2020年浙江省杭州市中考数学试卷(含解析)印刷版
- 格式:doc
- 大小:374.49 KB
- 文档页数:15
O EAB D C2020年浙江省杭州市中考数学测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( ) A .4B .3C .2D .12. 下列各方程中,无解的是( ) A .21x +=-B .3(2)10x -+=C .210x -=D .21xx =- 3.如图,在等腰△ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( ) A . 68°B .46°C .44°D .22°4.下列事件中,属于必然事件的是( ) A .明天一定是晴天 B .异号两数相乘,积为负数 C .买一张彩票中特等奖 D .负数的绝对值是它本身5.观察图1,在A 、B 、C 、D 四幅图案中,能通过图1平移得到的是( )图1 A . B . C . D .6.如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( ) A .60 B .50 C .45 D .30 7.作△ABC 的高AD ,中线AE ,角平分线AF ,三者中有可能画在△ABC 外的是( ) A .中线AE B .高AD C .角平分线AF D .都有可能 8.与数轴上的点一一对应的数是( ) A .有理数B .无理数C .实数D .整数9.某一天,早晨的气温是-3℃,中午的气温比早晨上升了8℃,晚上的气温比中午下降了9℃,那么晚上的气温是( )A .1℃B .-4℃C .-12℃D .-2℃二、填空题10.手电筒、台灯发出的光线形成的投影是 . 11.2cos45°的值等于 .12.已知:如图所示,直线A8,CD 相交. 求证:AB ,CD 只有一个交点.证明:假设AB ,CD 相交有两个交点0与0′,那么过0,0′两点就有 条直线.这与 矛盾,所以假设不成立.所以 .13. 在△ABC 中,∠= 90°,若 AB= 8,BC=1,则 AC= . 14.10在两个连续整数a 和b 之间,a<10<b, 那么a , b 的值分别是 .15.不等式322104x x --+>的所有整数解的积为 . 16.小明骑自行车的速度是15千米/时,步行的速度是5千米,时.若小明先骑自行车1小时,然后又步行2小时.那么他的平均速度是 . 17.一个正方体疽掉锯掉一个角后,有 个顶点.18.用四舍五入法取l00955的近似数,保留2个有效数字是 ,保留4个有效数字是 .三、解答题19.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米(结果精确到1米.732.13≈,414.12≈)?水平线ABCD30° 新 楼1米40米旧 楼E20.如图所示,AB 是⊙O的直径,CD 切⊙O于点 C,若 QA= 1,∠BCD= 60°,求∠BAC 的度数和 AC 的长.21.已知:如图所示,某商场设立了一个可以自由转动的转盘,并规定顾客购物10元以上就能获得一次转动转盘的机会. 转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345564701落在“铅笔”的频率m n(1)计算并完成表格;(2)请估计,当 n很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角大约是多少(精确到 1°)?22.如图,在两个同心圆中,大圆的弦 AB 交小圆于C、D两点,求证:AC=BD.A BCD EF12323.有一桥孔形状是一条开口向下的抛物线y =-14 x 2. (1)画出作出这条抛物线的图象;(2)利用图象,当水面与抛物线顶点的距离为4m 时,求水面的宽; (3)当水面宽为6m 时,水面与抛物线顶点的距离是多少? (1)略;(2)8m ;(3)94m .24.如图,已知:在□ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,求DF 的长.25.如图所示,直线CD 与∠AOB 的边0B 相交. (1)写出图中所有的同位角,内错角和同旁内角.(2)如果∠1=∠2,那么∠l 与∠4相等吗?∠1与∠5互补吗?为什么?26.计算:(1)(23)0-221-⎪⎭⎫⎝⎛+(-1)4 (2)6ab2·(-13ab4)÷2a·(-ab3)27.从装有1个红球和1个白球的袋子中,取一个球后放回袋中,再取一个.求:(1)两次全是白球的概率;(2)第一次是红球,第二次是白球的概率;(3)一次是红球,一次是白球的概率.28.解方程:①(3x-1)2-4=0;②2x(x-1)-x(3x+2)=-x(x+2)-1229.先化简,再求值:523[52(2)3]x y x x y x y-+---+,其中12x=-,16y=- .30.在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元.(1)求每转动一次转盘所获购物券金额的平均数;(2)如果你在该商场消费125元,你会选择转转盘还是直接获得购物券?说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.B5.C6.A7.B8.C9.B二、填空题10.中心投影11.2 12.两;两点确定一条直线;AB ,CD 只有一个交点13.3714.3,415.16.253千米/小时 17.7或8或9或1018.1.O ×1O 5,1.OlO ×1O 5三、解答题 19.过点C 作CE ⊥BD 于E ,由于AB = 40米,即CE = 40米,而阳光入射角为︒30,所以∠DCE =︒30,在Rt △DCE 中,CE DE DCE =∠tan ,所以3340=DE ,即233340≈⨯=DE ,而AC = BE = 1米,则DB = BE + ED =24231=+米.即新建楼房最高约24米.20.连结 OC ,∵CD 是⊙O 的切线,∠BCD= 60°,∴∠BCO=30°. ∵AB 是⊙O 的直径,∴∠OCA=60°,∵ AO=CO ,∴△AOC 是正三角形, ∴∠BAC=60°,∵OA=1,∴AC=121.(1)见表格:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m68111136345564701(2)随看频数的增大,频率接近于 0.70;(3)当频数很大时,频率约等于事件的概率,即获得铅笔的概率约0.70; (4)圆心角应是003600.7252⨯≈.22.作OE ⊥AB ,垂足为 E ,则EA=EB ,EC=ED ,∴EA-EC=EB-ED ,∴AC=BD .23.24. 3cm .25.(1)同位角:∠l 与∠4;内错角:∠l 与∠2;同旁内角:∠l 与∠5 ; (2)∠1=∠4,∠1+∠5=180° 理由略26.(1)(1)-2,(2)a 2b 927.(1)41;(2)41;(3)21. 28.(1) 31,121-==x x ;(2)x=6 .29.原式=113()3126x y --=--+⨯= 30.(1)11.875;(2)选择转转盘.。
浙江省2020年初中学业水平(杭州市)数学卷试题卷一.选择题:1.2×3=()A .5B .6C .32D .232.(1+y )(1-y )=()A .1+y ²B .﹣1-y ²C .1-y ²D .-1+y ²3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元,圆圆在该快递公司寄一件8千克的物品,需要付费()A .17元B .19元C .21元D .23元4.如图,在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则()A .c=bsinB B .b=csinBC .a=btanBD .b=ctanB5.若a >b ,则()A .a -1≥bB .b +1≥aC .a +1>b -1D .A -1>b +16.在平面直角坐标系中,已知函数y=ax+a (a ≠0)的图象经过点P (1,2),则该函数的图象可能是()A .B .C .D .7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数,若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则()A .y >z >xB .x >z >yC .y >x >zD .z >y >x8.设函数y =a (x-h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,()A .若h =4,则a <0B .若h =5,则a >0C .若h =6,则a <0D .若h =7,则a >09.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED =α,∠AOD =β,则()A .3α+β=180°B .2α+β=180°C .3α-β=90°D .2α-β=90°10.在平面直角坐标系中,已知函数y 1=x ²+ax +1,y 2=x ²+bx +2,y 3=x ²+cx +4,其中a ,b ,c 是正实数,且满足b ²=ac .设函数y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,()A .若M 1=2,M 2=2,则M 3=0B .若M 1=1,M 2=0,则M 3=0C .若M 1=0,M 2=2,则M 3=0D .若M 1=0,M 2=0,则M 3=0二、填空题:本大题有6个小题,每小題4分,共24分.11.若分式x11的值等于1,则x =.12.如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F ,若∠E =30°,∠EFC =130°,则∠A =.13.设M=x+y ,N=x ﹣y ,P=xy ,若M =1,N =2,则P =.14.如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC 若sin ∠BAC =31,则tan ∠BOC =.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.如图是一张矩形纸片,点E 在AB 边上,把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =,BE =.三、解答题:17.(本题满分6分)以下是圆圆解方程13321=--+x x 的解答过程。
