昆明市2018年中考数学试卷(解析版)
- 格式:doc
- 大小:543.87 KB
- 文档页数:26
2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1. (分)-1的绝对值是2. (分)已知点P (a, b)在反比例函数丫=的图象上,贝U ab= .3. (分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为2-4= .(分)分解因式:X. 4 -5. (分)如图,已知AB// CD若=,则=. ---------------6. (分)在厶ABC中, AB= AC=5若BC边上的高等于3,贝U BC边的长为 .——二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7. (分)函数丫=的自变量x的取值范围为()A. x < 0B. x< 1C. x > 0D. x > 18. (分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A. 三棱柱B .三棱锥C .圆柱D .圆锥9. (分)一个五边形的内角和为()A. 540°B. 450°C. 360°D. 180°23456,...... ,第aa,an,- a,-,10.(分)按一定规律排列的单项式:a, - a个单项式是()nnn+1nnn a1)D. B . —a1 C. (―)(-. Aaa11. (分)下列图形既是轴对称图形,又是中心对称图形的是()A. 三角形B .菱形C .角D .平行四边形12. (分)在Rt△ ABC中,/ C=90,AC=1, BC=3 则/A的正切值为()A. 3B. C. D.溪达四海”]数字工坊[玉汝于成,]数字工匠[以“日,8月12年2017(分).13. 为主题的2017 一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B. “非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人2+=(x+=6 ,则x)1 4.(分)已知A.38 B.36 C.34 D.32 三、解答题(共9 小题,满分70 分)-io)(分)计算:—2cos45° —()—(n—115.16. (分)如图,已知AC平分/ BAD AB=AD求证:△ ABC^A ADC17. (分)某同学参加了学校举行的“五好小公民?红旗飘飘”演讲比赛,7 名评委给该同学的打分(单位:分)情况如下表:评委评委 1 评委 2 评委 3 评委 4 评委 5 评委 6 评委7888657 打分7(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18. (分)某社区积极响应正在开展的“创文活动” ,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造. 已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用 3 小时,乙工程队每小时能完成多少平方米的绿化面积的三张卡片(注:这三张卡片的形状、3,2,1(分)将正面分别写着数字. 19. 大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.( 1 )用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.2+bx+c的图象经过A (0, 3), B20.(分)已知二次函数y=- x (-4,-)两点. (1)求b, c的值.2+bx+c 的图象与x 轴是否有公共点,求公共点的坐标;若)二次函数y=- x(2 没有,请说明情况.21. (分)某驻村扶贫小组为解决当地贫困问题, 带领大家致富. 经过调查研究, 他们决定利用当地生产的甲乙两种原料开发A, B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品32120200 商品B设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小22. (分)如图,已知AB是。
2018年云南省昆明市初中毕业、升学考试数学(满分120分,考试时间120分钟)一、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上.1.(2018云南省昆明市,1,3分)在实数-3,0,1中,最大的数是.【答案】1.【解析】∵负数<0<正数,∴-3,0,1中最大的数是1.【知识点】实数比较大小2.(2018云南省昆明市,2,3分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240 000辆,数字240 000用科学记数法表示为.【答案】2.4×105.【解析】240 000是一个整数数位有6位的数,科学记数法表示一个数,就是把一个数写成a×10n的形式(其中1≤|a|<10,n为整数),故在用科学记数法表示时,a=2.4,n=6-1=5,即240 000=2.4×105.【知识点】科学记数法3.(2018云南省昆明市,3,3分)如图,过直线AB上一点O作射线OC,∠BOC=29°18',则∠AOC的度数为.【答案】150°42'.【解析】∵∠BOC+∠AOC=180°,∠BOC=29°18',∴∠AOC=180°-29°18'=150°42'.【知识点】平角的定义;角的计算4.(2018云南省昆明市,4,3分)若13mm+=,则与122mm+=.【答案】7.【解析】由13mm+=可得,2213mm+=⎛⎫⎪⎝⎭,展开得,112292m mmm++⋅=,即12922mm+=-,故122mm+=7.【知识点】完全平方公式5.(2018云南省昆明市,5,3分)如图,点A的坐标为(4,2),将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A'、则过点A'的正比例函数的解析式为.【答案】y=-43x或y=-4x.【解析】如下图(1),①若点A绕坐标原点O逆时针旋转90°,可得到点B,再向左平移1个单位长度得到点A'的坐标为(-3,4),设过点A'的正比例函数的解析式为y=kx,将点A'(-3,4)代入得,4=-3k,解得k=-43,∴y=-43x;②若点A绕坐标原点O顺时针旋转90°,可得到点C,再向左平移1个单位长度得到点A '的坐标为(2,-4),设过点A '的正比例函数的解析式为y =kx ,将点A '(1,-4)代入得,-4=k ,解得k =-4,∴y =-4x .【知识点】旋转;正比例函数关系式 6.(2018云南省昆明市,6,3分)如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).【答案】3323π-.【思路分析】S 阴影=S 正六边形ABCDEF -S 扇形BAF ,求出正六边形ABCDEF 的面积和扇形BAF 的面积即可. 【解题过程】如图,设正六边形ABCDEF 的中心为点O ,则∠CDE =∠BAF =()621806-⨯=120°,过点O 作OG ⊥DE 于G ,则在Rt △ODG 中,∵∠ODG =12∠CDE =60°,DG =12DE =12,∴OG =11260332DGCOS ==︒=33,∴S △ODG =12DG ·OG =12×12×33=312,∴S 阴影=S 正六边形ABCDEF -S 扇形BAF=12S △ODG -S 扇形BAF =12×312-21201360π⨯=3323π-.【知识点】多边形内角和公式;扇形面积公式;三角形面积公式;特殊角的三角函数值的应用二、选择题:本大题共8小题,每小题4分,共32分.不需写出解答过程,请把最后结果填在题后括号内. 7.(2018云南省昆明市,7,4分)下列几何体的左视图为长方形的是( )【答案】C.【解析】从左面看A选项为圆,B选项为梯形,C选项为长方形,D选项为等腰三角形.故选C.【知识点】视图与投影;三视图8.(2018云南省昆明市,8,4分)关于x的一元二次方程2230x x m-+=有两个不相等的实数根,则实数m 的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥3【答案】A.【思路分析】若一元二次方程有两个不相等的实数根,则判别式b2-4ac>0.【解题过程】解:由题意得,2230x x m-+=有两个不相等的实数根,则该一元二次方程的根的判别式b2-4ac=(-23)2-4×1·m=12-4m>0,解得m<3,故选A.【知识点】一元二次方程的应用;根的判别式9.(2018云南省昆明市,9,4分)黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面.请你估算5-1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【答案】B.【解析】∵2<5<3,∵2.2 2=4.84,2.32=5.29,∴2.2<5<2.3,∴2.2-1<5-1<2.3-1,即1.2<5-1<1.3,故选B.【知识点】无理数;估算10.(2018云南省昆明市,10,4分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4 000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4 000C.在“童心向党,阳光成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.5 9.6 9.7 9.8 9.9参赛队个数9 8 6 4 3则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么这个问题中“至少有两名同学出生在同一个月属于必然事件【答案】D.【解析】方差越小,数据越稳定,故乙组同学的身高较为整齐,故A选项错误;由于从中抽取100名学生的数学成绩进行调查,因此B选项中的样本容量为100,故B选项错误;C选项中30个数据,中位数为第15个和第16个的平均数,故C 选项中的中位数为()19.69.62⨯+=9.6;因为1年由12个月,故D 选项正确,故选择D .【知识点】方差;中位数;样本容量;必然事件 11.(2018云南省昆明市,11,4分)在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( )A . 90°B . 95°C . 100°D .120° 【答案】B .【解析】由量角器的摆放可知,∠BOA =70°,∠COA =130°,又∵OC =OA ,∴∠A =∠C =12(180°-130°)=25°,∵∠BOA =70°,∠COA =130°,∴∠COD =∠COA -∠BOA =130°-70°=60°,∴∠CDO =180°-∠COD -∠C =180°-60°-25°=95°,故选B . 【知识点】三角形的外角;等腰三角形的性质 12.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 03201881--=- C . 32326(0)a a a a -⋅=≠ D . 18126-= 【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项0320188--=1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D 选项181232222-=-=,故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式13.(2018云南省昆明市,13,4分)甲、乙两船从相距300km 的A 、B 两地同时出发相向而行.甲船从A 地顺流航行180km 时与B 地逆流航行的乙船相遇,谁留的速度为6km /h ,若甲、乙两船在静水中的速度均为x km /h ,则求两船在静水中的速度可列方程为( ) A .18012066x x =+- B . 18012066x x =-+ C . 1801206x x =+ D . 1801206x x =- 【答案】A . 【思路分析】(1)根据公式“路程=速度×时间” ,“顺流航行的速度=水流速度+静水中航行的速度,逆流航行的速度=静水中航行的速度-水流速度”,列出分式方程,也可以根据3行4列的表格列出分式方程. 【解题过程】解:由题意可列如下的表格: 速度 时间 路程顺流航行x +610000x180逆流航行x -6220004x +300-180=120则18012066x x =+-,故选A .【知识点】分式方程的应用14.(2018云南省昆明市,14,4分)如图,点A 在双曲线(0)k y x x=>上,过点A 作AB ⊥x 轴,垂足为B ,分别以点O 和点A 为圆心,大于12OA 的长为半径作弧,两弧相交于D 、E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC ,若AC =1,则k 的值为( )A .2B .3225C .435D .2525+【答案】B .【思路分析】由题意可知,DE 是OA 的垂直平分线,设CF 与OA 相交于点G ,则AC =OC =1,且CF ⊥OA ,利用等面积法即可求出OG 的长以及cos ∠AOB 的值,从而求出点A 的坐标,将点A 的坐标代入反比例函数关系式即可求得得k 的值.【解题过程】解:由题意可知,DE 是OA 的垂直平分线,则AC =OC =1,且CF ⊥OA ,又∵OF =2,∴CF =2221+=5,设CF 与OA 相交于点G ,则AG =OG ,S △COF =12OC ·OF =12CF ·OG ,故OG =OC OF CF⋅=125⨯=255,∴AO =2OG =455,在Rt △OCG 中,cos ∠GOC =2551OG OC==255,则在Rt △AOB 中,cos∠AOB =OB OA =255,即455OB =255,解得则OB =85,故AB =22458225545AO BO -=-=⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,点A 的坐标为(85,45),将点A 的坐标(85,45)代入k y x =得k =85×45=3225.故选B .【知识点】反比例函数关系式;特殊角的三角函数值的应用;勾股定理;等面积法三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 15.(2018云南省昆明市,15,6分)如图,在△ABC 中,AB =AD ,∠B =∠D ,∠1=∠2. 求证:BC =DE .【思路分析】根据已知条件,利用ASA定理,证明△ABC≌△ADE即可.【解题过程】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,则在△ABC和△ADE中,∵B DAB ADBAC DAE∠∠=∠∠⎧⎪⎨⎪⎩==,∴△ABC≌△ADE(ASA),∴BC=DE.【知识点】全等三角形的性质和判定16.(2018云南省昆明市,16,7分)先化简,再求值:2111236aa a-+÷--⎛⎫⎪⎝⎭,其中tan601a=︒--.【思路分析】按照先乘除后加减的运算顺序,利用约分法则,先算乘法,在利用同分母的分式加减法则通分,化到最简后,再求出a的值,代入求值即可.【解题过程】()()23211136111223622(1)1113aa a aa a a a a a aa----+÷=+⋅=⋅=----+-+-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,且tan60131a=︒--=-,当31a=-时,原式=3333113==-+.【知识点】分式的混合运算;分式的加减;分式约分;特殊角的三角函数值;绝对值;代数式求值17.(2018云南省昆明市,17,7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名购买者?