售单价为12元时,每天的利润为1280元;销售单价为20元时,每天的利润为5200元;(2)当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元【解析】【分析】(1)设每天的利润为W 元,根据题意:当1014x <时,640y =,可得当12x =时的销售利润;当1430x <时,20920y x =-+,根据每件的利润乘以数量即可得出;(2)根据题意列出在两个范围内的函数解析式,然后根据一次函数及二次函数的性质,求出最大值进行比较即可得.【详解】(1)设每天的利润为W 元,当1014x <时,640y =,∴当12x =时,(1210)6401280W =-⨯=(元),当1430x <时,20920y x =-+,∴当20x 时,=(2010)(20920)5200W x -⨯-+=(元),∴销售单价为12元时,每天的利润为1280元;销售单价为20元时,每天的利润为5200元;(2)设每天的销售利润为W 元,当1014x <时,640(10)6406400W x x =⨯-=-,6400k =>,∴W 随着x 的増大而増大,当14x =时,46402560W =⨯=(元),当1430x <时,(10)(20920)W x x =--+,220(28)6480x =--+,200a =-<,开口向下,∴W 有最大值,1430x <,∴当28x =时,6480W =最大(元),64802560>,∴当28x =时,6480W =最大(元),答:当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元.【考点】题目主要考查一次函数与二次函数的应用,理解题意,列出相应的函数解析式是解题关键.2、(1)4200y x =+;(2)种植面积为240亩时总利润最大,最大利润268800元.【解析】【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y (元)与种粮面积x (亩)之间的函数关系为4200y x =+,进而得出W 与x 的函数关系式,再利用二次函数的最值公式求出即可.【详解】解:(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:160840190960k b k b +=⎧⎨+=⎩,解得:4200k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为4200y x =+.(2)设老张明年种植该作物的总利润为W 元,依题意得:()21604200120W x x ⎡=-+⎤⎣⎦+⋅ 242080x x =-+()24260270400x =--+. ∵40-<,∴当260x <时,y 随x 的增大而增大.由题意知:240x ≤,∴当240x =时,W 最大,最大值为268800元.即种植面积为240亩时总利润最大,最大利润268800元.【考点】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W 与x 的函数关系式是求最值问题的关键.3、(1)2160y x -+=;(2)当销售单价为56元时,每天所获得的利润最大,最大利润为1152元【解析】【分析】(1)根据“销售单价每降低1元,则每天可多售出2件”列函数关系式;(2)根据总利润=单件利润×销售量列出函数关系式,然后利用二次函数的性质分析其最值.【详解】解:(1)由题意可得:202(70)y x +-=,整理,得:2160y x -+=,∴每天的销售量y (件)与销售单价x (元)之间的函数关系式为2160y x -+=;(2)设销售所得利润为w ,由题意可得:2(302)(32)(2160)22245120w x y x x x x =--=--+=-+-,整理,得:22(56)1152w x =--+,20-<,∴当56x =时,w 取最大值为1152,∴当销售单价为56元时,销售这款文化衫每天所获得的利润最大,最大利润为1152元.【考点】此题考查二次函数的应用——销售问题,涉及运算能力及一次函数应用,熟练掌握相关知识是解题的关键.4、(1)1m =;(2)1m ≠±【解析】【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;【详解】解:(1)由题意得,1010m m ⎧-=⎨+≠⎩解得1m =; (2)由题意得,||10m -≠,解得1m ≠且1m ≠-.【考点】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.5、(1)()21233y x =--+;(2)1222,,3k k ==;(3)9.4m = 【解析】【分析】(1)把50,3A ⎛⎫ ⎪⎝⎭代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去,y 得:()21223,33x kx --+=+再利用根与系数的关系与()222121212210,x x x x x x +=+-=可得关于k 的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当2,m ≤ 2<m <8, 8,m ≥ 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把50,3A ⎛⎫ ⎪⎝⎭代入()223y a x =-+中, 543,3a ∴+= 1,3a ∴=- ∴ 抛物线的解析式为:()212 3.3y x =--+ (2)联立一次函数与抛物线的解析式得:()2231233y kx y x ⎧=+⎪⎪⎨⎪=--+⎪⎩ ()21223,33x kx ∴--+=+整理得:()24330,x k x ---=121243,3,x x k x x ∴+=-=-()222121212210,x x x x x x +=+-= ()()()22432343120,k k ∴--⨯-=-+> ∵x 1+x 2=4-3k ,x 1•x 2=-3,∴x 12+x 22=(4-3k )2+6=10, 解得:1222,,3k k == ∴1222,,3k k ==(3)∵函数的对称轴为直线x=2,当m <2时,当x=m 时,y 有最大值,43m =-13(m-2)2+3,解得当m≥2时,当x=2时,y 有最大值, ∴43m =3, ∴m=94,综上所述,m 的值为94.【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与x 轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.。
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?参考答案一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故答案为:﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故答案为:2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故答案为:﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故答案为:2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一、单选题(共48分)1.(本题4分)抛物线23y x =-与y 轴的交点坐标为( )A .(-3,0)B .(0,-3)C .(3,0)-D .(3,0) 2.(本题4分)已知:抛物线y =a (x +1)2的顶点为A ,图象与y 轴负半轴交点为B ,且OB =OA ,若点C (-3,b )在抛物线上,则△ABC 的面积为( )A .3B .3.5C .4D .4.53.(本题4分)二次函数y =﹣x 2﹣4的图象经过的象限为( )A .第一象限、第四象限B .第二象限、第四象限C .第三象限、第四象限D .第一象限、第三象限、第四象限4.(本题4分)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =-- 5.(本题4分)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.则下列结论不正确的是( )A .小球在空中经过的路程是40mB .小球运动的时间为6sC .小球抛出3s 时,速度为0D .当 1.5t =s 时,小球的高度30h =m 6.(本题4分)关于x 的方程20ax bx c ++=有两个不相等的实根1x 、2x ,若212x x =,则49b ac -的最大值是( )A .1B .2C .3D .27.