2020年浙江省杭州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,⊙O 是直角△ABC 的内切圆,切斜边AB 于D ,切直角边 BC 、CA 于点 E 、F ,已知 AC=5,BC=12,则四边形 OFCE 的面积为( )A .1B . 15C .152D .42.一次函数71y x =+与二次函数23y x x =+的图象( )A . 有一个交点B . 有两个交点C . 没有交点D . 交点个数不确定 3.由表格中信息可知,若使2y ax bx c =++,则下列 y 与x 之间的函数关系式正确的是( ) x- 1 0 1 ax1 ax 2+bx+c8 3 A .43y x x =-+ B .34y x x -=+ C .233y x x =-- D .248y x x =-+4.给出函数:①3y x =;②31y x =-+;③3(0)y x x =<;④3y x=-,其中 y 随x 的增大而减小的函数个数为( )A .1 个B .2 个C .3 个D .4 个5..已知平面直角坐标系内,0(0,0),A (1.3), C (3,0),若以0,A ,C ,B 为顶点的四边形是平行四边形,则B 点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限6.一个容器装满40 L 纯酒精,第一次倒出若干升后,用水注满,第二次倒出第一次倒出量的一半的液体,已知两次共倒出纯酒精25L ,则第一次倒出纯酒精 ( )A .10 LB .15 LC .20 LD .25 L7.根据下列条件,能判断△ABC 是等腰三角形的是( )A .∠A=50°,∠B=70°B .∠A=48°,∠B=84°C .∠A=30°,∠B=90°D .∠A=80°,∠B=60° 8.关于x 的二次三项式249x kx -+是一个完全平方式,则 k 等于( )6+A .6B .6±C .-12D .12±9.近似数0.07030的有效数字和精确度分别是( )A .4个,精确到万分位B .3个,精确到万分位C .4个,精确到十万分位D .3个,精确到十万分位二、填空题10.扇形的圆心角是30°,半径是2cm ,则扇形的周长是 cm . 11.如图,在正方形ABCD 中,EF ⊥GH ,若∠AFE=30°,则∠GHC= . 12.如图所示,如果∠B=∠l=50°,那么∠2= .13.一元二次方程(x -1)(x -2)=0的两个根为x 1,x 2,且x 1>x 2,则x 1-2x 2=_______.14.将点A(1,-3)向右平移3个单位,再向下平移1个 单位后,得到点B(a ,b),则ab = .15.在△ABC 中,到AB ,AC 距离相等的点在 上.16.已知等腰三角形的两条边长为3和5,求等腰三角形的周长.17.如图,直线1a ∥2a ,点A 在直线1a 上,点B 、C 在直线2a 上,BC=5,△ABC 的面积为10,则直线1a 与直线2a 之间的距离是 .18.如图所示:(1)如果∠3=∠5,那么 ∥ ;(2)如果∠2=∠4,那么 ∥ ;(3)如果∠1=∠D ,那么 ∥ ;(4)如果∠B+∠BCD= 180°,那么 ∥ ;(5)如果∠D+∠BCD= 180°,那么 ∥ ;19.已知方程组3523x yy x=-⎧⎨=+⎩,用代入法消去x,可得方程.(不必化简).20.下表是对某校 10 名女生进行身高测量的数据表(单位:cm),但其中一个数据不慎丢失(用x表示).身高(cm)156162x165157身高(cm)168165163170159从这 10 名女生中任意抽出一名,其身高不低于 162 cm 的事件的可能性,可以用上图中的点表示 ( 在 A,B,C,D,E 五个字母中选择一个符合题意的 ).21.如图,当半径为30 cm的转动轮转过l80°角时,传送带上的物体A平移的距离为cm.22.自钝角的顶点引角的一边的垂线,把这个钝角分成两个角的度数之比是3∶1,则这个钝角的度数是_________.三、解答题23.如图,AB是⊙O的弦,OAOC⊥交AB于点C,过B的直线交OC的延长线于点E,当BECE=时,直线BE与⊙O有怎样的位置关系?请说明理由.24.某工程队中标修建某段公路,若每天修建0.5 千米,则需要 48 天才能完成任务.(1)求该工程队修建时间 t(天)与每天修建路程 a(千米/天)间的函数解析式;(2)若要求 40 天完成任务,每天应修建多少千米?25.如图,四边形ABCD是菱形,E,F分别是BD所在直线上两点,且BE=DF.求证:∠E=∠F.26.某块实验田里的农作物每天的需水量y(kg)与生长时间x(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000 kg、3000 kg,在第40天后每天的需水量比前一天增加100 kg.(1)分别求出x≤40和x≥40时,y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000 kg时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?27.某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据左图填写下表平均分(分)中位数(分)众数(分)九(1)班8585九(2班8580(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.28.已知一个几何体的三视图如图,请画出它的表面展开图(只需画一种).29.请你在图的点格上画出两条与直线l平行的直线.30.某地区2005年专业技术人员约有120000人,由教学人员、科学研究人员、卫生技术人员、农业技术人员、工程技术人员组成,请完成下表.人员人数(名)百分比(%)教学人员49.7科学科研人员2160卫生技术人员16.2【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.A4.B5.C6.C7.B8.D9.C二、填空题10.1π+11.43120°12.80°13.14.-l615.∠A 的平分线16.11或l317.4cm18.(1)AB ,CD ;(2)AD ,BC ;(3)A .B ,CD ;(4)AB ,CD ;(5)BC ,AD19.2(35)3y y =-+20.D21.30π22.120°三、解答题23.解:BE 与⊙O 相切.理由:连接OB , ∵ BE CE =,∴ 312∠=∠=∠∵ OA OC ⊥,∴ ︒=∠+∠903A ,∴ ︒=∠+∠902A又∵ OB OA =,∴ OBA A ∠=∠,∴ ︒=∠+∠902OBA即︒=∠90OBE ,∴ BE 与⊙O 相切24.0.54824ta =⨯=,∴24t a= (1)(2)当 t=40 时,代入(1)中得240.640a==(千米).25.证△EBC≌△FDC26.(1)x≤40时,y=50x+1500;x>40时,y=lOOx-500;(2)第45天27.(1)85;100.(2)解:∵两班的平均数相同,初三(1)班的中位数高,初三(1)班的复赛成绩好些.(3)解:∵初三(1)班、初三(2)班前两名选手的平均分分别为92.5,100分,∴在每班参加复赛的选手中分别选出2人参加决赛,初三(2)班的实力更强一些.28.29.略30.表中依次填:59640,1.8,19440,3240,29.6。
2020年浙江杭州中考数学试卷(解析版)一、选择题(本大共10小题,每小题3分,共30分)1.计算的结果是( ).A. B. C. D.2.( ).A. B. C. D.3.已知某快递公司的收费标准为:寄一件物品不超过千克,收费元;超过千克的部分每千克加收元.圆圆在该快递公司寄一件千克的物品,需要付费( ).A.元B.元C.元D.元4.如图,在中,,设,,所对的边分别为,,,则( ).A.B.C.D.5.若,则( ).A.B.C.D.6.在平面直角坐标系中,已知函数()的图象经过点,则该函数的图象是( ).A.B.C.D.可.能.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为;去掉一个最低分,平均分为;同时去掉一个最高分和一个最低分,平均分为,则( ).A.B.C.D.8.设函数(, , 是实数,),当时,;当时,,().A.若,则B.若,则C.若,则D.若,则9.如图,已知是的直径,半径,点在劣弧上(不与点,点重合),与交于点.设,,则( ).A.B.C.D.10.在平面直角坐标系中,已知函数,,,其中,,是正实数,且满足.设函数,,的图象与轴的交点个数分别为,,,( )A.若,,则B.若,,则C.若,,则D.若,,则二、填空题(本大共6小题,每小题4分,共24分)11.若分式的值等于,则 .12.如图,,分别与,交于点,.若,,则.13.设,,.若,,则 .14.如图,已知是⊙的直径,与⊙相切于点,连接,,若,则.15.一个仅装有球的不透明布袋里共有个球(只有编号不同),编号分别为,,,.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 .16.如图是一张矩形纸片,点在边上,把沿直线对折,使点落在对角线上的点处,连接.若点,,在同一条直线上,,则 , .三、解答题(本大共7小题,共66分)17.以下是圆圆解方程的解答过程.解:去分母,得,去括号,得,移项,合并同类项,得.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.(1)(2)18.某工厂生产某种产品,月份的产量为件,月份的产量为件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于分的产品为合格产品.合格率不合格率某工厂情况的扇形统计图月份生产的某种产品检测频数综合得分分某工厂月份生产的产品检测综合得分的频数直方图求月份生产的该产品抽样检测的合格率.