(2)将补全条形统计;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1 600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【思路分析】(1)由频数÷频率=总数,先求出总人数,即可求出用A、D种支付方式的购买者,以及A种支付方式所对应的圆心角度数;(2)由频率×总数=频数,可求出用D种支付方式的购买者人数,从而求出用A 种支付方式的购买者人数,以及扇形统计图中A种支付方式所对应的圆心角的度数;(3)用A、B两种支付方式所占的比例即可估计出购买者人数.【解题过程】解:(1)本次一共调查购买者的总人数为56÷28%=200(人);(2)用D种支付方式的购买者有:200×20%=40(人),则用A种支付方式的购买者有:200―56―44―40=60(人),故扇形统计图中A种支付方式所对应的圆心角为360°×60200=108°;补充的统计图见下图:(3)若该超市这一周内有1 600名购买者,则使用A和B两种支付方式的购买者共约有1 600×6056200+=928(名).【知识点】统计与概率;频数;频率;统计图18.(2018云南省昆明市,18,6分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A、B、C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.【思路分析】(1)用画树状图法可表示出抽到的两支球队的所有可能结果;(2)根据树状图即可求出抽到B队和C队参加交流活动的概率.【解题过程】【解题过程】解:(1)用树状图表示如下:(2)抽到B队和C队参加交流活动的概率为P(抽到B队和C队参加交流活动)=21 233=⨯.【知识点】统计与概率;概率;树状图19.(2018云南省昆明市,19,7分)小婷在放学路上,看到隧道上方有一块宣传“中国——南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D 在同一条直线上),AB=10m,隧道高6.5m(即BC=6.5m),求标语牌CD的长.(结果保留小数点后1位)(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)【思路分析】(如上图(1),连接CB ,过点A 作AE ⊥BD 于E ,在Rt △ACE 中,利用特殊角的三角函数值求出CE 的长,再在在Rt △ADE 中,求出DE 的长,即可求得CD 的长度. 【解题过程】解:如上图(1),连接CB ,过点A 作AE ⊥BD 于E ,则在Rt △ACE 中,∵∠EAB =30°,AB =10m ,∴AE =AB ·cos30°=10×32=53,BE =AB ·sin30°=10×12=5,又∵BC =6.5m ,∴CE =BC -BE=CE =6.5-5=1.5,在Rt △ADE 中,∵∠EAD =42°,AE =53,∴DE =AE ·tan42°=53×0.9≈5×1.73×0.9=7.785,∴CD =DE -CE ≈7.785-1.5=6.285≈6.3(m ).【知识点】解直角三角形;勾股定理,三角函数;相似三角形的判定和性质;一元二次方程的解法;矩形的判定和性质 20.(2018云南省昆明市,20,8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基础水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方数的基本水价和每立方米的污水处理费各是多少元?(2)如果用户7月份生活水水费计划不超过64元,该用户7月份最多可用水多少立方米? 【思路分析】(1)根据等量关系列出二元一次方程组求解即可;(2)由题意列出一元一次不等式组即可得到该用户7月份最多可用水量. 【解题过程】解:(1)设每立方数的基本水价和每立方米的污水处理费各是x 元、y 元,有题意可得8827.610(1210)(1100%)1246.3x y x x y +=+-⨯++=⎧⎨⎩,解得 2.451x y ==⎧⎨⎩, 答:每立方数的基本水价和每立方米的污水处理费各是2.45元、1元; (2)设该用户7月份用水z 立方米,∵64>10×(1+2.45),∴z >10.由题意得10×2.45+(z -10)×2.45×(1+100%)+z ≤64,解得z ≤15,∴10<z ≤15, 答:设该用户7月份最多可用水15立方米.【知识点】二元一次方程组的实际应用;一元一次不等式组 21.(2018云南省昆明市,21,8分) 如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,AC 平分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD =4,AF =2,求⊙O 的半径.【思路分析】(1)由OA=OC,且AC平分∠BAD,证得OC∥AD,再由ED切⊙O于点C,即可证得AD⊥ED;(2)由∠P AB=∠ADB,tan∠ADB=34,可解得BF=185,再由BF∥OA可证得△BEC∽△CF A,求得PB的值;(3)由AB是⊙O的直径,可得四边形GFDC是矩形,再证明△BOG∽△BAF,可得12BG BOBF BA==,再利用勾股定理即可求出AB的长度.【解题过程】(1)证明:∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠CAD=∠OAC,∴∠OCA=∠CAD,∴OC∥AD,∴∠D+∠OCD=180°,∵ED切⊙O于点C,∴∠OCD=90°,∴∠D=180°-∠OCD=90°,∴AD⊥ED;(2)∵AB是⊙O的直径,∴∠AFB=90°,又∵∠AFB=∠D=∠DCG=90°,∴四边形GFDC是矩形,∴GF=CD=4,∵OC∥AD,∴△BOG∽△BAF,又∵OA=OB,∴12BG BOBF BA==,∴BG=FG=4,∴BF=2FG=8,则在Rt△BAF中,AF2+BF2=AB2,∴AB=2228+=217.【知识点】切线的性质;等腰三角形的性质;勾股定理;相似三角形的性质和判定;矩形的性质和判定;圆周角定理22.(2018云南省昆明市,22,9分)如图,抛物线2y ax bx=+过点A(1,-3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当P A⊥AB时,求△P AB的面积.【思路分析】(1)将B (1,-3) 代入2y ax bx=+,再由由对称轴是直线x=2,即可求出二次函数关系式,再由函数图象可知,当y≤0时,自变量x的取值范围;(2)如上图(1),过点B作BC⊥x轴于点C,过点P作PD ⊥x轴于点D,则可证得△ABC是等腰直角三角形,故△ADP是等腰直角三角形,得出PD=AD,从而求出点P 的坐标,进而求出△P AB的面积.【解题过程】解:(1)将点A(1,-3)代入2y ax bx=+得,3a b+=-,由对称轴是直线x=2,得22ba-=,联立得322a bba+=--=⎧⎪⎨⎪⎩,解得14ab==-⎧⎨⎩,∴抛物线的解析式为24y x x=-,当y=0时,x2-4x=0,解得x=0或x=4,故点A的坐标为(4,0),则由函数图象可知,当0≤x≤4时,y≤0;(2)如上图(1),过点B作BC⊥x轴于点C,过点P作PD⊥x轴于点D,∵A(4,0),B(1,-3),∴AC=4―1=3,BC=3,∴AC=BC,又∵BC⊥x轴,即∠ACB=90°,P A⊥AB,∴∠BAC=∠AOP=45°,∴PD=AD,设点P的坐标为(m,24m m-),则点D的坐标为(m,0),∴PD=24m m-,AD=4-m,∴24m m-=4-m,(m-4)(m+1)=0,解得m=4或m=-1,当x=4时,y=x2-4x=0,与点A重合,舍去,当x=-1时,y=x2-4x=5,∴点P的坐标为(-1,5);∵A(4,0),B(1,-3),P(-1,5),∴AB=22(14)(30)-+--=32,AP=22(14)(50)--+-=52,∴S△CDE=12P A·AB=12×32×52=15.【知识点】二次函数关系式;两点间距离公式;等腰直角三角形的性质和判定;勾股定理;三角形面积公式23.(2018云南省昆明市,23,12分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°,将△ADP沿AP翻折得到△AD'P,P D'的延长线交AB边于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP·PC;(2)判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若DPAD=12,求EFAE的值.【思路分析】(1)根据四边形ABCD是矩形,可证得AD=BC,然后证明∠DAP=∠BPC,即可证得△ADP∽△P CB;(2)先证明四边形PMBN是平行四边形,然后由△ADP沿AP翻折得到△AD'P,可证得∠APM=∠P AM,再根据∠APB=90°,可证明∠PBA=∠BPM,即可得证;(3)设DP=a,可根据DPAD=12,AD2=DP·PC,求得PC=4a,AB=5a,PM=BM=52a,然后证明△CFP∽△AFB,求得CFAC的值,再证明△AEM∽△CEP,求出EFAC的值,从而求出EFAE的值.【解题过程】(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠D=∠B CD=90°,又∵∠APB=90°,∴∠DAP+∠APD=90°,∠APD+∠BPC=90°,∴∠DAP=∠BPC,又∵∠D=∠B CP=90°,∴△ADP∽△P CB,∴AD DPPC CB=,又∵AD=BC,∴AD DPPC AD=,AD2=DP·PC;(2)∵四边形ABCD是矩形,∴AB∥DC,即PN∥BM,又∵BN∥MP,∴四边形PMBN是平行四边形,∵△ADP沿AP翻折得到△AD'P,∴∠APD=∠AP D',又∵AB∥DC,∴∠APD=∠APM=∠P AM,又∵∠APB=90°,∴∠APM+∠PBA=90°,∠APM+∠BPM=90°,∴∠PBA=∠BPM,∴PM=BM,∴平行四边形PMBN是菱形;(3)设DP=a,∵DPAD=12,∴AD=2DP=2 a,又∵AD2=DP·PC,∴(2 a)2=a·PC,解得PC=4 a,∴AB=CD=DP+PC=5a,又∵PM=BM,∴PM=BM=52a,∵AB∥DC,∴∠CPF=∠ABF,又∵∠PFC=∠BF A,∴△CFP∽△AFB,∴4455CF CPAF ABaa===,∴55549CFAC==+,∵AB∥DC,∴∠CPE=∠AME,又∵∠PEC=∠MEA,∴△AEM∽△CEP,∴55248AE AMCE CPaa===,∴5520913117EF AF AEAC AC AC=-=-=,又∵EFEFACAE AEAC=,∴204117599EFAE==.【知识点】矩形的性质;相似三角形的性质和判定;平行线的性质;菱形的判定。
2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。
2018 年云南省昆明市中考数学试卷一、填空题(每题 3 分,满分 18 分)1.在实数﹣ 3, 0,1 中,最大的数是_____.【答案】 1【分析】剖析:依据正实数都大于0,负实数都小于0,正实数大于全部负实数进行剖析即可.详解:在实数-3, 0,1 中,最大的数是1,故答案为: 1.点睛:本题主要考察了实数的大小,重点是掌握实数比较大小的方法.2.共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报导,昆明市共享单车投放量已达到240000 辆,数字240000 用科学记数法表示为_____.【答案】 2.4 ×105【分析】剖析:科学记数法的表示形式为a×10n的形式,此中1≤|a|< 10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.详解:将240000 用科学记数法表示为: 2.4 ×105.故答案为 2.4 ×105.点睛:本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤|a|< 10, n 为整数,表示时重点要正确确立 a 的值以及n 的值.3.如图,过直线 AB 上一点 O 作射线 OC,∠ BOC=29° 18,′则∠ AOC 的度数为 _____.【答案】 150°42′【分析】剖析:直接利用互为邻补角的和等于180°得出答案.详解:∵∠ BOC=29°18′,∴∠ AOC 的度数为: 180°-29°18′=150°.42′故答案为: 150°42.′点睛:本题主要考察了角的计算,正确理解互为邻补角的和等于180°是解题重点.4. 若 m+ =3,则 m2+ =_____.【答案】 7【分析】剖析:把已知等式两边平方,利用完好平方公式化简,即可求出答案.详解:把m+ =3 两边平方得:( m+)2=m2++2=9 ,则 m2+ =7,故答案为: 75. 如图,点A的坐标为(4, 2).将点A绕坐标原点O旋转90° 1个单位长度获得点A′后,再向左平移,则过点A′_____.的正比率函数的分析式为【答案】 y=﹣ x 或 y=-4x【分析】剖析:直接利用旋转的性质联合平移的性质得出对应点地点,再利用待定系数法求出正比率函数分析式.详解:当点 A 绕坐标原点 O 逆时针旋转 90°后,再向左平移 1 个单位长度获得点A′,则 A′( -3, 4),设过点 A′的正比率函数的分析式为:y=kx ,则 4=-3k ,解得: k=- ,则过点 A′的正比率函数的分析式为:y=- x,同理可得:点 A 绕坐标原点 O 顺时针旋转90°后,再向左平移 1 个单位长度获得点A′,此时 A′( 1, -4),设过点 A′的正比率函数的分析式为:y=k′x,则 -4=k′,则过点 A′的正比率函数的分析式为:y=-4x.故答案为: y= ﹣ x 或 y=-4x.点睛:本题主要考察了旋转的性质、平移的性质、待定系数法求出正比率函数分析式,正确得出对应点坐标是解题重点.6. 如图,正六边形ABCDEF的边长为1 A为圆心,AB的长为半径,作扇形ABF,则图中暗影部分,以点的面积为 _____(结果保存根号和π).【答案】﹣【分析】剖析:正六边形的中心为点O,连结 OD、 OE,作 OH ⊥ DE 于 H ,依据正多边形的中心角公式求出∠ DOE,求出 OH,获得正六边形ABCDEF 的面积,求出∠ A ,利用扇形面积公式求出扇形ABF 的面积,联合图形计算即可.详解:正六边形的中心为点O,连结 OD 、 OE,作 OH ⊥DE 于 H ,∠ DOE==60°,∴OD=OE=DE=1 ,∴OH= ,∴正六边形ABCDEF 的面积 = ×1××6=,∠ A==120°,∴扇形 ABF 的面积 =,∴图中暗影部分的面积=- ,故答案为:- .点睛:本题考察的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的重点.二、选择题(每题 4 分,满分 32 分,在每题给出的四个选项中,只有一项为哪一项正确的)7. 以下几何体的左视图为长方形的是()A. B. C. D.【答案】 C【分析】剖析:找到每个几何体从左侧看所获得的图形即可得出结论.详解: A .球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.应选: C.点睛:本题主要考察了简单几何体的三视图,重点是掌握每个几何体从左侧看所获得的图形.8. 对于 x 的一元二次方程x2﹣ 2 x+m=0 有两个不相等的实数根,则实数m 的取值范围是()A. m < 3B. m> 3C. m≤3D. m≥3【答案】 A【分析】剖析:依据对于x 的一元二次方程 x2-2 x+m=0 有两个不相等的实数根可得△=( -2 )2-4m> 0,求出 m 的取值范围即可.详解:∵对于x 的一元二次方程x2-2 x+m=0 有两个不相等的实数根,∴△ =( -2)2-4m>0,∴m< 3,应选: A.点睛:本题考察了一元二次方程ax2+bx+c=0 ( a≠0,a, b, c 为常数)的根的鉴别式△=b2-4ac.