第十节 固体结构
- 格式:pptx
- 大小:12.70 MB
- 文档页数:103
第十章固体结构之课后习题参考答案7解:最低的为KBr。
因为它们均为离子晶体,其离子所带电荷越高,离子半径越小,离子键越强,即晶体熔点就越高。
MgO中正负离子均带2个电荷,离子键最强,而1价离子中,KBr的正负离子半径之和最大,则离子键最弱,熔点最低。
8解:(1)熔点:NaF>NaCl>NaBr>NaI。
因为阳离子相同时,阴离子从F-→I-离子半径增大,则离子键依次减弱,熔点也依次减弱。
(2)MgO>CaO>SrO>BaO。
原因同(1)。
9解:(1):8e-;(2)(9-17)e-:(3)(18+2)e-;(4)18e-10解:(2)的。
因阴离子的极化率大于阳离子的,而体积越大,阴离子的极化率也越大。
11解:(4)>(3)>(1)>(2).因阳离子的电荷越高,半径越小,即Z/r值越大,其离子极化作用就越强。
13解:(1)色散力;(2)色散力;(3)取向力,诱导力,色散力,氢键;(4)取向力,诱导力,色散力;(5)色散力;(6)色散力;(7)取向力,诱导力,色散力。
14解:不含氢键的有:(1)和(2)。
15解:(1)两者均为分子晶体,但因HF中存在分子间氢键,增大了分子间作用力,使其沸点反高于HCl。
(2)两者均为典型的离子晶体,而离子晶体当电荷相同时,离子半径越小,其离子键越强,晶体的沸点就越高,所以NaCl的沸点高于CsCl。
(3)因Ti4+离子所带电荷高,离子半径又小,即Z/r值非常大,其极化作用很强,导致Ti-Cl 之间由离子键转化为了共价键,成为分子晶体,所以其沸点大大低于离子晶体LiCl。
(4)两者均为分子晶体,且分子量也相同。
但沸点相差较大。
这是因为乙醇分子(后者)之间存在分子间氢键,增大了分子间的作用力导致。
16解:因Ag+为18e电子构型的离子,其极化作用和变形性均大,而阴离子的半径从F-到I-依次增大,变形性也依次增加,导致Ag+与X-离子之间的极化作用从AgF到AgI依次增强,化学键从离子键逐步向共价键过渡,所以溶解度依次减小,即AgF易溶,其它难溶,且溶解度依次减小。
化学物质固态【正文】化学物质固态化学物质在不同的物态下展现出不同的性质和特点。
其中,固态是化学物质最常见的一种物态,它具有一系列独特的特征和行为。
本文将探讨化学物质固态的基本概念、结构和性质,以及其在日常生活中的应用。
一、固态的定义和特征固态是物质存在的最常见状态之一,具有以下定义和特征:1. 定义:固态是物质的一种物态,具有相对固定的体积和形状。
2. 特征:固态的物质分子或原子通过各种化学键相互吸引和排列,形成紧密有序的结构。
固态物质的分子或原子在空间上位于相对固定的位置,只有微小的振动。
固态物质一般具有较高的密度和较低的可压缩性。
二、固态的结构和性质固态物质的结构和性质对于了解其化学本质具有重要意义。
下面介绍几种与固态相关的结构和性质。
1. 晶体结构:晶体是固态中最常见的结构形式之一。
晶体是由原子、分子或离子按照一定的规则排列而成的,具有长程有序性。
晶体结构不仅仅是一种几何形状,更重要的是其在空间中的周期性重复性。
2. 晶体格点:晶体的组成单元是一个个离散的点,称为晶体格点。
晶体格点的排列决定了晶体的整体结构。
晶体格点的类型包括简单立方格点、面心立方格点和体心立方格点等。