在月份和月份生产的产品中,估计哪个月的不合格件数多?为什么?(1)12(2)19.如图,在中,点,,分别在,,边上,,.求证:.设,若,求线段的长.若的面积是,求的面积.(1)(2)20.设函数,.当时,函数的最大值是,函数的最小值是,求和的值.设,且,当时,;当时,.圆圆说:“一定大于”.你认为圆圆的说法正确吗?为什么?【答案】(1)12(2)21.如图,在正方形中,点在边上,连接,的平分线与边交于点,与的延长线交于点.设.若,,求线段的长.连接,若.求证:点为边的中点.求的值.(1)(2)(3)22.在平面直角坐标系中,设二次函数,(,是实数,).若函数的对称轴为直线,且函数的图象经过点,求函数的表达式.若函数的图象经过点,其中,求证:函数的图象经过点.设函数和函数的最小值分别为和,若,求,的值.(1)12(2)23.如图,已知,为⊙的两条直径,连接,,于点,点是半径的中点,连接.设⊙的半径为,若,求线段的长.连接,,设与交于点.求证:.若,求的度数.B1..故选.解析:,考查平方差公式,故选.解析:由题可知:千克物品由千克和千克构成.∴元.故选.解析:∵,对于选项:,反例:,,则,故错误;对于选项:,反例:,,则,故错误;对于选项:恒成立,故正确;对于选项:,反例:,,∴,故错误.故选.C 2.B 3.B 4.C 5.解析:∵,经过,∴代入,∴,∴,∴,∴图象过且与轴交于正半轴.故选.解析:若去掉一个最高分,平均分为,去掉一个最低分,平均分为,则最高分的存在会拉高平均分,最低分的存在会拉低平均分,∴,则去掉最高分和最低分,则平均分为,此时处于和之间,∴.故选.解析:∵,当,,当,,∴,②①:,∴,A 7.C 8.①②∴,∴对于,当时,,∴,∴错.对于,当时,,∴,∴错.对于,当时,,∴,∴正确.对于,当时,,∴,∴错.∴选.解析:连结,∵,由题可知:,,∴为等腰直角三角形,∴,∴,∴,即,D 9.故选.解析:设个函数的判别式分别为,,,∵,∴,选项,若,,则,,∵,,∴与无法比较大小,∴无法确定,故错误;选项,若,,则,,∴,,∴,∴,∴,故正确;选项,若,,则,,∴,,∴,∴,∴,故错误;选项,若,,则,,∴,,∴与无法比较大小,∴无法确定,故错误.故选.B 10.11.解析:∵的值为,∴,,解得:,经检验为原分式方程的解.故答案为:.12.解析:∵,∴,又∵,∴.故答案为:.13.解析:∵,,,∴当,时,则,解得,∴.14.解析:由题可知:为⊙相切于点,∴,∵,∴设,∴,则,∴,∴.故答案为:.解析:树状图分析:开始第一次摸出:第二次摸出:编号之和为:∴一共有种结果,其中和为偶数的有种.∴.解析:如图,由折叠性质可得,,,,在矩形中,,,∴,∴,即,∴,∵,,∴,15. ;16.(1)(2)∴,设,则,解得:,(舍),∴.故答案为:;.解析:圆圆的解答过程有错误.正确的解答过程如下:,,.所以是原方程的解.解析:因为.所以月份生产的该产品抽样检测的合格率是.月份生产的产品中,不合格的件数是,月份生产的产品中,不合格的件数是.因为,所以估计月份生产的产品中不合格的件数多.解析:有错误,,,.所以是原方程的解.17.(1)合格率是.(2)估计月份生产的产品中不合格的件数多.证明见解析.18.(1)证明见解析.12(2)..19.(1)12(2)(1)(2)(1)因为,所以,又因为,所以,所以.因为,所以,因为,所以,所以.因为,所以,因为,所以,设的面积为,的面积为,所以,因为,所以,所以的面积是.解析:因为,,所以随的增大而减小,所以当时,,即.①又因为,,所以随的增大而增大,所以当时,,即.②由①,②得,.圆圆的说法不正确.取,满足,则,,所以当时,;当时,此时,所以圆圆的说法不正确.解析:因为在正方形中,,所以,又因为平分,所以,所以.所以.因为,,所以.在中,由勾股定理,得.(1),.(2)不正确,证明见解析.20.(1).12(2)证明见解析..21.12(2)(1)(2)(3)所以.因为,,所以.又因为,,所以≌.所以,所以点为边的中点.不妨设,则.由①知.由题意,知,所以,所以,所以,所以.解析:由题意,得,所以,又因为函数的图象经过点,所以,解得或,所以或.因为函数的图象经过点,所以,因为,两边同除以,得,即,所以是方程的一个实数根,即函数的图象经过点.由题意,得,,,因为,所以,所以,因为,所以,所以,.(1)或.(2)证明见解析.(3),.22.(1)12(2)解析:因为,,,所以,,,又因为点是半径的中点,所以,所以,所以,所以,所以,所以.作于点,与交于点,连接,因为为⊙的直径,所以,所以,所以,所以,同理,所以,又因为,所以四边形是平行四边形,所以.因为,所以,所以,所以,因为,所以,因为,所以,所以是等腰直角三角形,(1).12(2)证明见解析..23.所以.。
2020年浙江省杭州市中考数学试题及参考答案与解析(考试时间100分钟,满分100分)一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
1.×=()A.B.C.D.32.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin BC.a=b tan B D.b=c tan B5.若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+16.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0 D.若h=7,则a>09.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°10.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=0二、认真填一填(本题有6个小题,每小題4分,共24分)11.若分式的值等于1,则x=.12.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=.13.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.14.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,注意可以用多种不同的方法来选取正确答案。
2020年浙江省杭州市中考数学试卷参考答案一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)×=()A.B.C.D.3【分析】根据二次根式的乘法运算法则进行运算即可.【解答】解:×=,故选:B.2.(3分)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y2【分析】直接利用平方差公式计算得出答案.【解答】解:(1+y)(1﹣y)=1﹣y2.故选:C.3.(3分)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元【分析】根据题意列出算式计算,即可得到结果.【解答】解:根据题意得:13+(8﹣5)×2=13+6=19(元).则需要付费19元.故选:B.4.(3分)如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B【分析】根据三角函数的定义进行判断,就可以解决问题.【解答】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴sin B=,即b=c sin B,故A选项不成立,B选项成立;tan B=,即b=a tan B,故C选项不成立,D选项不成立.5.(3分)若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1D.a﹣1>b+1【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【解答】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴a+1>b+1,∵b+1>b﹣1,∴a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.6.(3分)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【解答】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y轴的正半轴,且过点(1,2),故选:A.7.(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【解答】解:由题意可得,y>z>x,8.(3分)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0【分析】当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9﹣2h)=1,将h的值分别代入即可得出结果.【解答】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;若h=6,则a=﹣,故C正确;若h=7,则a=﹣,故D错误;故选:C.9.(3分)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°【分析】根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.【解答】解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.10.(3分)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0【分析】选项B正确,利用判别式的性质证明即可.【解答】解:选项B正确.理由:∵M1=1,M2=0,∴a2﹣4=0,b2﹣8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=b2,对于y3=x2+cx+4,则有△=c2﹣16=b2﹣16=(b2﹣64)<0,∴M3=0,∴选项B正确,故选:B.二、填空题:本大题有6个小题,每小題4分,共24分11.