当△> 0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△< 0 时,方程没有实数根.9. 黄金切割数是一个很巧妙的数,大批应用于艺术、建筑和统计决议等方面,请你估量﹣1的值()A. 在和 1.2 之间B. 在 1.2 和 1.3 之间C. 在和之间D. 在 1.4 和 1.5 之间【答案】 B【分析】剖析:依据 4.84< ,可得答案.详解:∵ 4.84< ,∴,∴1.2< -1<1.3 ,应选: B.点睛:本题考察了估量无理数的大小,利用≈是解题重点.10. 以下判断正确的选项是()A. 甲乙两组学生身高的均匀数均为S 甲2,S乙2,则甲组学生的身高较齐整,方差分别为B. 为了认识某县七年级4000 名学生的期中数学成绩,从中抽取 100 名学生的数学成绩进行检查,这个问题中样本容量为4000C. 在“童心向党,阳光下成长”合唱竞赛中,30 个参赛队的决赛成绩以下表:/竞赛成绩分参赛队个数9 8 6 4 3则这 30 个参赛队决赛成绩的中位数是D. 有 13 名同学出生于2003 年,那么在这个问题中“起码有两名同学出生在同一个月”属于必定事件【答案】 D详解: A 、甲乙两组学生身高的均匀数均为,方差分别为S 甲2, S 乙2,则乙组学生的身高较整齐,故此选项错误;B 、为了认识某县七年级4000 名学生的期中数学成绩,从中抽取100 名学生的数学成绩进行检查,这个问题中样本容量为 100,故此选项错误;C、在“童心向党,阳光下成长”合唱竞赛中,30 个参赛队的决赛成绩以下表:竞赛成绩 /分参赛队个数9 8 6 4 3则这 30 个参赛队决赛成绩的中位数是,故此选项错误;D 、有 13 名同学出生于2003 年,那么在这个问题中“起码有两名同学出生在同一个月”属于必定事件,正确.应选: D.点睛:本题主要考察了样本容量以及方差、中位数和必定事件的定义,正确掌握有关定义是解题重点.AOC中,OB交AC于点D,量角器的摆放以下图,则∠CDO的度数为()11. 在△A. 90°B.95°C.100°D.120°【答案】 B【分析】剖析:依照CO=AO ,∠ AOC=130°,即可获得∠CAO=25°,再依据∠ AOB=70°,即可得出∠CDO= ∠ CAO+ ∠ AOB=25°+70°=95°.详解:∵ CO=AO ,∠AOC=130°,∴∠ CAO=25°,又∵∠ AOB=70°,∴∠ CDO= ∠ CAO+ ∠ AOB=25°+70°=95°,应选: B.点睛:本题主要考察了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.12. 以下运算正确的选项是()A. (﹣)2=9B. 2018 0﹣=﹣ 1C. 3a3?2a﹣2=6a( a≠0)D.﹣=【答案】 C【分析】剖析:直接利用二次根式以及单项式乘以单项式运算法例和实数的计算化简求出即可.详解: A 、 (-) 2=,故原选项错误;B 、 20180-=1-(-2)=3,故原选项错误;3-2C、 3a ?2a =6a( a≠0),正确;D 、,故原选项错误;应选: C.点睛:本题主要考察了二次根式以及单项式乘以单项式运算法例和实数的计算等知识,正确掌握运算法例是解题重点.13. 甲、乙两船从相距300km 的 A 、 B 两地同时出发相向而行,甲船从 A 地顺水航行180km 时与从 B 地逆流航行的乙船相遇,水流的速度为6km/h ,若甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=【答案】 A【分析】剖析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.学.科. 网 ...学 .科 .网 ...学 .科 .网...学 .科 .网 ...学.科 .网 ...学 .科 .网 ...学.科 .网 ...学 .科.网 ...学 .科 .网 ...学 .科 .网...应选: A.点睛:本题主要考察了由实质问题抽象出分式方程,正确表示出行驶的时间和速度是解题重点.14. 如图,点 A 在双曲线 y═( x> 0)上,过点 A 作 AB ⊥ x 轴,垂足为点B,分别以点 O 和点 A 为圆心,大于OA 的长为半径作弧,两弧订交于D, E 两点,作直线DE 交 x 轴于点 C,交 y 轴于点 F( 0, 2),连结AC .若 AC=1 ,则 k 的值为()A. 2B.C.D.【答案】 B【分析】剖析:如图,设 OA 交 CF 于 K .利用面积法求出OA 的长,再利用相像三角形的性质求出AB 、 OB 即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF 垂直均分线段OA ,∴OC=CA=1 ,OK=AK ,在 Rt△OFC 中, CF=,∴ AK=OK=,∴OA=,由△FOC∽△ OBA ,可得,∴,∴OB= , AB= ,∴A(,),应选: B.点睛:本题考察作图-复杂作图,反比率函数图象上的点的坐标特点,线段的垂直均分线的性质等知识,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.三、解答题(共9 题,满分 70 分,一定写出运算步骤、推理过程或文字说明)15.如图,在△ABC 和△ADE 中, AB=AD ,∠B= ∠D ,∠ 1=∠2.求证: BC=DE .【答案】证明看法析.【分析】剖析:依据ASA 证明△ADE ≌△ ABC ;详证明:(1)∵∠ 1=∠ 2,∵∠ DAC+ ∠ 1=∠2+∠ DAC∴∠ BAC= ∠ DAE ,在△ABC 和△ADE 中,,∴△ ADE ≌△ ABC ( ASA )∴ BC=DE ,点睛:本题考察了全等三角形的判断与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等16. 先化简,再求值:(+1)÷,此中a=tan60﹣°|﹣1|.【答案】原式=【分析】剖析:依据分式的运算法例即可求出答案.详解:当a=tan60°-|-1|时,∴ a=-1==.点睛:本题考察分式的运算法例,解题的重点是娴熟运用分式运算法例.17.近几年购物的支付方式日趋增加,某数学兴趣小组就此进行了抽样检查.检查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其余,该小组对某商场一天内购置者的支付方式进行检查统计,获得以下两幅不完好的统计图.请你依据统计图供给的信息,解答以下问题:( 1)本次一共检查了多少名购置者?( 2)请补全条形统计图;在扇形统计图中 A 种支付方式所对应的圆心角为度.( 3)若该商场这一周内有1600 名购置者,请你预计使用 A 和 B 两种支付方式的购置者共有多少名?【答案】(1)本次一共检查了200 名购置者;( 2)补全的条形统计图看法析, A 种支付方式所对应的圆心角为 108;( 3)使用 A 和 B 两种支付方式的购置者共有928 名.【分析】剖析:(1)依据B的数目和所占的百分比能够求得本次检查的购置者的人数;( 2)依据统计图中的数据能够求得选择 A 和 D 的人数,进而能够将条形统计图增补完好,求得在扇形统计图中 A 种支付方式所对应的圆心角的度数;( 3)依据统计图中的数据能够计算出使用 A 和 B 两种支付方式的购置者共有多少名.详解:( 1)56÷28%=200,即本次一共检查了200 名购置者;( 2) D 方式支付的有:200×20%=40 (人),A 方式支付的有:200-56-44-40=60 (人),补全的条形统计图以下图,在扇形统计图中 A 种支付方式所对应的圆心角为:360°×=108°,( 3) 1600×=928 (名),答:使用 A 和 B 两种支付方式的购置者共有928 名.点睛:本题考察扇形统计图、条形统计图、用样本预计整体,解答本题的重点是明确题意,利用数形联合的思想解答.18. 为了促使“足球进校园”活动的展开,某市举行了中学生足球竞赛活动现从 A , B ,C 三支获胜足球队中,随机抽取两支球队分别到两所边远地域学校进行沟通.(1)请用列表或画树状图的方法(只选择此中一种),表示出抽到的两支球队的全部可能结果;(2)求出抽到 B 队和 C 队参加沟通活动的概率.【答案】(1)列表看法析;( 2)抽到 B 队和 C 队参加沟通活动的概率为.【分析】剖析:(1)列表得出全部等可能结果;( 2)从表格中得出抽到 B 队和 C 队参加沟通活动的结果数,利用概率公式求解可得.详解:( 1)列表以下:A B CA( B, A)(C,A)B(A ,B)(C,B)C(A ,C)(B,C)由表可知共有 6 种等可能的结果;( 2)由表知共有 6 种等可能结果,此中抽到 B 队和 C 队参加沟通活动的有 2 种结果,因此抽到 B 队和 C 队参加沟通活动的概率为.点睛:本题考察了列表法与树状图法:利用列表法或树状图法展现全部等可能的结果n,再从中选出切合事件 A 或 B 的结果数目m,而后利用概率公式计算事件 A 或事件 B 的概率.19. 小婷在下学路上,看到地道上方有一块宣传“中国﹣南亚展览会”的竖直口号牌CD.她在 A 点测得口号牌顶端 D 处的仰角为42°,测得地道底端 B 处的俯角为30°( B , C, D 在同一条直线上),AB=10m ,地道高(即 BC=65m ),求口号牌CD 的长(结果保存小数点后一位).(参照数据:sin42 °≈ 0,.67cos42 °≈ 0,.74tan42 °≈ 0,.90 ≈)【答案】口号牌CD 的长为 6.3m .【分析】剖析:如图作AE ⊥ BD 于 E.分别求出BE、 DE ,可得 BD 的长,再依据CD=BD-BC计算即可;详解:如图作AE⊥BD 于 E.在 Rt△AEB 中,∵∠ EAB=30°, AB=10m ,∴ BE= AB=5 ( m), AE=5(m),在 Rt△ADE 中, DE=AE?tan42°=7.79(m),∴ BD=DE+BE=12.79 ( m),∴ CD=BD-BC=12.79- 6.5 ≈6.(3m),答:口号牌 CD 的长为.点睛:本题考察解直角三角形的应用 -仰角俯角问题,解题的重点是学会增添常用协助线面结构直角三角形解决问题.20.(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓舞居民节俭用水,有关部门推行居民生活用水阶梯式计量水价政策.若居民每户每个月用水量不超出 10 立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价 +污水办理费);若每户每个月用水量超出10 立方米,则超出部分每立方米在基本水价基础上涨价100% ,每立方米污水办理费不变.甲用户 4 月份用水8 立方米,缴水费27.6 元;乙用户 4 月份用水 12 立方米,缴水费 46.3 元.(注:污水办理的立方数 =实质生活用水的立方数)( 1)求每立方米的基本水价和每立方米的污水办理费各是多少元?( 2)假如某用户 7 月份生活用水水费计划不超出64 元,该用户7 月份最多可用水多少立方米?【答案】( 1)每立方米的基本水价是 2.45 元,每立方米的污水办理费是 1 元;( 2)假如某用户7 月份生活用水水费计划不超出 64 元,该用户7 月份最多可用水 15 立方米【分析】剖析:( 1)设每立方米的基本水价是x 元,每立方米的污水办理费是y 元,而后依据等量关系即可列出方程求出答案.( 2)设该用户 7 月份可用水 t 立方米( t> 10),依据题意列出不等式即可求出答案.详解:( 1)设每立方米的基本水价是x 元,每立方米的污水办理费是y 元解得:答:每立方米的基本水价是 2.45 元,每立方米的污水办理费是 1 元.( 2)设该用户7 月份可用水t 立方米( t> 10)10×2.45+ (t-10 )× 4.9+t ≤ 64解得: t ≤15答:假如某用户7 月份生活用水水费计划不超出64 元,该用户7 月份最多可用水15 立方米 .点睛:本题考察学生的应用能力,解题的重点是依据题意列出方程和不等式.21.如图, AB 是⊙ O 的直径, ED 切⊙ O 于点 C,AD 交⊙ O 于点 F,∠ AC 均分∠ BAD ,连结BF.( 1)求证: AD ⊥ ED ;( 2)若 CD=4, AF=2 ,求⊙ O 的半径.【答案】(1)证明看法析;( 2)⊙O 的半径为.【分析】剖析:( 1)连结 OC,如图,先证明 OC∥ AD ,而后利用切线的性质得OC⊥ DE ,进而获得AD ⊥ED;( 2) OC 交 BF 于 H,如图,利用圆周角定理获得∠AFB=90°,再证明四边形CDFH 为矩形获得FH=CD=4 ,∠ CHF=90°,利用垂径定理获得BH=FH=4 ,而后利用勾股定理计算出AB ,进而获得⊙O 的半径.详( 1)证明:连结OC,如图,∵AC 均分∠ BAD ,∴∠ 1=∠2,∵OA=OC ,∴∠ 1=∠3,∴∠ 2=∠3,∴OC∥AD ,∵ED 切⊙ O 于点 C,∴OC⊥DE ,∴AD ⊥ED;(2)解: OC 交 BF 于 H,如图,∵ AB 为直径,∴∠ AFB=90°,易得四边形CDFH 为矩形,∴FH=CD=4 ,∠CHF=90°,∴OH⊥BF,∴BH=FH=4 ,∴BF=8 ,在 Rt△ABF 中, AB=,∴⊙ O 的半径为.点睛:本题考察了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,结构定理图,得出垂直关系.也考察了垂径定理和圆周角定理.22. 如图,抛物线y=ax2+bx 过点 B( 1,﹣ 3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点 A .( 1)求抛物线的分析式,并依据图象直接写出当y≤0时,自变量x 的取值范图;( 2)在第二象限内的抛物线上有一点P,当 PA⊥ BA 时,求△PAB 的面积.【答案】(1)抛物线的分析式为y=x 2﹣ 2x,自变量x 的取值范图是0≤x≤2;( 2)△PAB 的面积 =.【分析】剖析:( 1)将函数图象经过的点 B 坐标代入的函数的分析式中,再和对称轴方程联立求出待定系数 a 和 b;( 2)如图,过点 B 作 BE⊥ x 轴,垂足为点2),证明E,过点 P 作 PE⊥ x 轴,垂足为 F,设 P( x, x -2x△PFA∽△ AEB, 求出点 P 的坐标,将△PAB 的面积结构成长方形去掉三个三角形的面积.详解:( 1)由题意得,,解得,∴抛物线的分析式为y=x 2-2x ,令 y=0 ,得 x2-2x=0 ,解得 x=0 或 2,联合图象知, A 的坐标为( 2, 0),依据图象张口向上,则y≤0时,自变量x 的取值范图是0≤x≤2;( 2)如图,过点 B 作 BE⊥ x 轴,垂足为点E,过点 P 作 PE⊥ x 轴,垂足为F,设 P( x,x2-2x) ,∵PA⊥ BA∴ ∠PAF+ ∠BAE=90 °,∵ ∠PAF+ ∠FPA=90° ,∴∠ FPA= ∠BAE又∠PFA= ∠ AEB=90 °∴△PFA∽△ AEB,∴,即,解得, x= -,∴x2-2x= .∴点 P 的坐标为( -,),∴△ PAB 的面积 =|- -2| ×|-(-3)| - ×|- -2| ×- ×|- -1| ×|-(-3)| -×|2-1|×|0-(-3)|=.点睛:本题是二次函数综合题,求出函数分析式是解题的重点,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是重点.23.如图 1,在矩形 ABCD 中, P 为 CD 边上一点( DP< CP),∠ APB=90°.将△ADP 沿 AP 翻折获得△AD′P,PD′的延伸线交边 AB 于点 M ,过点 B 作 BN ∥ MP 交 DC 于点 N .(1)求证: AD 2=DP?PC;(2)请判断四边形 PMBN 的形状,并说明原因;( 3)如图 2,连结 AC ,分别交PM, PB 于点 E, F.若= ,求的值.【答案】(1)证明看法析;( 2)四边形PMBN 是菱形,原因看法析;(3)【分析】剖析:(1)过点P作PG⊥ AB于点G,易知四边形DPGA ,四边形PCBG 是矩形,因此2 2AD=PG , DP=AG ,GB=PC ,易证△APG ∽△ PBG,因此 PG =AG?GB ,即 AD =DP?PC;( 2) DP∥ AB ,因此∠ DPA= ∠PAM ,由题意可知:∠DPA=∠ APM ,因此∠ PAM= ∠APM ,因为∠APB- ∠ PAM= ∠ APB- ∠ APM ,即∠ ABP= ∠ MPB ,进而可知 PM=MB=AM ,又易证四边形 PMBN 是平行四边形,因此四边形 PMBN 是菱形;( 3)因为,可设DP=k,AD=2k,由(1)可知:AG=DP=k,PG=AD=2k,进而求出GB=PC=4k , AB=AG+GB=5k,因为CP∥ AB,进而可证△PCF∽△ BAF,△PCE∽△ MAE,进而可得,,进而可求出EF=AF-AE= AC- AC=AC ,进而可得.详解:( 1)过点 P 作 PG⊥ AB 于点 G,∴易知四边形DPGA ,四边形PCBG 是矩形,∴AD=PG , DP=AG ,GB=PC∵∠ APB=90°,∴∠ APG+ ∠ GPB= ∠GPB+ ∠ PBG=90°,∴∠ APG= ∠ PBG,∴△ APG ∽△ PBG,∴,∴PG2=AG?GB ,2(2)∵DP ∥AB ,∴∠ DPA=∠ PAM,由题意可知:∠ DPA= ∠APM ,∴∠ PAM= ∠APM ,∵∠ APB- ∠ PAM= ∠ APB- ∠ APM ,即∠ ABP= ∠ MPB∴AM=PM , PM=MB ,∴PM=MB ,又易证四边形PMBN 是平行四边形,∴四边形PMBN 是菱形;( 3)因为,可设 DP=k , AD=2k ,由( 1)可知: AG=DP=k , PG=AD=2k ,∵PG2=AG?GB ,∴ 4k 2=k?GB,∴GB=PC=4k ,AB=AG+GB=5k,∵CP∥ AB ,∴△ PCF∽△ BAF ,∴,∴,又易证:△PCE∽△ MAE , AM= AB=, ∴∴,∴ EF=AF-AE= AC- AC=AC ,∴.点睛:本题考察相像三角形的综合问题,波及相像三角形的性质与判断,菱形的判断,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵巧运用所学知识.。
