杉松岗镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 格式:pdf
- 大小:392.51 KB
- 文档页数:21
杉松岗镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)已知关于x、y的方程组,给出下列说法:
①当a =1时,方程组的解也是方程x+y=2的一个解;②当x-2y>8时,;③不论a取什么实数,2x+y
的值始终不变;④若,则。
以上说法正确的是()
A.②③④
B.①②④
C.③④
D.②③
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;
通过加减消元法可解方程组为x=3+a,y=-2a-2,代入x-2y>8可解得a>,故②正确;
2x+y=6+2a+(-2a-2)=4,故③正确;
代入x、y的值可得-2a-2=(3+a)2+5,化简整理可得a=-4,故④正确.
故答案为:A
【分析】将a代入方程组,就可对①作出判断;利用加减消元法求出x、y的值,再将x、y代入x-2y>8 解不等式求出a的取值范围,就可对②作出判断;由x=3+a,y=-2a-2,求出2x+y=4,可对③作出判断;将x、y 的值代入y=x2+5,求出a的值,可对④作出判断;综上所述可得出说法正确的序号。
2、(2分)如图,在三角形中,=90º,=3,=4,=5,则点到直线的
距离等于()
A. 3
B. 4
C. 5
D. 以上都不对
【答案】A
【考点】点到直线的距离
【解析】【解答】解:∵∠C=90°
∴AC⊥BC
∴点A到直线BC的距离就是线段AC的长,即AC=3
故答案为:A
【分析】根据点到直线的距离的定义求解即可。
3、(2分)±2是4的()
A. 平方根
B. 相反数
C. 绝对值
D. 算术平方根
【答案】A
【考点】平方根
【解析】【解答】解:±2是4的平方根.
故答案为:A
【分析】根据平方根的定义(±2)2=4,故±2是4的平方根。
4、(2分)若方程ax-3y=2x+6是二元一次方程,则a必须满足()
A.a≠2
B.a≠-2
C.a=2
D.a=0
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:先将方程移项整理可得: ,根据二元一次方程的定义可得:故答案为:A.
【分析】首先将方程右边的2x改变符号后移到方程的左边,然后再合并同类项得出,根据二元一次方程的定义,方程必须含有两个未知数,从而得出不等式a-2≠0,求解即可得出a的取值范围。
5、(2分)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为()
A.0<x≤1
B.0≤x<1
C.1<x≤2
D.1≤x<2
【答案】A
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:由题意得
解之得
故答案为:A.
【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.
6、(2分)如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDA 的度数等于()
A. 70°
B. 100°
C. 110°
D. 120°
【答案】A
【考点】平行线的性质
【解析】【解答】解:∵DE∥AC,
∴∠CDE=∠C=50°,
又∠CDA+∠CDE+∠BDE=180°,
∴∠CDA=180°﹣50°﹣60°=70°,
故选A.
【分析】根据两直线平行,内错角相等,求出∠CDE的度数,再根据平角的定义,可得出∠CDA+∠CDE+∠BDE=180°,然后代入计算即可求解。
7、(2分)不等式组的最小整数解是()
A.0
B.-1
C.1
D.2
【答案】A
【考点】一元一次不等式的特殊解
【解析】【解答】解不等式组可得,即<x≤2,整数解有0、1、2,其中最小的是0,A符合题意。
故答案为:A
【分析】首先解出不等式组的解集,再确定其不等式组的最小整数解.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
8、(2分)在,,,,,,7.010010001…(每两个“1”之间依次多一个“0”),这7个数中,无理数共有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】无理数的认识
【解析】【解答】解:无理数有:,2 π,7.010010001…(每两个“1”之间依次多一个“0”)一共3个。
故答案为:C
【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,有规律但不循环的小数是无理数,就可得出无理数的个数。
9、(2分)在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】A
【考点】无理数的认识
【解析】【解答】解:∵=3,=2,∴无理数有:2 ,- ,一共有2个.故答案为:A.