(4分)若分式的值等于1,则x=0.【分析】根据分式的值,可得分式方程,根据解分式方程,可得答案.【解答】解:由分式的值等于1,得=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.12.(4分)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=20°.【分析】直接利用平行线的性质得出∠ABF=50°,进而利用三角形外角的性质得出答案.【解答】解:∵AB∥CD,∴∠ABF+∠EFC=180°,∵∠EFC=130°,∴∠ABF=50°,∵∠A+∠E=∠ABF=50°,∠E=30°,∴∠A=20°.故答案为:20°.13.(4分)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=﹣.【分析】根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减即可求解.【解答】解:(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减得4xy=﹣3,解得xy=﹣,则P=﹣.故答案为:﹣.14.(4分)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.【分析】根据切线的性质得到AB⊥BC,设BC=x,AC=3x,根据勾股定理得到AB===2x,于是得到结论.【解答】解:∵AB是⊙O的直径,BC与⊙O相切于点B,∴AB⊥BC,∴∠ABC=90°,∵sin∠BAC==,∴设BC=x,AC=3x,∴AB===2x,∴OB=AB=x,∴tan∠BOC==,故答案为:.15.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故答案为:.16.(4分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=2,BE=﹣1.【分析】根据矩形的性质得到AD=BC,∠ADC=∠B=∠DAE=90°,根据折叠的性质得到CF=BC,∠CFE=∠B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,故答案为:2,﹣1.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【分析】直接利用一元一次方程的解法进而分析得出答案.【解答】解:圆圆的解答过程有错误,正确的解答过程如下:3(x+1)﹣2(x﹣3)=6.去括号,得3x+3﹣2x+6=6.移项,合并同类项,得x=﹣3.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据题意列式计算即可;(2)分别求得3月份生产的产品中,不合格的件数和4月份生产的产品中,不合格的件数比较即可得到结论.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【分析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?【分析】(1)由反比例函数的性质可得,①;﹣=a﹣4,②;可求a的值和k的值;(2)设m=m0,且﹣1<m0<0,将x=m0,x=m0+1,代入解析式,可求p和q,即可判断.【解答】解:(1)∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1最大值为,①;当x=2时,y2最小值为﹣=a﹣4,②;由①,②得:a=2,k=4;(2)圆圆的说法不正确,理由如下:设m=m0,且﹣1<m0<0,则m0<0,m0+1>0,∴当x=m0时,p=y1=,当x=m0+1时,q=y1=>0,∴p<0<q,∴圆圆的说法不正确.21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG 与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.【分析】(1)根据AB=2,λ=1,可以得到BE、CE的长,然后根据正方形的性质,可以得到AE的长,再根据平行线的性质和角平分线的性质,可以得到EF的长,从而可以得到线段CF的长;(2)①要证明点G为CD边的中点,只要证明△ADG≌△FGC即可,然后根据题目中的条件,可以得到△ADG≌△FGC的条件,从而可以证明结论成立;②根据题意和三角形相似,可以得到CE和EB的比值,从而可以得到λ的值.【解答】解:(1)∵在正方形ABCD中,AD∥BC,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵AB=2,∠B=90°,点E为BC的中点,∴BE=EC=1,∴AE==,∴EF=,∴CF=EF﹣EC=﹣1;(2)①证明:∵EA=EF,EG⊥AF,∴AG=FG,在△ADG和△FCG中,∴△ADG≌△FCG(AAS),∴DG=CG,即点G为CD的中点;②设CD=2a,则CG=a,由①知,CF=DA=2a,∵EG⊥AF,∠GDF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴,∵GC=a,FC=2a,∴,∴,∴EC=a,BE=BC﹣EC=2a﹣a=a,∴λ=.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.【分析】(1)利用待定系数法解决问题即可.(2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出1++=0,即a ()2+b•+1=0,推出是方程ax2+bx+1的根,可得结论.(3)由题意a>0,∴m=,n=,根据m+n=0,构建方程可得结论.【解答】解:(1)由题意,得到﹣=3,解得b=﹣6,∵函数y1的图象经过(a,﹣6),∴a2﹣6a+a=﹣6,解得a=2或3,∴函数y1=x2﹣6x+2或y1=x2﹣6x+3.(2)∵函数y1的图象经过点(r,0),其中r≠0,∴r2+br+a=0,∴1++=0,即a()2+b•+1=0,∴是方程ax2+bx+1的根,即函数y2的图象经过点(,0).(3)由题意a>0,∴m=,n=,∵m+n=0,∴+=0,∴(4a﹣b2)(a+1)=0,∵a+1>0,∴4a﹣b2=0,∴m=n=0.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F 是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.【分析】(1)解直角三角形求出AB,再证明∠AFB=90°,利用直角三角形斜边中线的性质即可解决问题.(2)①过点F作FG⊥AB于G,交OB于H,连接EH.想办法证明四边形OEHF是平行四边形可得结论.②想办法证明FD=FB,推出FO⊥BD,推出△AOB是等腰直角三角形即可解决问题.【解答】(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.。
2020年浙江省杭州市初中学业考试(中考)试卷数学试题一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.=⨯32( )A . 5B .6C .32D .232.(1+y )(1-y )=( )A .1+y 2B .-1-y 2C .1-y 2D .-1+y 23.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )A .17元B .19元C .21元D .23元4.如图,在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )A .c =bsinBB .b =csinBC .a =btanBD .b =ctanB5.若a >b ,则( )A .a -1≥bB .b +1≥aC .a +1>b -1D .a -1>b +16.在平面直角坐标系中,已知函数y =ax +a (a ≠0)的图象经过点P (1,2),则该函数的图象可能是( )7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x8.设函数y =a (x -h )2+k (a ,h ,k 是实数,a =0),当x =1时,y =1;当x =8时,y =8,( )A .若h =4,则a <0B .若h =5,则a >0C .若h =6,则a <0D .若h =7,则a >09.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED =α,∠AOD =β,则( )A .3α+β=180°B .2α+β=180°C .3α-β=90°D .2α-β=90°10.在平面直角坐标系中,已知函数y 1=x 2+ax +1,y 2=x 2+bx +2,y 3=x 2+cx +4,其中a ,b ,c 是正实数,且满足b 2=ac .设函数y 1;y 2,y 3的图象与x 轴的交盛个数分别为M 1,M 2,M 3,( )A .若M 1=2,M 2=2,则M 3=0B .若M 1=1,M 2=0,则M 3=0C .若M 1=0,M 2=2,则M 3=0D .若M 1=0,M 2=0,则M 3=0A B C D二、填空题:本大题有6个小题,每小题4分,共24分.11.若分式11+x 的值等于1,则x =__________. 12.如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F .若∠E =30,∠EFC =130,则∠A =________.13.设M =x +y ,N =x -y ,P =xy .若M =1,N =2,则P =________.14.如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC .若sin ∠BAC =31,则tan ∠BOC =________.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是__________.16.如图是一张矩形纸片,点E 在AB 边上,把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =__________.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤。