3. 晶体缺陷:晶体中可能存在一些结构上的缺陷,如顺序缺陷和点缺陷,它们对晶体的性质和行为产生重要影响。
晶体缺陷的产生原因可以是晶体的生长过程中的不完美,或者是外界条件的影响。
4. 晶体的性质:晶体的性质与其结构密切相关。
晶体具有一系列特殊的物理性质,如光学性质、热性质、电性质等。
这些性质的表现形式与晶体结构和晶体格点的排列方式有直接的关系。
三、固态的应用固态物质在日常生活和诸多领域都有广泛应用。
以下列举一些常见的例子:1. 材料科学:固态材料科学研究和应用的发展对人类社会的进步起到了重要促进作用。
金属、陶瓷、高分子材料以及半导体材料等广泛应用于建筑、电子、通信、航天等领域。
2. 药物制剂:固态制剂是目前最主要的药物给药形式之一。
固体的结构与性质固体是物质存在的一种状态,其分子或原子以固定的位置排列,相互间具有一定的结构和性质。
本文将探讨固体的结构特征以及对其性质的影响。
一、晶体结构晶体是固体中最有序、结构最规则的形态。
晶体的结构由重复排列的单位结构单元组成,这些结构单元通过晶体内部的转换与堆积形成整齐的晶体结构。
1. 点阵结构晶体结构的基本特征是点阵结构,即离子、分子或原子在晶体中以一定的法则排列。
常见的点阵结构包括立方晶系、四方晶系、正交晶系、斜方晶系、六方晶系和三斜晶系等。
2. 晶体面及晶胞晶体面指晶体的各个表面,其位置由晶胞决定。
晶胞是晶体中最小的结构单位,由一定数量的晶体面组成。
不同晶体的晶胞形状和大小各异,反映了各自的晶体结构。
3. 空间群空间群是描述晶体点阵结构的数学概念,它由旋转、平移、镜像操作和点群对称等元素组成。
空间群的不同反映了晶体的对称性,对晶体的性质和应用具有重要的影响。
二、非晶态结构非晶态是一种无典型结构的固体形态,其原子或分子排列无序。
非晶态是具有熵增益的形态,因而具有较高的熔点和较大的硬度。
非晶态结构的形成与快速冷却或高压下的固化有关。
1. 玻璃态玻璃是一种典型的非晶态结构,具有无序排列的原子或分子。
玻璃的制备通常通过快速冷却,使晶体无法形成有序结构,从而呈现出非晶态特征。
玻璃具有良好的透明性、热稳定性和化学稳定性。
2. 聚合物非晶态聚合物在液态聚合过程中,由于聚合物链的缩短和杂乱的分子运动,导致聚合物呈现无序排列的非晶态结构。
聚合物非晶态结构的形成直接影响了聚合物的物理性质、力学性能和热稳定性。
三、结构与性质的关系固体的结构直接影响其性质,不同结构的固体表现出不同的物理、化学性质。
以下是几个典型的例子。
1. 晶体的硬度晶体的硬度与其晶体结构以及离子或分子间的相互作用力有关。
通常,离子键和共价键较强,因此具有离子结构或共价结构的晶体通常比分子结构的晶体硬度更高。
2. 聚合物的弹性聚合物的结构对其弹性和可塑性起着关键作用。
固体的性质固体的结构与性质固体是一种物质的表现形态,具有固定的形状和体积。
它的结构和性质对于我们理解物质的特性以及应用具有重要的意义。
本文将探讨固体的结构和性质,从几个方面来进行论述。
一、晶体的结构和性质晶体是具有有序排列的固体,其原子、离子或者分子按照一定的几何规律排列而成。
晶体的结构决定了其特殊的性质。
1. 晶胞结构晶胞是晶体最基本的重复单元,它通过翻转和堆放形成整个晶体。
常见的晶胞结构有立方晶胞、正交晶胞、晶体晶胞等。
晶胞结构的不同决定了晶体的物理和化学性质的差异。
2. 晶体的硬度晶体的硬度是指晶体抵抗外力破坏的能力。