2018年云南省中考数学试卷一、填空题(共6小题,每题3分,满分18分)分)﹣1的绝对值是.分)已知点P(a,b)在反比率函数y=的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,切记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.分)分解因式:x2﹣4=.分)如图,已知AB∥CD,若=,则=.6.(分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每题4分,满分32分.每题只有一个正确选项)7.(分)函数y=的自变量x的取值范围为()A.x≤0B.x≤1C.x≥0D.x≥18.(分)以下图形是某几何体的三视图(此中主视图也称正视图,左视图也称侧视图),则这个几何体是()第1页共20页A.三棱柱B.三棱锥C.圆柱D.圆锥9.(分)一个五边形的内角和为()A.540°B.450°C.360°D.180°10.(分)按必定规律摆列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(分)以下图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3B.C.D.13.(分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满谢幕.某学校为认识学生对此次大赛的认识程度,在全校1300名学生中随机抽取部分学生进行了一次问卷检查,并依据采集到的信息进行了统计,绘制了下边两幅统计图.以下四个选项错误的选项是()第2页共20页A.抽取的学生人数为50人B.“特别认识”的人数占抽取的学生人数的12%C.a=72°D.全校“不认识”的人数预计有428人14.(分)已知x+ =6,则x2+ =()A.38 B.36 C.34D.32三、解答题(共9小题,满分70分)15.(分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)016.(分)如图,已知AC均分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(分)某同学参加了学校举行的“五好小公民?红旗飘飘”演讲竞赛,7名评委给该同学的打分(单位:分)状况以下表:评委评委1评委2评委3评委4评委5评委6评委7打分68785781)直接写出该同学所得分数的众数与中位数;2)计算该同学所得分数的均匀数18.(分)某社区踊跃响应正在展开的“创文活动”,组织甲、乙两个志愿工程队对社区的一些地区进行绿化改造.已知甲工程队每小时能达成的绿化面积是乙工程队每小时能达成的绿化面积的2倍,而且甲工程队达成300平方米的绿化面积比乙工程队达成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其余方面完整同样,若反面上放在桌面上,这三张卡片第3页共20页生产成本(单位:元)看上去无任何差异)洗匀后,反面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,反面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)全部可能出现的结果.2)求拿出的两张卡片上的数字之和为偶数的概率P.20.(分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.1)求b,c的值.2)二次函数y=﹣x2+bx+c的图象与x轴能否有公共点,求公共点的坐标;若没有,请说明状况.21.(分)某驻村扶贫小组为解决当地贫穷问题,率领大家致富.经过检查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决议,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本以下表所示.甲种原料(单位:千克)乙种原料(单位:千克)A商品32120B商品200(设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,依据上述信息,解答以下问题:1)求y与x的函数分析式(也称关系式),并直接写出x 的取值范围;2)x取何值时,总成本y最小?22.(分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.1)求证:CD是⊙O的切线;2)若∠D=30°,BD=2,求图中暗影部分的面积.第4页共20页(23.(分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确立的圆的周长为t.1)若△ABE的面积为30,直接写出S的值;2)求证:AE均分∠DAF;3)若AE=BE,AB=4,AD=5,求t的值.第5页共20页2018年云南省中考数学试卷参照答案与试题分析一、填空题(共6小题,每题3分,满分18分)1.(分)﹣1的绝对值是1.【剖析】第一步列出绝对值的表达式;第二步依据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【评论】本题考察了绝对值的性质,要求掌握绝对值的性质及其定义,并能娴熟运用到实质中间.绝对值规律总结:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数;0的绝对值是0.2.(分)已知点P(a,b)在反比率函数y=的图象上,则ab=2.【剖析】接把点P(a,b)代入反比率函数y=即可得出结论.【解答】解:∵点P(a,b)在反比率函数y=的图象上,b=,ab=2.故答案为:2【评论】本题考察的是反比率函数图象上点的坐标特色,熟知反比率函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.3.(分)某地举办主题为“不忘初心,切记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为×103.【剖析】科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数.确定n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值大于10时,n是正数;当原数的绝对值小于1第6页共20页时,n是负数.【解答】解:×103,故答案为:×103.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数,表示时重点要正确确立a的值以及n的值.4.(分)分解因式:x2﹣4=(x+2)(x﹣2).【剖析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x ﹣2).故答案为:(x+2)(x﹣2).【评论】本题考察了平方差公式因式分解.能用平方差公式进行因式分解的式子的特色是:两项平方项,符号相反.5.(分)如图,已知AB∥CD,若=,则=.【剖析】利用相像三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△COD,==,故答案为.【评论】本题考察平行线的性质,相像三角形的判断和性质等知识,解题的重点是娴熟掌握基本知识,属于中考常考题型.第7页共20页6.(分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【剖析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,依据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,依据BC=BD﹣CD代入可得结论.【解答】解:有两种状况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【评论】本题考察了勾股定理的运用,娴熟掌握勾股定理是重点,并注意运用了分类议论的思想解决问题.二、选择题(共8小题,每题4分,满分32分.每题只有一个正确选项)第8页共20页7.(分)函数y=的自变量x的取值范围为()A.x≤0B.x≤1C.x≥0D.x≥1【剖析】依据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,x≤1,即函数y=的自变量x的取值范围是x≤1,应选:B.【评论】本题考察了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不可以为0;(3)当函数表达式是二次根式时,被开方数非负.8.(分)以下图形是某几何体的三视图(此中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【剖析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,应选:D.【评论】考察对三视图的理解与应用,主要考察三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(分)一个五边形的内角和为()A.540°B.450°C.360°D.180°【剖析】直接利用多边形的内角和公式进行计算即可.第9页共20页【解答】解:解:依据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,应选:A.【评论】本题主要考察了正多边形内角和,重点是掌握内角和的计算公式.10.(分)按必定规律摆列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【剖析】察看字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,,(﹣1)n+1?a n.应选:C.【评论】考察了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(分)以下图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解:A、三角形不必定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不必定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不必定是轴对称图形和中心对称图形,故本选项错误;应选:B.【评论】本题主要考察了中心对称图形与轴对称图形的观点:判断轴对称图形的重点是找寻对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要找寻对称中心,旋转180度后与原图重合.12.(分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3B.C.D.【剖析】依据锐角三角函数的定义求出即可.第10页共20页【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,应选:A.【评论】本题考察了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解本题的重点.13.(分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节?玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满谢幕.某学校为认识学生对此次大赛的认识程度,在全校1300名学生中随机抽取部分学生进行了一次问卷检查,并依据采集到的信息进行了统计,绘制了下边两幅统计图.以下四个选项错误的选项是()A.抽取的学生人数为50人B.“特别认识”的人数占抽取的学生人数的12%C.a=72°D.全校“不认识”的人数预计有428人【剖析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,“特别认识”的人数占抽取的学生人数的=12%,故B正确,α=360×°=72°,故正确,全校“不认识”的人数预计有1300×=468(人),故D错误,第11页共20页应选:D.【评论】本题考察条形统计图、扇形统计图等知识,解题的重点是娴熟掌握基本观点,属于中考常考题型.14.(分)已知x+ =6,则x2+ =()A.38 B.36 C.34D.32【剖析】把x+=6两边平方,利用完整平方公式化简,即可求出所求.【解答】解:把x+ =6两边平方得:(x+)2=x2++2=36,则x2+=34,应选:C.【评论】本题考察了分式的混淆运算,以及完整平方公式,娴熟掌握运算法例及公式是解本题的重点.三、解答题(共9小题,满分70分)15.(分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【剖析】本题波及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,而后依据实数的运算法例求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2 ﹣4【评论】本题主要考察了实数的综合运算能力,是各地中考题中常有题型.解决此类题目的重点是娴熟掌握负整数指数幂、零指数幂、二次根式、绝对值、特别角的锐角三角函数值等知识点.16.(分)如图,已知AC均分∠BAD,AB=AD.求证:△ABC≌△ADC.第12页共20页【剖析】依据角均分线的定义获取∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC均分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【评论】本题考察的是全等三角形的判断、角均分线的定义,掌握三角形全等的SAS定理是解题的重点.17.(分)某同学参加了学校举行的“五好小公民?