2020年杭州市初中毕业升学文化考试数 学考生须知:1.本试卷分试题卷和答题卷两部分。
满分为120分,考试时间为100分钟。
2.答题时,必须在答题卷的密封区内写明校名、姓名和准考证号。
3.所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
试 题 卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的.=( )A BC .D .2.(1)(1)y y +-=( ) A .21y +B .21y --C .21y -D .21y -+3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费( ) A .17元B .19元C .21元D .23元4.如图,在△ABC 中,∠C=90°,设∠A ,∠B,∠C 所对的边分别为,,,a b c 则( ) A .sin c b B = B .sin b c B =C .tan a b B =D .tan b c B =5.若a b >则( ) A .1a b -≥B .1b a +≥C .11a b +>-D .11a b ->+6.在平面直角坐标系中,已知函数(0)y ax a a =+≠的图象经过点(1,2)P ,则该函数的图象可能是( )A .B .C .D .7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ;则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>8.设函数2()y a x h k =-+(,,a h k 是实数,0a ≠),当是1x =时,1y =;当8x =时,8y =,( )A .若4h =,则0a <B .若4h =,则0a <C .若4h =,则0a <D .若4h =,则0a <9.如图,已知BC 是O e 的直径,半径OA ⊥BC,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E.设AED α∠=,AOD β∠=则( ) A .3180αβ+=oB .2180αβ+=oC .390αβ-=oD .290αβ-=o10.在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,234y x cx =++,其中,,a b c 是正实数,且满足2b ac =.设函数123,,y y y 的图象与x 轴的交点个数分别为( )A .若122,2M M ==,则30M =B .若121,0M M ==,则30M =C .若120,2M M ==,则30M =D .若120,0M M ==,则30M =二.填空题:本大题有6个小题,每小题4分,共24分。
2020年浙江省杭州市初中学业水平考试数 学一.选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的.1=( )AB C . D .2.()()11y y +-=( )A .21y +B .21y --C .21y -D .21y -+3.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费 ( ) A .17元 B .19元 C .21元 D .23元4.如图,在ABC △中,90C ∠=︒,设A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,则( )(第4题)A .sin c bB = B .sin b c B =C .tan a b B =D .tan b c B = 5.若a b >,则( )A .1a b -≥B .1b a +≥C .11a b +->D .11a b -+>6.在平面直角坐标系中,已知函数()0y ax a a =+≠的图象过点()1,2P ,则该函数的图象可.能.是( )ABCD7.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为 y ;同时去掉一个最高分和一个最低分,平均分为z ,则 ( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>8.设函数()2y a x h k =-+(a ,h ,k 是实数,0a ≠),当1x =时,1y =;当8x =时,8y =,( )A .若4h =,则0a <B .若5h =,则0a >C .若6h =,则0a <D .若7h =,则0a >9.如图,已知BC 是O 的直径,半径OA BC ⊥,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设AED α∠=,AOD β∠=,则( )(第9题)A .3180αβ+=︒B .2180αβ+=︒C .390αβ-=︒D .290αβ-=︒10.在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,234y x cx =++,其中a ,b ,c 是正实数,且满足2b ac =.设函数1y ,2y ,3y 的图象与x 轴的交点个数分别为1M ,2M ,3M ,( )A .若12M =,22M =,则30M =B .若11M =,20M =,则30M =C .若10M =,22M =,则30M =D .若10M =,20M =,则30M =二.填空题:本大题有6个小题,每小题4分,共24分.11.若分式11x +的值等于1,则x =________. 12.如图,AB CD ∥,EF 分别与AB ,CD 交于点B ,F .若30E ∠=︒,130EFC ∠=︒,则A ∠=________.13.设M x y =+, N x y =-,P xy =.若1M =,2N =,则P =________. 14.如图,已知AB 是O 的直径,BC 与O 相切于点B ,连接AC ,OC .若1sin 3BAC ∠=,则tan BOC ∠=________.(第12题)(第14题)(第15题)15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是________.16.如图是一张矩形纸片,点E 在AB 边上,把BCE △沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,2AE =,则DF =________,BE =________.三.解答题:本大題有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分) 以下是圆圆解方程13123x x +--=的解答过程. 解:去分母,得()()31231x x +--=.去括号,得31231x x +-+=. 移项,合并同类项,得3x =-.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程. 18.(本题满分8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品. (1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数最多?为什么?(第18题)19.(本题满分8分)如图,在ABC △中,点D ,E ,F 分别在AB ,BC ,AC 边上,DE AC ∥,EF AB ∥. (1)求证:BDE EFC △∽△. (2)设12AF FC =, ①若12BC =,求线段BE 的长.②若EFC △的面积是20,求ABC △的面积.(第19题)20.(本题满分10分) 设函数1k y x =,2(0)ky k x=->. (1)当23x ≤≤时,函数1y 的最大值是a ,函数2y 的最小值是4a -,求a 和k 的值. (2)设0m ≠,且1m ≠-,当x m =时,1y p =;当1x m =+时,1y q =.圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?21.(本题满分10分)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,DAE ∠的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设(0)CEEBλλ=>. (1)若2AB =,1λ=,求线段CF 的长. (2)连接EG ,若EG AF ⊥,①求证:点G 为CD 边的中点. ②求λ的值.(第21题)22.(本题满分12分)在平面直角坐标系中,设二次函数21y x bx a =++,221y ax bx =++(a ,b 是实数,0a ≠).(1)若函数1y 的对称轴为直线3x =,且函数1y 的图象经过点(),a b ,求函数1y 的表达式.(2)若函数1y 的图象经过点(),0r ,其中0r ≠,求证:函数2y 的图象经过点1,0x ⎛⎫⎪⎝⎭.(3)设函数1y 和函数2y 的最小值分别为m 和n ,若0m n +=,求m ,n 的值. 23.(本题满分12分)如图,已知AC ,BD 为O 的两条直径,连接AB ,BC ,OE AB ⊥于点E ,点F 是半径OC 的中点,连接EF .(1)设O 的半径为1,若30BAC ∠=︒,求线段EF 的长. (2)连接BF ,DF ,设OB 与EF 交于点P ,①求证:PE PF =.②若DF EF =,求BAC ∠的度数.(第23题)2020年浙江省杭州市初中学业水平考试数学答案解析一. 1.【答案】B【解析】根据二次根式的乘法运算法则进行运算即可.故选:B . 2.【答案】C【解析】直接利用平方差公式计算得出答案. 解:()()2111y y y +-=-. 故选:C . 3.【答案】B【解析】根据题意列出算式计算,即可得到结果. 解:根据题意得:()1385213619+-⨯=+=(元). 则需要付费19元. 