硬度的大小与晶体的结构和成分有关。
例如,金刚石的硬度非常高,因为它的碳原子以立方晶胞的形式排列,碳原子之间有很强的共价键连接,使得金刚石具有极高的硬度。
3. 晶体的透明性晶体的透明性指的是光线穿过晶体的能力。
晶体透明性的好坏与晶体的结构有关,通常晶体的结构是高度对称的,没有杂质或缺陷,能使光线顺利传播而不发生散射。
因此,很多晶体具有良好的透明性,如水晶、石英等。
二、非晶体的结构和性质非晶体是指原子、离子或者分子无序排列的固体,它们没有明显的晶体结构。
非晶体的结构与晶体不同,导致了其特殊的性质。
1. 非晶体的刚度非晶体在结构上缺乏长程有序性,使得原子之间的位置和方向无规律可循,因此非晶体的刚度较低。
与晶体相比,非晶体更容易变形,无法保持固定的形状。
2. 非晶体的熔化温度非晶体的熔化温度通常较低。
由于非晶体的结构较为松散,原子之间的键力较弱,因此可以在较低的温度下熔化。
3. 非晶体的光学性质非晶体的光学性质较差。
由于非晶体的结构无规则,光线在非晶体中容易散射,导致光的传播速度下降和透明度降低。
三、固体的导电性固体的导电性是固体材料中电子或正离子的运动性质,也与固体的结构和性质密切相关。
1. 金属导体金属是电子自由流动的良好导体,其导电性能与金属中的自由电子有关。
金属中的原子以一种密堆的方式排列,形成电子云,电子可以自由地在其中移动,从而形成电流。
一、实验目的1. 理解固体结构的组成及其基本特性。
2. 掌握固体结构实验的基本方法与操作。
3. 分析不同类型固体结构的力学性能。
4. 培养实验数据记录、处理及分析的能力。
二、实验原理固体结构是指由各种固体材料构成的建筑物、构筑物及其部件。
在实验中,我们将通过以下几种实验方法来研究固体结构的特性:1. 材料力学性能实验:通过拉伸、压缩、弯曲等实验,测定材料的弹性模量、屈服强度、极限强度等力学性能。
2. 结构模型实验:通过搭建不同类型的结构模型,观察和分析其在受力时的变形和破坏情况。
3. 结构动力特性实验:通过激振、测量等方法,研究结构的自振频率、阻尼比等动力特性。
三、实验内容及步骤1. 材料力学性能实验(1)实验仪器:万能试验机、拉伸试验机、压缩试验机、弯曲试验机等。
(2)实验步骤:① 根据实验要求,选取合适的实验材料,如钢材、木材、混凝土等。
② 对实验材料进行加工,制成标准试件。
③ 将试件安装到相应的试验机上,进行拉伸、压缩、弯曲等实验。
④ 记录实验数据,包括应力、应变、变形等。
⑤ 分析实验结果,计算材料的力学性能指标。
2. 结构模型实验(1)实验仪器:模型支架、加载装置、位移传感器等。
(2)实验步骤:① 根据实验要求,设计并搭建不同类型的结构模型,如梁、板、壳等。
② 将模型支架固定在实验台上,将结构模型安装在支架上。
③ 在模型上施加不同方向的载荷,如轴向、横向、弯曲等。
④ 使用位移传感器测量结构模型的变形情况。
⑤ 分析实验结果,研究结构的力学性能和破坏机理。
3. 结构动力特性实验(1)实验仪器:激振器、加速度传感器、频率分析仪等。
(2)实验步骤:① 将结构模型安装在实验台上,将加速度传感器安装在模型上。
② 通过激振器施加周期性激励,使结构模型产生振动。
③ 使用加速度传感器测量结构的振动加速度,通过频率分析仪分析振动信号。
④ 记录实验数据,包括自振频率、阻尼比等动力特性指标。
⑤ 分析实验结果,研究结构的动力特性。