红旗飘飘”演讲竞赛,7名评委给该同学的打分(单位:分)状况以下表:评委评委1评委2评委3评委4评委5评委6评委7打分68785781)直接写出该同学所得分数的众数与中位数;2)计算该同学所得分数的均匀数【剖析】(1)依据众数与中位数的定义求解即可;(2)依据均匀数的定义求解即可.【解答】解:(1)从小到大摆列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的均匀数为(5+6+7×2+8×3)÷7=7.【评论】本题考察了均匀数、众数与中位数,用到的知识点是:给定一组数据,第13页共20页出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大挨次摆列,把中间数据(或中间两数据的均匀数)叫做中位数.均匀数=总数÷个数.18.(分)某社区踊跃响应正在展开的“创文活动”,组织甲、乙两个志愿工程队对社区的一些地区进行绿化改造.已知甲工程队每小时能达成的绿化面积是乙工程队每小时能达成的绿化面积的2倍,而且甲工程队达成300平方米的绿化面积比乙工程队达成300平方米的绿化面积少用3小时,乙工程队每小时能达成多少平方米的绿化面积?【剖析】设乙工程队每小时能达成x平方米的绿化面积,则甲工程队每小时能达成2x平方米的绿化面积,依据工作时间=总工作量÷工作效率联合甲工程队达成300平方米的绿化面积比乙工程队达成300平方米的绿化面积少用3小时,即可得出对于x的分式方程,解之经查验后即可得出结论.【解答】解:设乙工程队每小时能达成x平方米的绿化面积,则甲工程队每小时能达成2x平方米的绿化面积,依据题意得:﹣=3,(解得:x=50,经查验,x=50是分式方程的解.答:乙工程队每小时能达成50平方米的绿化面积.【评论】本题考察了分式方程的应用,找准等量关系,正确列出分式方程是解题的重点.19.(分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其余方面完整同样,若反面上放在桌面上,这三张卡片看上去无任何差异)洗匀后,反面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,反面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)全部可能出现的结果.第14页共20页(2)求拿出的两张卡片上的数字之和为偶数的概率P.【剖析】(1)第一依据题意画出树状图,而后由树状图即可求得全部等可能的结果;2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的状况,而后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,此中数字之和为偶数的有2种结果,∴拿出的两张卡片上的数字之和为偶数的概率P==.【评论】本题考察的是用列表法或画树状图法求概率.注意列表法或画树状图法能够不重复不遗漏地列出全部可能的结果,列表法合适于两步达成的事件,树状图法合适两步或两步以上达成的事件.注意概率=所讨状况数与总状况数之比.20.(分)已知二次函数 y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.1)求b,c的值.2)二次函数y=﹣x2+bx+c的图象与x轴能否有公共点,求公共点的坐标;若没有,请说明状况.【剖析】(1)把点A、B的坐标分别代入函数分析式求得b、c的值;(2)利用根的鉴别式进行判断该函数图象能否与x轴有交点,由题意获取方程x2+x+3=0,经过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得第15页共20页生产成本(单位:元),解得;(2)由(1)可得,该抛物线分析式为:y=﹣x2+x+3.=()2﹣4×(﹣)×3=>0,因此二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+ x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【评论】考察了抛物线与x轴的交点,二次函数图象上点的坐标特色.注意抛物线分析式与一元二次方程间的转变关系.21.(分)某驻村扶贫小组为解决当地贫穷问题,率领大家致富.经过检查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决议,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本以下表所示.甲种原料(单位:千克)乙种原料(单位:千克)A商品32120B商品200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,依据上述信息,解答以下问题:1)求y与x的函数分析式(也称关系式),并直接写出x的取值范围;2)x取何值时,总成本y最小?【剖析】(1)依据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组从而得出答案;第16页共20页(2)利用一次函数增减性从而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【评论】本题主要考察了一次函数的应用以及不等式的应用,正确利用表格获取正确信息是解题重点.22.(分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.1)求证:CD是⊙O的切线;2)若∠D=30°,BD=2,求图中暗影部分的面积.【剖析】(1)连结OC,易证∠BCD=∠OCA,因为AB是直径,因此∠ACB=90°,因此∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线2)设⊙O的半径为r,AB=2r,因为∠D=30°,∠OCD=90°,因此可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积【解答】解:(1)连结OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,第17页共20页∴∠BCD=∠OCA,AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°OC是半径,∴CD是⊙O的切线2)设⊙O 的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S△AOC=×2×1= S扇形OAC==∴暗影部分面积为﹣【评论】本题考察圆的综合问题,波及圆的切线判断,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵巧运用所学知识.23.(分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC 边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确立的圆的周长为t.第18页共20页1)若△ABE的面积为30,直接写出S的值;2)求证:AE均分∠DAF;3)若AE=BE,AB=4,AD=5,求t的值.【剖析】(1)作EG⊥AB于点G,由S△ABE=×AB×EG=30得AB?EG=60,即可得出答案;2)延伸AE交BC延伸线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,联合AF=AD+FC得∠FAE=∠CHE,依据∠DAE=∠CHE即可得证;3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,则S△ABE=×AB×EG=30,则AB?EG=60,∴平行四边形ABCD的面积为60;(2)延伸AE交BC延伸线于点H,∵四边形ABCD是平行四边形,AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,E为CD的中点,∴CE=ED,∴△ADE≌△HCE,第19页共20页AD=HC、AE=HE,AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,AE均分∠DAF;3)连结EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,AF=FC+CH=,AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【评论】本题主要考察圆的综合问题,解题的重点是掌握平行四边形的性质、矩形的判断与性质、全等三角形的判断与性质及等腰三角形的性质、勾股定理等知识点.第20页共20页。
2018年云南省昆明市中考数学试卷一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为.4.(3.00分)若m+=3,则m2+=.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A .B .C .D .8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥39.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100° D.120°12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.2018年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是1.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比较大小的方法.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为 2.4×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将240000用科学记数法表示为:2.4×105.故答案为2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为150°42′.【分析】直接利用度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.【点评】此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.4.(3.00分)若m+=3,则m2+=7.【分析】把已知等式两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为y=﹣x.【分析】直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.【解答】解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(﹣3,4),设过点A′的正比例函数的解析式为:y=kx,则4=﹣3k,解得:k=﹣,则过点A′的正比例函数的解析式为:y=﹣x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A″,此时OA″与OA′在一条直线上,故则过点A′的正比例函数的解析式为:y=﹣x.【点评】此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为﹣(结果保留根号和π).【分析】正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,根据正多边形的中心角公式求出∠DOE,求出OH,得到正六边形ABCDEF的面积,求出∠A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可.【解答】解:正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,∠DOE==60°,∴OD=OE=DE=1,∴OH=,∴正六边形ABCDEF的面积=×1××6=,∠A==120°,∴扇形ABF的面积==,∴图中阴影部分的面积=﹣,故答案为:﹣.【点评】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A.B.C.D.【分析】找到个图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴﹣1≈1.236,故选:B.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D .有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件【分析】直接利用样本容量以及方差的定义以及中位数的定义和必然事件的定义分别分析得出答案.【解答】解:A 、甲乙两组学生身高的平均数均为1.58,方差分别为S 甲2=2.3,S 乙2=1.8,则乙组学生的身高较整齐,故此选项错误;B 、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C 、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D 、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D .【点评】此题主要考查了样本容量以及方差、中位数和必然事件的定义,正确把握相关定义是解题关键.11.(4.00分)在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( )A .90°B .95°C .100°D .120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.【点评】本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=【分析】直接利用二次根式以及单项式乘以单项式运算法则和实数的计算化简求出即可.【解答】解:A、,错误;B、,错误;C、3a3•2a﹣2=6a(a≠0),正确;D、,错误;故选:C.【点评】此题主要考查了二次根式以及单项式乘以单项式运算法则和实数的计算等知识,正确掌握运算法则是解题关键.13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【分析】根据ASA证明△ADE≌△ABC;【解答】证明:(1)∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=tan60°﹣|﹣1|时,∴a=﹣1∴原式=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式运算法则,本题属于基础题型.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【分析】(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.【解答】解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.【分析】(1)列表得出所有等可能结果;(2)从表格中得出抽到B队和C队参加交流活动的结果数,利用概率公式求解可得.【解答】解:(1)列表如下:(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.【分析】(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.【解答】(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【解答】解:(1)由题意得,,解得,∴抛物线的解析式为y=x2﹣2x,令y=0,得x2﹣2x=0,解得x=0或2,结合图象知,A的坐标为(2,0),根据图象开口向上,则y≤0时,自变量x的取值范图是0≤x≤2;(2)设直线AB的解析式为y=mx+n,则,解得,∴y=3x﹣6,设直线AP的解析式为y=kx+c,∵PA⊥BA,∴k=,则有,解得c=,∴,解得或,∴点P的坐标为(),∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣1|×|0﹣(﹣3)|=.