故选:B . 4.【答案】B【解析】根据三角函数的定义进行判断,就可以解决问题.解:Rt ABC △中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,bsinB c ∴=,即sin b c B =,故A 选项不成立,B 选项成立;tan bB a=,即tan b a B =,故C 选项不成立,D 选项不成立.故选:B . 5.【答案】C【解析】举出反例即可判断A 、B 、D ,根据不等式的传递性即可判断C . 解:A 、0.5a =,0.4b =,a b >,但是1a b -<,不符合题意; B 、3a =,1b =,a b >,但是1b a +<,不符合题意;C 、a b >,11a b ∴++>,11b b +>﹣,11a b ∴+->,符合题意;D 、0.5a =,0.4b =,a b >,但是11a b -+<,不符合题意.故选:C . 6.【答案】A【解析】求得解析式即可判断.解:函数()0y ax a a =+≠的图象过点()1,2P ,2a a ∴=+,解得1a =, 1y x ∴=+,∴直线交y 轴的正半轴,且过点()12,, 故选:A . 7.【答案】A【解析】根据题意,可以判断x y z 、、的大小关系,从而可以解答本题. 解:由题意可得y z x >>, 故选:A . 8.【答案】C【解析】当1x =时,1y =;当8x =时,8y =;代入函数式整理得()921a h =-,将h 的值分别代入即可得出结果.解:当1x =时,1y =;当8x =时,8y =;代入函数式得:221(1)8(8)a h k a h k ⎧=-+⎨=-+⎩, 1()82(27)a h a h ∴---=,整理得:921()a h -=, 若4h =,则1a =,故A 错误; 若5h =,则1a =-,故B 错误;若6h =,则13a =,故C 正确; 若7h =,则15a =,故D 错误;故选:C . 9.【答案】D【解析】根据直角三角形两锐角互余性质,用α表示CBD ∠,进而由圆心角与圆周角关系,用α表示COD ∠,最后由角的和差关系得结果. 解:OA BC ⊥,90AOB AOC ∴∠=∠=︒,909090DBC BEO AED α∴∠=︒-∠=︒-∠=︒-, 21802COD DBC α∴∠=∠=︒-, 90AOD COD ∠+∠=︒, 180290βα∴+︒-=︒, 290αβ∴-=︒,故选:D .10.【答案】B【解析】选项B 正确,利用判别式的性质证明即可. 解:选项B 正确.理由:11M =,20M =,240a ∴-=,280b -<,a ,b ,c 是正实数,2a ∴=, 2b ac =,212c b ∴=,对于324y x cx =++,则有2221616640()c b b ∆=-=-=-<,30M ∴=, ∴选项B 正确,故选:B . 二. 11.【答案】0【解析】根据分式的值,可得分式方程,根据解分式方程,可得答案. 解:由分式11x +的值等于1,得111x =+, 解得0x =,经检验0x =是分式方程的解. 故答案为:0. 12.【答案】20︒【解析】直接利用平行线的性质得出50ABF ∠=︒,进而利用三角形外角的性质得出答案. 解:AB CD ∥,180ABF EFC ∴∠+∠=︒, 130EFC ∠=︒, 50ABF ∴∠=︒,50A E ABF ∠+∠=∠=︒,30E ∠=︒, 20A ∴∠=︒.故答案为:20︒. 13.【答案】34-【解析】根据完全平方公式得到2221()2x y x xy y +=++=,2224()2x y x xy y -=-+=,两式相减即可求解.解:2221()2x y x xy y +=++=,2224()2x y x xy y -=-+=, 两式相减得43xy =-, 解得34xy =-, 则34p =-.故答案为:34-.14.【答案】2【解析】根据切线的性质得到AB BC ⊥,设BC x =,3AC x =,根据勾股定理得到AB ,于是得到结论.解:AB 是O 的直径,BC 与O 相切于点B ,AB BC ∴⊥, 90ABC ∴∠=︒,1sin 3BC BAC AC ∠==, ∴设BC x =,3AC x =,AB ∴==, 12OB AB ∴==,tanBC BOC OB ∴∠===. 15.【答案】58【解析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解. 解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种, 则两次摸出的球的编号之和为偶数的概率是105=168. 故答案为:58. 16.【答案】21【解析】根据矩形的性质得到AD BC =,90ADC B DAE ∠=∠=∠=︒,根据折叠的性质得到CF BC =,90CFE B ∠=∠=︒,EF BE =,根据全等三角形的性质得到2DF AE ==;根据相似三角形的性质即可得到结论. 解:四边形ABCD 是矩形,AD BC ∴=,90ADC B DAE ∠=∠=∠=︒,把BCE △沿直线CE 对折,使点B 落在对角线AC 上的点F 处,CF BC ∴=,90CFE B ∠=∠=︒,EF BE =,CF AD ∴=,90CFD ∠=︒,90ADE CDF CDF DCF ∴∠+∠=∠+∠=︒,ADF DCF ∴∠=∠,()ADE FCD ASA ∴△≌△,2DF AE ∴==;90AFE CFD ∠=∠=︒,90AFE DAE ∴∠=∠=︒,AEF DEA ∠=∠,AEF DEA ∴△∽△,AE DE EF AE∴=, 222EF EF +∴=,1EF ∴=(负值舍去),1BE EF ∴=,故答案为:21.三.17.【答案】解:圆圆的解答过程有错误,正确的解答过程如下:31236()()x x +--=.去括号,得33266x x +-+=.移项,合并同类项,得3x =-.【解析】直接利用一元一次方程的解法进而分析得出答案.具体解题过程参照答案.18.【答案】(1)解:%(1321602008132160200100%9)()8.4++÷+++⨯=,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)解:估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为50002%100⨯=,4月份生产的产品中,不合格的件数为10000198.4%160()⨯-=,100160<,∴估计4月份生产的产品中,不合格的件数多.【解析】(1)根据题意列式计算即可.具体解题过程参照答案.(2)分别求得3月份生产的产品中,不合格的件数和4月份生产的产品中,不合格的件数比较即可得到结论.具体解题过程参照答案.19.【答案】(1)证明:DE AC ∥,DEB FCE ∴∠=∠,EF AB ∥,DBE FEC ∴∠=∠,BDE EFC ∴△∽△;(2)解:①EF AB ∥,12BE AF EC FC ∴==, 12EC BC BE BE =-=-,1122BE BE ∴=-, 解得:4BE =; ②12AF FC =, 23FC AC ∴=, EF AB ∥,EFC BAC ∴△∽△,222439EFC ABC S FC S AC ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭△△, 9420454ABC EFC S S ∴==⨯=△△. 【解析】(1)由平行线的性质得出DEB FCE ∠=∠,DBE FEC ∠=∠,即可得出结论;(2)①由平行线的性质得出12BE AF EC FC ==,即可得出结果; ②先求出23FC AC =,易证EFC BAC △∽△,由相似三角形的面积比等于相似比的平方即可得出结果.20.【答案】(1)解:0k >,23x ≤≤,1y ∴随x 的增大而减小,2y 随x 的增大而增大,∴当2x =时,1y 最大值为2k a =,①; 当2x =时,2y 最小值为42k a -=-,②;由①,②得:2a =,4k =;(2)解:圆圆的说法不正确,理由如下:设0m m =,且010m -<<,则00m <,010m +>,∴当0x m =时,100k p y m ==<, 当01x m =+时,1001k q y m ==+>, 0p q ∴<<,∴圆圆的说法不正确.【解析】(1)由反比例函数的性质可得2k a =,①;42k a -=-,②;可求a 的值和k 的值.具体解题过程参照答案.(2)设0m m =,且010m -<<,将0x m =,01x m =+,代入解析式,可求p 和q ,即可判断.具体解题过程参照答案.21.(1)解:在正方形ABCD 中,AD BC ∥, DAG F ∴∠=∠,又AG 平分DAE ∠,DAG EAG ∴∠=∠,EAG F ∴∠=∠,EA EF ∴=,2AB =,90B ∠=︒,点E 为BC 的中点,1BE EC ∴==,AE ∴==,EF ∴1CF EF EC ∴=-=;(2)解:①证明: EA EF =, EG AF ⊥,AG FG ∴=,在ADG △和FCG △中D GCF AGD FGC AG FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADG FCG AAS ∴△≌△,DG CG ∴=,即点G 为CD 的中点;②设2CD a =,则CG a =,由①知,2CF DA a ==,EG AF ⊥,90GDF ∠=︒,90EGC CGF ∴∠+∠=︒,90F CGF ∠+∠=︒,90ECG GCF ∠=∠=︒,EGC F ∴∠=∠,EGC GFC ∴△∽△,GC EC FC∴=, GC a =,2FC a =,12FC ∴=, 12EC ∴=, 12EC a ∴=,132222BE BC EC a a a =-=-=, 112332a CE EB a λ∴===.【解析】(1)根据2AB =,1λ=,可以得到EB 、CE 的长,然后根据正方形的性质,可以得到AE 的长,再根据平行线的性质和角平分线的性质,可以得到EF 的长,从而可以得到线段CF 的长.具体解题过程参照答案.(2)①要证明点G 为CD 边的中点,只要证明ADG FGC △≌△即可,然后根据题目中的条件,可以得到ADG FGC △≌△的条件,从而可以证明结论成立.