(本题4分)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D . 8.(本题4分)已知二次函数()222y x =--,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A .有最大值-1,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 9.(本题4分)记某商品销售单价为x 元,商家销售此种商品每月获得的销售利润为y 元,且y 是关于x 的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y 与x 的函数关系式是( )A .y =﹣(x ﹣60)2+1825B .y =﹣2(x ﹣60)2+1850C .y =﹣(x ﹣65)2+1900D .y =﹣2(x ﹣65)2+200010.(本题4分)已知二次函数2202020212022y x x =++的图象上有两点A (x 1,2023)和B (x 2,2023),则当12x x x =+时,二次函数的值是( )A .2020B .2021C .2022D .2023 11.(本题4分)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD 2+PC 的最小值是( )A .4B .2+22C .22D .32223+ 12.(本题4分)抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是( ) A .1m <-或0m > B .1122m -<< C .02m ≤< D .11m -<<二、填空题(共20分)13.(本题5分)若22(2)32m y m x x -=++-是二次函数,则m 的值是 ________. 14.(本题5分)若点1(1,)A y -,2(2,)B y 在抛物线22y x =上,则1y ,2y 的大小关系为:1y ________2y (填“>”,“=”或“<”).15.(本题5分)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD 的长)为______.16.(本题5分)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).三、解答题(共52分)17.(本题6分)二次函数y =ax 2+bx +c 的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求二次函数的解析式;(2)不等式ax 2+bx +c >0的解集为 ;(3)方程ax 2+bx +c =m 有两个实数根,m 的取值范围为 .18.(本题6分)已知抛物线经过点(0,-2),(3,0),(-1,0),求抛物线的解析式.19.(本题6分)已知:二次函数2142y x x =-++. (1)通过配方,将其写成()2y a x h k =-+的形式;(2)求出函数图象与x y 、轴的交点、、A B C 的坐标;(3)当0y >时,直接写出x 的取值范围;(4)当x ________时,y 随x 的增大而减少.20.(本题6分)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.21.(本题6分)一隧道内设双行公路,隧道的高MN 为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF 的三条边围成的,矩形的长DE 是8米,宽CD 是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少?22.(本题6分)如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式; (2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值43m ,求m 的值. 23.(本题8分)如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ面积的最大值,并求此时P点坐标.24.(本题8分)已知抛物线y=ax2+3ax+c(a≠0)与y轴交于点A(1)若a>0①当a=1,c=-1,求该抛物线与x轴交点坐标;②点P(m,n)在二次函数抛物线y=ax2+3ax+c的图象上,且n-c>0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当-2c<x<c时,抛物线与x轴只有一个公共点,求a的取值范围.参考答案1.B2.A3.C4.B5.A6.D7.A8.D9.D10.C11.A12.D13.214.<15.40米16.②③17.(1)y =x 2﹣2x ﹣3;(2)x <﹣1或x >3;(3)m ≥﹣4.18.224233y x x =-- 19.(1)()219122x --+ (2)A (-2,0),B (4,0),C (0,4)(3)-2<x <4(4)>120.(1)()y 309601032x x =-+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元21.(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14 22.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 23.(1)223y x x =+-(2)2;P (-1,0)24.(1)①,0),0)②m>0或m<-3 (2)-9(3)49a=或12a≥或14a-≤。
人教版九年级数学上册二次函数综合测试卷(word含答案)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3). ∵y =x 2﹣4x+3与y 轴相交于点C , ∴点C 的坐标为(0,3). 又∵点B 的坐标为B (3,0), ∴OB =OC∴△COB 为等腰直角三角形. 又∵PF//y 轴,PE//x 轴, ∴△PEF 为等腰直角三角形. ∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b , 又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣x+3. ∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p . ∴EF 2p 22. ∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E , BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3), ∵C 、D 两点的坐标为(0,3)和(4,3), ∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°, ∴△CNE ∽△NBF . ∴CE NE =NFBF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m mm-+=2343m m m --+-,化简得:m 2﹣5m+5=0. 解得:m 1=552+,m 2=552-.∴M 点坐标为(55+,3)或(55-,3)②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD , ∵∠NBF =∠CBG ,∠NFB =∠BGC =90°, ∴△BFN ∽△CGB . ∵△BFN 为等腰直角三角形, ∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m . ∴化简得,m 2﹣5m+6=0. 解得,m =2或m =3(舍去) ∴M 点坐标为,(2,3).综上所述,满足题意的M 点坐标为可以为(2,3),(552+,3),(552-,3).【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为1133313++⎝⎭或53715337-+-⎝⎭. 【解析】【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可. 