【点评】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.【分析】(1)过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC;(2)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得∴,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得==.【解答】解:(1)过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;(2)∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==【点评】本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab= .3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4= .5.(3.00分)如图,已知AB∥CD,若=,则= .6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC 边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥18.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360°D.180°10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)016.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2018年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是 1 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab= 2 .【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4= (x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知AB∥CD,若=,则= .【分析】利用相似三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△COD,∴==,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC 边的长为9或1 .【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360°D.180°【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,“非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:7(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A 、B 的坐标分别代入函数解析式求得b 、c 的值;(2)利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣x 2+x+3=0,通过解该方程求得x 的值即为抛物线与x 轴交点横坐标.【解答】解:(1)把A (0,3),B (﹣4,﹣)分别代入y=﹣x 2+bx+c ,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x 2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x 2+bx+c 的图象与x 轴有公共点.∵﹣x 2+x +3=0的解为:x 1=﹣2,x 2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A ,B 两种商品,为科学决策,他们试生产A 、B 两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A 商品,1千克B 商品所需要的甲、乙两种原料及生产成本如下表所示.设生产A 种商品x 千克,生产A 、B 两种商品共100千克的总成本为y 元,根据上述信息,解答下列问题:(1)求y 与x 的函数解析式(也称关系式),并直接写出x 的取值范围; (2)x 取何值时,总成本y 最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x )=﹣80x+20000,,解得:72≤x ≤86;(2)∵y=﹣80x+20000, ∴y 随x 的增大而减小, ∴x=86时,y 最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S=×2×1=△AOCS==扇形OAC∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.=×AB×EG=30得AB•EG=60,【分析】(1)作EG⊥AB于点G,由S△ABE即可得出答案;(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE 及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE 即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,=×AB×EG=30,则AB•EG=60,则S△ABE∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前昆明市2018年初中学业水平考试数学 .................................................................................. 1 昆明市2018年初中学业水平考试数学答案解析 (4)昆明市2018年初中学业水平考试数学(本试卷满分120分,考试时间120分钟)一、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 1.在实数-3,0,1中,最大的数是 .2.共享单车进入昆明市已两年,为市民的低碳出行带来了方便.据报道,昆明市共享单车投放量已达到240 000辆,数字240 000用科学记数法表示为 .3.如图,过直线AB 上一点O 作射线OC ,2918BOC ∠=︒',则AOC ∠的度数为 .4.若1=3m m +,则221m m+= .5.如图,点A 的坐标为()4,2。
将点A 绕坐标原点O 旋转90°后,再向左平移1个单位长度得到点A ',则过点A '的正比例函数的解析式为 .6.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,做扇形ABF ,则图中阴影部分的面积为 (结果保留根号和π).二、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)7.下列几何体的左视图为长方形的是( )A .B .C .D .8.关于x的一元二次方程2=0x m -+有两个不相等的实数根,则实数m 的取值范围是 ( )A .m <3B .m >3C .3m ≤D .3m ≥9..请1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 10.下列判断正确的是( ) A .甲乙两组学生身高的平均数均为1.58,方差分别为2s =2.3甲,2s =1.8乙,则甲组学生的身高较整齐B .为了了解某县七年级4 000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4 000C .则这30个参赛队决赛成绩的中位数是9.7D .有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则CDO ∠的度数为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ ___________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)A .90°B .95°C .100°D .120° 12.下列运算正确的是( )A .21=93⎛⎫- ⎪⎝⎭B.020181=- C .()3232=60a a a a -≠D13.甲、乙两船从相距300km 的A ,B 两地同时出发相向而行。
2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分) 1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________.【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________. 【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310. 4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果. 5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OAOC=________.【答案】14.【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,ABAC =5.若BC 边上的高等于3,则BC 边的(第5题图)CDABO长为________.【答案】1或9.【解析】设边BC上的高为AD.当边BC上的高AD在△ABC的内部时,如答图1所示,在Rt△ABD中,由勾股定理得BD5,在Rt△ACD中,由勾股定理得CD4,所以BC=5+4=9.在边BC上的高AD在△ABC的外部时,如答图2所示,同理BD=5,CD=4,所以BC=5-4=1.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数yx取值范围为·······()A.x≤0 B.x≤1 C.x≥0 D.x≥1【答案】B.【解析】函数yx满足1x-≥0,解得x≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。
2018年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2018•云南)﹣2的相反数是()D.A.﹣2B.2C.2.(3分)(2018•云南)不等式2x﹣6>0的解集是()A.x>1B.x<﹣3C.x>3D.x<33.(3分)(2018•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球4.(3分)(2018•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C.1.758×105D.1.758×1045.(3分)(2018•云南)下列运算正确的是()A.a2•a5=a10B.(π﹣3.14)0=0C.﹣2=D.(a+b)2=a2+b26.(3分)(2018•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0B.x2﹣6x+9=0C.5x2﹣4x﹣1=0D.3x2﹣4x+1=07.(3分)(2018•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市)A B C D E F推荐数(个)362731564854在上表统计的数据中,平均数和中位数分别为()A.42,43.5B.42,42C.31,42D.36,548.(3分)(2018•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A.3B.9C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2018•云南)分解因式:3x2﹣12=.10.(3分)(2018•云南)函数y=的自变量x的取值范围是.11.(3分)(2018•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=.12.(3分)(2018•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.13.(3分)(2018•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.14.(3分)(2018•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n 为正整数).三、解答题(本大题共9小题,满分58分)15.(5分)(2018•云南)化简求值:[﹣]•,其中x=+1.16.(5分)(2018•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.17.(7分)(2018•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(5分)(2018•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B 地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?19.(6分)(2018•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)20.(7分)(2018•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.21.(7分)(2018•云南)2018年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=,b=,c,d,m.(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元)300a b m所占百分比c34%6%所占圆心角216°d21.6°22.(7分)(2018•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.23.(9分)(2018•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2018年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2018•云南)﹣2的相反数是()A.﹣2B.2C.D.考点:相反数.分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2018•云南)不等式2x﹣6>0的解集是()A.x>1B.x<﹣3C.x>3D.x<3考点:解一元一次不等式.分析:利用不等式的基本性质:移项,系数化1来解答.解答:解:移项得,2x>6,两边同时除以2得,x>3.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3.(3分)(2018•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球考点:由三视图判断几何体.分析:找到从正面、左面和上面看得到的图形是正方形的几何体即可.解答:解:∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.