【分析】无理数是指无限不循环小数,根据无理数的定义可知,-是无理数。
10、(2分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】D
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵DH∥EG∥BC
∴∠DCB=∠HDC,∠HDC=∠DME,
∵DC∥EF
∴∠DCB=∠EFB,∠FEG=∠DME=∠GMC
∴与∠DCB相等的角有:∠HDC,∠DME,∠EFB,∠FEG,∠GMC
故答案为:D
【分析】根据平行线的性质即可求解。
11、(2分)二元一次方程组的解是()
A. B. C. D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故答案为:B.
【分析】观察方程组中未知数的系数特点:x的系数相等,因此利用①﹣②消去x,求出y的值,再将y的值代入方程①,就可求出x的值,即可得出方程组的解。
12、(2分)下列命题不成立的是()
A. 等角的补角相等
B. 两直线平行,内错角相等
C. 同位角相等
D. 对顶角相等
【答案】C
【考点】余角、补角及其性质,对顶角、邻补角,平行线的性质
【解析】【解答】A、同角或等角的补角相等,故A不符合题意;
B、两直线平行,内错角相等,故B不符合题意;
C、同位角不一定相等,故C符合题意;
D、对顶角相等,故D不符合题意;
故答案为:C
【分析】根据两角互补的性质可对A作出判断;根据平行线的性质可对B、C作出判断;根据对顶角的性质可对D作出判断;即可得出答案。
二、填空题
13、(1分)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于________米.
【答案】1.3
【考点】一元一次不等式的应用
【解析】【解答】解:设导火线的长度为x(m),
工人转移需要的时间为:+ =130(s),
由题意得,>130,
解得x>1.3m.
故答案为:1.3
【分析】先计算出工人转移所需时间,再利用导火线的长度除以燃烧的速度表示出燃烧导火线所需的时间,该时间应大于工人转移的时间,即可列出一元一次不等式,解不等式即可求得导火线长度的范围.
14、(1分)若m是的算术平方根,则 ________ .
【答案】5
【考点】算术平方根
【解析】【解答】解:,且m是的算术平方根,
,
则,
故答案为:5.
【分析】根据算术平方根的意义可得=4,由题意m==2,所以m + 3 = 5 。
15、(1分)判断是否是三元一次方程组的解:________(填:“是”或者“不是”).
【答案】是
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵把代入:得:
方程①左边=5+10+(-15)=0=右边;
方程②左边=2×5-10+(-15)=-15=右边;
方程③左边=5+2×10-(-15)=40=右边;
∴是方程组:的解.
【分析】将已知x、y、z的值分别代入三个方程计算,就可判断;或求出方程组的解,也可作出判断。
16、(1分)下面是小芳本月的费用支出扇形统计图,如果本月小芳总共花费了1000元,那么在购买衣
物上面花费了________元。
【答案】200
【考点】扇形统计图
【解析】【解答】解:从扇形统计图可知,购买衣物占总费用的20%,1000×20%=200(元)故答案为:200【分析】扇形统计图表示部分与整体之间的关系,用总花费乘购买衣物占总费用的百分率即可求出购买衣服花费的钱数.
17、(1分)任何实数a,可用[a]表示不超过a的最大整数,如[2]=2,[3.7]=3,现对72进行如下操作:
,
这样对72只需进行3次操作后变为1,类似地:对109只需进行________次操作后变为1.
【答案】3
【考点】估算无理数的大小
【解析】【解答】解:85→第一次[ ]=9→第二次[ ]=3→第三次[ ]=1
故对85只需进行3次操作后变为1
【分析】根据[a]表示不超过a的最大整数,由102=100,112=121可知,对109进行第一次操作等于10,由32=9,42=16可知第二次操作等于3,以此类推即可得出答案。
18、(2分)的算术平方根是________ ;(-2)2的平方根是________
【答案】3;±2
【考点】平方根,算术平方根
【解析】【解答】解:∵=9
∴的算术平方根为3,
∵(-2)2=4
∴(-2)2的平方根是±2
故答案为:3,±2【分析】先将化简,再求出它的算术平方根即可;先求出(-2)2,再求出平方根即可。
三、解答题
19、(5分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,求∠2的度数.
【答案】解:∵AB⊥BC,
∴∠ABC=90°,
∴∠1+∠3=90°,
∵∠1=55°,
∴∠3=35°,
∵a∥b,
∴∠2=∠3=35°.