【详解】解:()1当0y =时,()210,x a x a -++=解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=-ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a <3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-, ∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC ∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩1132x y ⎧=⎪⎪∴⎨-⎪=⎪⎩(舍去),2232x y ⎧=⎪⎪⎨+⎪=⎪⎩∴点的P坐标为⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,则直线'OP 的函数解析式为3,y x =- 则23,23,y x y x x =-⎧⎨=+-⎩1152152x y ⎧-=⎪⎪∴⎨+⎪=⎪⎩(舍去),2252152x y ⎧-=⎪⎪⎨-⎪=⎪⎩ ∴点P'的坐标为⎝⎭综上可得,点P的坐标为1322⎛⎫++ ⎪ ⎪⎝⎭或515,22⎛⎫-- ⎪ ⎪⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =222122a a a ≤+=24,(当a =22时取等号) ∴0<﹣b ≤2, ∴﹣24≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22bb D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭.解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.5.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小. 【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-;综上:1a ≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.6.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16 【解析】 【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可. 【详解】(1)证明:连接EF . ∵四边形ABCD 是矩形,∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90° 由折叠得∠DEF =∠DAF ,AD =DE ∴∠DEF =90°又∵∠ADE =∠DAF =90°, ∴四边形ADEF 是矩形 又∵AD =DE ,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.在Rt△OBE中,OB2+OE2=BE2.在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.∵OB2=y,∴y+y=x2+(8-x)2.∴y=x2-8x+32∴当x=4时,y有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.7.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;(3)很显然当P 、B 重合时,不能构成以A 、P 、E 、F 为顶点的四边形,因为点P 、F 都在抛物线上,且点P 为抛物线的顶点,所以PF 与x 轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P 、Q 重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P 、F 的纵坐标互为相反数,可据此求出F 点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标. 【详解】(1)∵抛物线的顶点为Q (2,﹣1), ∴设抛物线的解析式为y=a (x ﹣2)2﹣1, 将C (0,3)代入上式,得: 3=a (0﹣2)2﹣1,a=1;∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3; (2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合; 令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3; ∵点A 在点B 的右边, ∴B (1,0),A (3,0); ∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时; ∵OA=OC ,∠AOC=90°, ∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2; 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩ ,解得13kb=-⎧⎨=⎩;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣2,x2=2+2;∴符合条件的F点有两个,即F1(2﹣2,1),F2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由. 【答案】(1)A(-1,0) ,B(2,3) (2)△ABP 最大面积s=1927322288⨯=; P (12,﹣34) (3)存在;25【解析】 【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可. 【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1. 联立两个解析式,得:x 2﹣1=x+1, 解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3, ∴A (﹣1,0),B (2,3). (2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF ∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F , 则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1. ∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k. ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN ∽△EOF ,∴NQ EN OF EF=,即:1221kk k k-=,解得:k=±25, ∵k >0, ∴k=25. ∴存在唯一一点Q ,使得∠OQC=90°,此时k=25. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】 【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可;(3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时,∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BDAM AN ==, 解得:AN=94, 故点N (14-,0)、M (-1,32);故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.10.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),(1172-+,3172)或(1172--,3172) 【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3).①当点M 在线段AC 上时,点N 在点M 上方,则MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2.∴-t 2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则MN=(-t+1)-(-t 2-2t+3)=t 2+t-2.∴t 2+t-2=2,解得:t=12-+或t=12-.∴此时点M 的坐标为(12-+,32-)或(12-,32+).综上所述,满足条件的点M 的坐标为:(0,1【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.。