具体解题过程参照答案.②根据题意和三角形相似,可以得到CE 和EB 的比值,从而可以得到λ的值.具体解题过程参照答案.22.【答案】(1)解:由题意,得到32b -=,解得6b =-,函数1y 的图象经过(),6a -, 266a a a ∴-+=-,解得2a =或3,∴函数2162y x x =-+或2163y x x =-+.(2)解:函数1y 的图象经过点(),0r ,其中0r ≠,20r br a ∴++=,210b a r r∴++=, 即201(1)1a b r r++=, 1r∴是方程21ax bx ++的根, 即函数2y 的图象经过点1,0r ⎛⎫ ⎪⎝⎭. (3)解:由题意0a >,244a b m -∴=,244a b n a-=, 0m n +=,2244044a b a b a--∴+=, 0()()421a b a ∴-+=,10a +>,240a b ∴-=,0m n ∴==.【解析】(1)利用待定系数法解决问题即可.具体解题过程参照答案.(2)函数1y 的图象经过点(),0r ,其中0r ≠,可得20r br a ++=,推出201b a r r+=+,即201(1)1a b r r ++=,推出1r是方程21ax bx ++的根,可得结论.具体解题过程参照答案.(3)由题意0a >,244a b m -∴=,244a b n a-=,根据0m n +=,构建方程可得结论.具体解题过程参照答案.23.【答案】(1)解:OE AB ⊥,30BAC ∠=︒,1OA =,60AOE ∴∠=︒,1122OE OA ==,AE EB ===, AC 是直径,90ABC ∴∠=︒,60C ∴∠=︒,OC OB =,OCB ∴△是等边三角形,OF FC =,BF AC ∴⊥,90AFB ∴∠=︒,AE EB =,122EF AB ∴==. (2)①证明:过点F 作FG AB ⊥于G ,交OB 于H ,连接EH .90FGA ABC ∠=∠=︒,FG BC ∴∥,OFH OCB ∴△∽△,12FH OF BC OC ∴==,同理12OE BC =, FH OE ∴=,OE AB ⊥.FH AB ⊥,OE FH ∴∥,∴四边形OEHF 是平行四边形,PE PF ∴=.②OE FG BC ∥∥,1EG OF GB FC∴==, EG GB ∴=,EF FB ∴=,DF EF =,DF BF ∴=,DO OB =,FO BD ∴⊥,90AOB ∴∠=︒,OA OB =,AOB ∴△是等腰直角三角形,45BAC ∴∠=︒.【解析】(1)解直角三角形求出AB ,再证明90AFB ∠=︒,利用直角三角形斜边中线的性质即可解决问题.具体解题过程参照答案.(2)①过点F 作FG AB ⊥于G ,交OB 于H ,连接EH .想办法证明四边形OEHF 是平行四边形可得结论.具体解题过程参照答案.②想办法证明FD FB =,推出FO BD ⊥,推出AOB △是等腰直角三角形即可解决问题.具体解题过程参照答案.。
2020年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)×=()A.B.C.D.32.(3分)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.(3分)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.(3分)如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B5.(3分)若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1D.a﹣1>b+16.(3分)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.(3分)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>09.(3分)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD 与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°10.(3分)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0二、填空题:本大题有6个小题,每小題4分,共24分11.(4分)若分式的值等于1,则x=.12.(4分)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=.13.(4分)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.14.(4分)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.15.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.(4分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.2020年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分。
2020杭州中考数学试卷2020杭州中考数学试卷参考内容第一部分选择题(共15小题,每小题2分,计30分)1. 一箱苹果有30个。
小明拿走其中的1/6,小红拿走剩下的1/3,箱中还剩下多少个苹果?A. 12个B. 14个C. 16个D. 18个解答:小明拿走的苹果数为1/6 × 30 = 5个。
剩下的苹果数为30 – 5 = 25个。
小红拿走的苹果数为1/3 × 25 = 25/3 ≈ 8.33个。
由于题目要求整数个苹果,所以箱中剩下的苹果数为25 – 8 = 17个。
答案选C. 16个。
2. 若两数相加等于20,其差等于4,则这两个数分别是多少?A. 8和12B. 9和11C. 10和10D. 12和8解答:设两数分别为x和y,由题意可列出方程组:x + y = 20x – y = 4将第一个方程两边同时减去第二个方程,得:2y = 16所以y = 8,代入第一个方程可得x = 12。
答案选D. 12和8。
3. 若把49元钱分成3堆,第一堆比第二堆多6元,第二堆比第三堆多4元,则第一堆有多少元?A. 19元B. 21元C. 22元D. 24元解答:设第一堆有x元,则第二堆有x – 6元,第三堆有x – 6 – 4 = x – 10元,根据题意可列出方程:x + (x – 6) + (x – 10) = 49将方程化简并解得x = 21。
答案选B. 21元。
4. 下列计算正确的是:A. 0.3 × 0.1 = 0.1B. 0.3 ÷ 1 = 0.3C. 0.3 × 0.1 = 0.03D. 0.3 ÷ 1 = 0.03解答:第一项计算错误,0.3 × 0.1 = 0.03;第二项计算正确,0.3 ÷ 1 = 0.3;选择C. 0.3 × 0.1 = 0.03。
5. 如图所示,正方形ABCD的面积为8cm²,E为AC边的中点,G为AD边的三分之一处,连接BG并交AC于点F,则四边形BGFC的面积为多少?解答:正方形面积为8cm²,所以边长为2cm,由此可以求得AE的长度为√2² + 1² = √5cm。
2020年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)×=()A.B.C.D.32.(3分)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y23.(3分)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元4.(3分)如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B5.(3分)若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1D.a﹣1>b+16.(3分)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.7.(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x8.(3分)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>09.(3分)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD 与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°10.(3分)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0二、填空题:本大题有6个小题,每小題4分,共24分11.(4分)若分式的值等于1,则x=.12.(4分)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=.13.(4分)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.14.(4分)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.15.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.16.(4分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.2020年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)×=()A.B.C.D.3【分析】根据二次根式的乘法运算法则进行运算即可.【解答】解:×=,故选:B.2.(3分)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y2【分析】直接利用平方差公式计算得出答案.【解答】解:(1+y)(1﹣y)=1﹣y2.故选:C.3.