【考点】对顶角、邻补角,平行线的性质
【解析】【分析】因为∠ABC=,可知∠1与∠3互余,已知∠1的度数,可知∠3的度数,再利用两直线
平行,同位角相等,可得到∠2=∠3,即可得到∠2的值.
20、(5分)关于x,y的方程组的解满足x>y,求m的取值范围.
【答案】解:由解得,
∵x>y,
∴2m>1﹣m,
解得m>
【考点】解二元一次方程组,一元一次不等式的应用
【解析】【分析】本题已知说明了是关于x、y的二元一次方程组,所以解方程组时将m看做常数去解,这样解得的未知数的值中会含有m,再利用已知x>y,求得m的取值范围.
21、(5分)如图所示,直线AB、CD、EF相交于点O,CD⊥AB,∠AOE:∠AOD=3:5,求∠BOF与
∠DOF的度数.
【答案】解:∵∠AOE:∠AOD=3:5,∠AOD=90°,
∴∠AOB=90°× =54°;∵∠BOF=∠AOF=54°,
∴∠DOF=90°-54°=36°
故答案为:,
【考点】对顶角、邻补角
【解析】【分析】因为∠AOD为直角,所以根据∠AOE和∠AOD的比例关系可求出∠AOE的度数,再利用对顶角相等可知∠BOF的值,进而求出∠DOF的值.
22、(10分)济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:
职工甲乙
月销售件数(件)200180
月工资(元)18001700
(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?
(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?
【答案】(1)解:设工资分配方案调整后职工的月基本保障工资为x元,销售每件产品的奖励金额为y元,根据题意得:
,解得,
答:职工的月基本保障工资为800元,销售每件产品的奖励金额为5元,
(2)解:设丙当月应销售z件产品,根据题意可得:
800+5z≥2000,解得z≥240,
答:丙该月至少应销售240件产品
【考点】一元一次不等式的特殊解,一元一次不等式的应用,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【分析】(1)根据月工资=调整后职工的月基本保障工资+ 销售每件的奖励金额×销售的件数,利用表中甲乙的月工资,设未知数,列方程组,求出方程组的解即可。
(2)根据职工丙今年六月份的工资≥2000,设未知数,列不等式,求出不等式的最小整数解,即可解决问题。
23、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲ .
【答案】解:垂线段最短。
【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。
所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。
24、(10分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.
(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.
【答案】(1)解:设买“指定日普通票”x张,“夜票”y张.
由题意得:,
解得
∴“指定日普通票”买6张,“夜票”买4张.
(2)能,理由如下:
设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.
由题意得200x+160y+100(10-x-y)=1600.
整理得5x+3y=30,
∵x,y均为正整数,且每种至少一张,
∴当x=3,y=5,10-x-y=2时,李老师的想法能实现.
【考点】二元一次方程的解,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【分析】(1)设买“指定日普通票”x张,“夜票”y张.,购买指定日普通票的花费为200x元,购买夜
票的花费为100y元,根据购买“指定日普通票”和“夜票”共10张,和购买“指定日普通票”和“夜票”共花费1600元列出方程组,求解即可;
(2)能,理由如下:设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.根据购买三种票的总花费是1600元,列出二元一次方程,再求出其正整数解,进而根据而且每张票至少一张,即可得出答案。
25、(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。
26、(10分)将一副三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.
(1)试说明:CF∥AB;
(2)求∠DFC的度数.
【答案】(1)解:∵CF平分∠DCE,∴∠1=∠2=∠DCE.
∵∠DCE=90°,
∴∠1=45°.
∵∠3=45°,
∴∠1=∠3.
∴CF∥AB(内错角相等,两直线平行)(2)解:∵∠D=30°,∠1=45°,
∴∠DFC=180°-30°-45°=105°
【考点】角的平分线,平行线的判定
【解析】【分析】(1)根据角平分线定义结合已知条件得∠1=45°,由已知得∠1=∠3=45°,根据平行线判定:内错角相等,两直线平行即可得证.
(2)根据三角形内角和定理即可求得.
第21 页,共21 页。