故选A.点评:此题考查三视图,关键是根据:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.4.(3分)(2018•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C.1.758×105D.1.758×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将17580用科学记数法表示为1.758×104.故选D.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2018•云南)下列运算正确的是()A.a2•a5=a10B.(π﹣3.14)0=0C.﹣2=D.(a+b)2=a2+b2考点:二次根式的加减法;同底数幂的乘法;完全平方公式;零指数幂.分析:根据同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式计算判断即可.解答:解:A、a2•a5=a7,错误;B、(π﹣3.14)0=1,错误;C、,正确;D、(a+b)2=a2+2ab+b2,错误;故选C.点评:此题考查同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式,关键是根据法则进行计算.6.(3分)(2018•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0B.x2﹣6x+9=0C.5x2﹣4x﹣1=0D.3x2﹣4x+1=0考点:根的判别式.分析:分别计算出每个方程的判别式即可判断.解答:解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2018•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市)A B C D E F推荐数(个)362731564854在上表统计的数据中,平均数和中位数分别为()A.42,43.5B.42,42C.31,42D.36,54考点:中位数;加权平均数.分析:根据平均数的公式求得上表统计的数据中的平均数,将其按从小到大的顺序排列中间的那个是中位数.解答:解:P=(36+27+31+56+48+54)=42,把这几个数据按从小到大顺序排列为:27,31,36,48,54,56,中位数W=(36+48)=42.故选B.点评:本题考查了平均数和中位数的知识,属于基础题,解答本题的关键是熟练掌握平均数和中位数的定义.8.(3分)(2018•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A.3B.9C.2D.3考点:扇形面积的计算.分析:已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.解答:解:扇形的面积==3π.解得:r=3.故选D.点评:本题主要考查了扇形的面积公式=.熟练将公式变形是解题关键.二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2018•云南)分解因式:3x2﹣12=3(x﹣2)(x+2).考点:提公因式法与公式法的综合运用.分析:原式提取3,再利用平方差公式分解即可.解答:解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.10.(3分)(2018•云南)函数y=的自变量x的取值范围是x≥7.考点:函数自变量的取值范围.分析:函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.解答:解:根据题意得:x﹣7≥0,解得x≥7,故答案为x≥7.点评:本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.(3分)(2018•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=64°.考点:平行线的性质.分析:首先根据三角形外角的性质,求出∠1的度数是多少;然后根据直线l1∥l2,可得∠α=∠1,据此求出∠α的度数是多少即可.解答:解:如图1,,∵∠1+56°=120°,∴∠1=120°﹣56°=64°,又∵直线l1∥l2,∴∠α=∠1=64°.故答案为:64°.点评:此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.12.(3分)(2018•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a 元.考点:列代数式.分析:现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答.解答:解:2500a×80%=2000a(元).故答案为2000a元.点评:本题考查了列代数式,解题的关键是理解打折问题在实际问题中的应用.13.(3分)(2018•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为30°.考点:圆周角定理;等边三角形的判定与性质.分析:由OA=AB,OA=OB,可得△OAB是等边三角形,即可得∠AOB=60°,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数.解答:解:∵OA=AB,OA=OB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°.故答案为30°.点评:此题考查了圆周角定理与等边三角形的判定与性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.14.(3分)(2018•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).考点:三角形中位线定理.专题:规律型.分析:根据中位线的定理得出规律解答即可.解答:解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:点评:此题考查三角形中位线定理,关键是根据中位线得出规律进行解答.三、解答题(本大题共9小题,满分58分)15.(5分)(2018•云南)化简求值:[﹣]•,其中x=+1.考点:分式的化简求值.分析:首先将中括号内的部分进行通分,然后按照同分母分式的减法法则进行计算,再按照分式的乘法法则计算、化简,最后再代数求值即可.解答:解:原式===,将x=+1代入得:原式==.点评:本题主要考查的是分式的化简以及二次根式的运算,掌握分式的通分、加减、乘除等运算法则是解题的关键.16.(5分)(2018•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.考点:全等三角形的判定.专题:开放型.分析:已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.解答:解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(7分)(2018•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?考点:一元一次方程的应用.分析:设胜了x场,那么负了(8﹣x)场,根据得分为13分可列方程求解.解答:解:设胜了x场,那么负了(8﹣x)场,根据题意得:2x+1•(8﹣x)=13,x=5,13﹣5=8.答:九年级一班胜、负场数分别是5和8.点评:本题考查了一元一次方程的应用,还考查了学生的理解题意能力,关键设出胜的场数,以总分数做为等量关系列方程求解.18.(5分)(2018•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B 地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?考点:一次函数的应用.分析:(1)根据剩余的路程=两地的距离﹣行驶的距离即可得到y与x的函数关系式,然后再求得汽车行驶200千米所需要的时间即可求得x的取值范围.(2)将x=2代入函数关系式,求得y值即可.解答:解:(1)y=200﹣60x(0≤x≤);(2)将x=2代入函数关系式得:y=200﹣60×2=80千米.答:汽车距离B地80千米.点评:本题主要考查的是列函数关系式,读懂题意,明确剩余的路程=两地的距离﹣行驶的距离是解答本题的关键.19.(6分)(2018•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)考点:解直角三角形的应用.分析:如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.解答:解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.点评:本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.20.(7分)(2018•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)列举出所有情况,看向上一面出现的数字与卡片上的数字之积为6的情况数占总情况数的多少即可.(2)概率问题中的公平性问题,解题的关键是计算出各种情况的概率,然后比较即可.解答:解:(1)如图所示:==.共18种情况,数字之积为6的情况数有3种,P(数字之积为6)(2)由上表可知,该游戏所有可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率=,小王赢的概率=,故小王赢的可能性更大.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(7分)(2018•云南)2018年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=170,b=30,c60%,d122.4°,m=500.(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元)300a b m所占百分比c34%6%所占圆心角216°d21.6°考点:条形统计图;统计表;扇形统计图.分析:(1)由机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,即可得到结果;(2)根据扇形统计图及统计表中提供的信息,列式计算即可得到结果.解答:解:(1)(2+4)×=4,答:机场E投入的建设资金金额是4亿元,如图所示:(2)c=1﹣34%﹣6%=60%,300÷(1﹣34%﹣6%)=500(亿)a=500×34%=170(亿),b=500×6%=30(亿),d=360°﹣216°﹣21.6°=122.4°,m=300+170+30=500(亿).故答案为:170,30,60%,122.4°,500.点评:本题主要考查了条形统计图与扇形统计图的应用,根据图象得出正确的信息是解题关键.22.(7分)(2018•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.考点:矩形的性质;全等三角形的判定与性质;角平分线的性质.专题:计算题.分析:(1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.解答:解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.点评:本题主要考查了矩形的性质、平行线的性质、等腰三角形的判定与性质、勾股定理的综合运用,难度不大,根据角的倍差关系得到∠PAN=∠PNA,发现AP=PN是解决问题的关键.23.(9分)(2018•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可;(2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC为直角三角形;当P′B⊥BC时,△BCP′为直角三角形,分别求出P的坐标即可.解答:解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当PC⊥CB时,△PBC为直角三角形,∵直线BC的斜率为﹣,∴直线PC斜率为,∴直线PC解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P′B⊥BC时,△BCP′为直角三角形,同理得到直线P′B的斜率为,∴直线P′B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P′(,﹣2).综上所示,P(,)或P′(,﹣2).点评:此题考查的是二次函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,二次函数的性质,以及两直线垂直时斜率的关系,熟练掌握待定系数法是解本题的关键.。
2018年云南省中考数学真题一、填空题(共6小题,每小题3分,满分18分)1.(3分)﹣1的绝对值是.2.(3分)已知点P(a,b)在反比例函数y=的图象上,则ab=.3.(3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3分)分解因式:2﹣4=.5.(3分)如图,已知AB∥CD,若=,则=.6.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4分)函数y=的自变量的取值范围为()A.≤0B.≤1C.≥0D.≥18.(4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥9.(4分)一个五边形的内角和为()A.540° B.450°C.360°D.180°10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形 C.角D.平行四边形12.(4分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.13.(4分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人14.(4分)已知+=6,则2+=()A.38 B.36 C.34 D.32三、解答题(共9小题,满分70分)15.(6分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0.16.(6分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7 打分 6 8 7 8 5 7 8 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8分)已知二次函数y=﹣2+b+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣2+b+c的图象与轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千生产成本(单位:元)克)A商品 3 2 120B商品 2.5 3.5 200设生产A种商品千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与的函数解析式(也称关系式),并直接写出的取值范围;(2)取何值时,总成本y最小?22.(9分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.【参考答案】一、填空题(共6小题,每小题3分,满分18分)1.1【解析】∵|﹣1|=1,∴﹣1的绝对值是1.2.2【解析】∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2.3.3.451×103【解析】3451=3.451×103,故答案为:3.451×103.4.