(3分)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元【分析】根据题意列出算式计算,即可得到结果.【解答】解:根据题意得:13+(8﹣5)×2=13+6=19(元).则需要付费19元.故选:B.4.(3分)如图,在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B【分析】根据三角函数的定义进行判断,就可以解决问题.【解答】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴sin B=,即b=c sin B,故A选项不成立,B选项成立;tan B=,即b=a tan B,故C选项不成立,D选项不成立.故选:B.5.(3分)若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1D.a﹣1>b+1【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【解答】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴a+1>b+1,∵b+1>b﹣1,∴a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.6.(3分)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【解答】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y轴的正半轴,且过点(1,2),故选:A.7.(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【解答】解:由题意可得,y>z>x,故选:A.8.(3分)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0【分析】当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9﹣2h)=1,将h的值分别代入即可得出结果.【解答】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;若h=6,则a=﹣,故C正确;若h=7,则a=﹣,故D错误;故选:C.9.(3分)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°【分析】根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.【解答】解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.10.(3分)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0【分析】选项B正确,利用判别式的性质证明即可.【解答】解:选项B正确.理由:∵M1=1,M2=0,∴a2﹣4=0,b2﹣8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=b2,对于y3=x2+cx+4,则有△=c2﹣16=b2﹣16=(b2﹣64)<0,∴M3=0,∴选项B正确,故选:B.二、填空题:本大题有6个小题,每小題4分,共24分11.(4分)若分式的值等于1,则x=0.【分析】根据分式的值,可得分式方程,根据解分式方程,可得答案.【解答】解:由分式的值等于1,得=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.12.(4分)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=20°.【分析】直接利用平行线的性质得出∠ABF=50°,进而利用三角形外角的性质得出答案.【解答】解:∵AB∥CD,∴∠ABF+∠EFC=180°,∵∠EFC=130°,∴∠ABF=50°,∵∠A+∠E=∠ABF=50°,∠E=30°,∴∠A=20°.故答案为:20°.13.(4分)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=﹣.【分析】根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减即可求解.【解答】解:(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减得4xy=﹣3,解得xy=﹣,则P=﹣.故答案为:﹣.14.(4分)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.【分析】根据切线的性质得到AB⊥BC,设BC=x,AC=3x,根据勾股定理得到AB===2x,于是得到结论.【解答】解:∵AB是⊙O的直径,BC与⊙O相切于点B,∴AB⊥BC,∴∠ABC=90°,∵sin∠BAC==,∴设BC=x,AC=3x,∴AB===2x,∴OB=AB=x,∴tan∠BOC==,故答案为:.15.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故答案为:.16.(4分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=2,BE=﹣1.【分析】根据矩形的性质得到AD=BC,∠ADC=∠B=∠DAE=90°,根据折叠的性质得到CF=BC,∠CFE=∠B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,故答案为:2,﹣1.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【分析】直接利用一元一次方程的解法进而分析得出答案.【解答】解:圆圆的解答过程有错误,正确的解答过程如下:3(x+1)﹣2(x﹣3)=6.去括号,得3x+3﹣2x+6=6.移项,合并同类项,得x=﹣3.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据题意列式计算即可;(2)分别求得3月份生产的产品中,不合格的件数和4月份生产的产品中,不合格的件数比较即可得到结论.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【分析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?【分析】(1)由反比例函数的性质可得,①;﹣=a﹣4,②;可求a的值和k的值;(2)设m=m0,且﹣1<m0<0,将x=m0,x=m0+1,代入解析式,可求p和q,即可判断.【解答】解:(1)∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1最大值为,①;当x=2时,y2最小值为﹣=a﹣4,②;由①,②得:a=2,k=4;(2)圆圆的说法不正确,理由如下:设m=m0,且﹣1<m0<0,则m0<0,m0+1>0,∴当x=m0时,p=y1=,当x=m0+1时,q=y1=>0,∴p<0<q,∴圆圆的说法不正确.21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.【分析】(1)根据AB=2,λ=1,可以得到BE、CE的长,然后根据正方形的性质,可以得到AE的长,再根据平行线的性质和角平分线的性质,可以得到EF的长,从而可以得到线段CF的长;(2)①要证明点G为CD边的中点,只要证明△ADG≌△FGC即可,然后根据题目中的条件,可以得到△ADG≌△FGC的条件,从而可以证明结论成立;②根据题意和三角形相似,可以得到CE和EB的比值,从而可以得到λ的值.【解答】解:(1)∵在正方形ABCD中,AD∥BC,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵AB=2,∠B=90°,点E为BC的中点,∴BE=EC=1,∴AE==,∴EF=,∴CF=EF﹣EC=﹣1;(2)①证明:∵EA=EF,EG⊥AF,∴AG=FG,在△ADG和△FCG中,∴△ADG≌△FCG(AAS),∴DG=CG,即点G为CD的中点;②设CD=2a,则CG=a,由①知,CF=DA=2a,∵EG⊥AF,∠GDF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴,∵GC=a,FC=2a,∴,∴,∴EC=a,BE=BC﹣EC=2a﹣a=a,∴λ=.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.【分析】(1)利用待定系数法解决问题即可.(2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出1++=0,即a()2+b•+1=0,推出是方程ax2+bx+1的根,可得结论.(3)由题意a>0,∴m=,n=,根据m+n=0,构建方程可得结论.【解答】解:(1)由题意,得到﹣=3,解得b=﹣6,∵函数y1的图象经过(a,﹣6),∴a2﹣6a+a=﹣6,解得a=2或3,∴函数y1=x2﹣6x+2或y1=x2﹣6x+3.(2)∵函数y1的图象经过点(r,0),其中r≠0,∴r2+br+a=0,∴1++=0,即a()2+b•+1=0,∴是方程ax2+bx+1的根,即函数y2的图象经过点(,0).(3)由题意a>0,∴m=,n=,∵m+n=0,∴+=0,∴(4a﹣b2)(a+1)=0,∵a+1>0,∴4a﹣b2=0,∴m=n=0.23.(12分)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.【分析】(1)解直角三角形求出AB,再证明∠AFB=90°,利用直角三角形斜边中线的性质即可解决问题.(2)①过点F作FG⊥AB于G,交OB于H,连接EH.想办法证明四边形OEHF是平行四边形可得结论.②想办法证明FD=FB,推出FO⊥BD,推出△AOB是等腰直角三角形即可解决问题.【解答】(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.。