(+2)(﹣2)【解析】2﹣4=(+2)(﹣2).故答案为:(+2)(﹣2).5.【解析】∵AB∥CD,∴△AOB∽△COD,∴==,故答案为.6.9或1【解析】有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.B【解析】∵1﹣≥0,∴≤1,即函数y=的自变量的取值范围是≤1,故选:B.8.D【解析】此几何体是一个圆锥,故选:D.9.A【解析】根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.10.C【解析】a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.11.B【解析】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.12.A【解析】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.13.D【解析】抽取的总人数为6+10+16+18=50(人),故A正确,“非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.14.C【解析】把+=6两边平方得:(+)2=2++2=36,则2+=34,故选:C.三、解答题(共9小题,满分70分)15.解:原式=3﹣2×﹣3﹣1=2﹣4.16.证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.17.解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.18.解:设乙工程队每小时能完成平方米的绿化面积,则甲工程队每小时能完成2平方米的绿化面积,根据题意得:﹣=3,解得:=50,经检验,=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.19.解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.20.解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣2+b+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣2++3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣2+b+c的图象与轴有公共点.∵﹣2++3=0的解为:1=﹣2,2=8∴公共点的坐标是(﹣2,0)或(8,0).21.解:(1)由题意可得:y=120+200(100﹣)=﹣80+20000,,解得:72≤≤86;(2)∵y=﹣80+20000,∴y随的增大而减小,∴=86时,y最小,则y=﹣80×86+20000=13120(元).22.(1)证明:连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)解:设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S△AOC=×2×1=S扇形OAC==∴阴影部分面积为﹣23.解:(1)如图,作EG⊥AB于点G,则S△ABE=×AB×EG=30,则AB•EG=60,∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠F AE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠F AE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.。
2018年云南省昆明市中考数学试卷一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC 的度数为.4.(3.00分)若m+=3,则m2+=.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A. B.C.D.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥39.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO 的度数为()A.90°B.95°C.100° D.120°12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP 交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.2018年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(每小题3分,满分18分)1.(3.00分)在实数﹣3,0,1中,最大的数是1.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比较大小的方法.2.(3.00分)共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为2.4×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将240000用科学记数法表示为:2.4×105.故答案为2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC 的度数为150°42′.【分析】直接利用度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.【点评】此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.4.(3.00分)若m+=3,则m2+=7.【分析】把已知等式两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.5.(3.00分)如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为y=﹣x.【分析】直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.【解答】解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(﹣3,4),设过点A′的正比例函数的解析式为:y=kx,则4=﹣3k,解得:k=﹣,则过点A′的正比例函数的解析式为:y=﹣x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A″,此时OA″与OA′在一条直线上,故则过点A′的正比例函数的解析式为:y=﹣x.【点评】此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.6.(3.00分)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为﹣(结果保留根号和π).【分析】正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,根据正多边形的中心角公式求出∠DOE,求出OH,得到正六边形ABCDEF的面积,求出∠A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可.【解答】解:正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,∠DOE==60°,∴OD=OE=DE=1,∴OH=,∴正六边形ABCDEF的面积=×1××6=,∠A==120°,∴扇形ABF的面积==,∴图中阴影部分的面积=﹣,故答案为:﹣.【点评】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.二、选择题(每小题4分,满分32分,在每小题给出的四个选项中,只有一项是正确的)7.(4.00分)下列几何体的左视图为长方形的是()A. B.C.D.【分析】找到个图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.8.(4.00分)关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3 D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.(4.00分)黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴﹣1≈1.236,故选:B.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.10.(4.00分)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:9.59.69.79.89.9比赛成绩/分参赛队个数98643则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件【分析】直接利用样本容量以及方差的定义以及中位数的定义和必然事件的定义分别分析得出答案.2=2.3,S 【解答】解:A、甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=1.8,则乙组学生的身高较整齐,故此选项错误;乙B、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:9.59.69.79.89.9比赛成绩/分参赛队个数98643则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D.【点评】此题主要考查了样本容量以及方差、中位数和必然事件的定义,正确把握相关定义是解题关键.11.(4.00分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO 的度数为()A.90°B.95°C.100° D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.【点评】本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.12.(4.00分)下列运算正确的是()A.(﹣)2=9 B.20180﹣=﹣1C.3a3•2a﹣2=6a(a≠0)D.﹣=【分析】直接利用二次根式以及单项式乘以单项式运算法则和实数的计算化简求出即可.【解答】解:A、,错误;B、,错误;C、3a3•2a﹣2=6a(a≠0),正确;D、,错误;故选:C.【点评】此题主要考查了二次根式以及单项式乘以单项式运算法则和实数的计算等知识,正确掌握运算法则是解题关键.13.(4.00分)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.14.(4.00分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共9题,满分70分,必须写出运算步骤、推理过程或文字说明)15.(6.00分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【分析】根据ASA证明△ADE≌△ABC;【解答】证明:(1)∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等16.(7.00分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=tan60°﹣|﹣1|时,∴a=﹣1∴原式=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式运算法则,本题属于基础题型.17.(7.00分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【分析】(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.【解答】解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(6.00分)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.【分析】(1)列表得出所有等可能结果;(2)从表格中得出抽到B队和C队参加交流活动的结果数,利用概率公式求解可得.【解答】解:(1)列表如下:A B CA(B,A)(C,A)B(A,B)(C,B)C(A,C)(B,C)由表可知共有6种等可能的结果;(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(7.00分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B 处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE、DE,可得BD的长,再根据CD=BD ﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.20.(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.21.(8.00分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.【分析】(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH 为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.【解答】(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.22.(9.00分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP 的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【解答】解:(1)由题意得,,解得,∴抛物线的解析式为y=x2﹣2x,令y=0,得x2﹣2x=0,解得x=0或2,结合图象知,A的坐标为(2,0),根据图象开口向上,则y≤0时,自变量x的取值范图是0≤x≤2;(2)设直线AB的解析式为y=mx+n,则,解得,∴y=3x﹣6,设直线AP的解析式为y=kx+c,∵PA⊥BA,∴k=,则有,解得c=,∴,解得或,∴点P的坐标为(),∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣1|×|0﹣(﹣3)|=.【点评】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.23.(12.00分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP 交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.【分析】(1)过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC;(2)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得∴,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得==.【解答】解:(1)过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;(2)∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==【点评】本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。