拉氏变换和z变换表

  • 格式:doc
  • 大小:279.50 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录A 拉普拉斯变换及反变换

1.拉氏变换的基本性质

附表A-1 拉氏变换的基本性质

1()1

()([n n k F s f t dt s s

-+=

+∑⎰个

[f L

2.常用函数的拉氏变换和z变换表

附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换

用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即

11

10

111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,

,,m m b b b b -都是实常数;n m ,是正整数。按代数定理

可将)(s F 展开为部分分式。分以下两种情况讨论。

(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即

∑=-=-++-++-+-=n

i i

i n n i i s s c s s c s s c s s c s s c s F 122

11)( (F-1)

式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i

i i s s c s s F s →=- (F-2)

i

s

s i

s A s B c ='=

)()

( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为

[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 11

1

)()(=1

i

n s t

i i c e =∑ (F-4)

(2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

())

()()()

(11n r r

s s s s s s s B s F ---=

+ =

n

n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11

111

111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算:

)()(lim 11

s F s s c r s s r -=→

11lim

[()()]i

r r s s d

c s s F s ds

-→=-

)()(lim !11)()

(1s F s s ds

d j c r j j s s j

r -=→- (F-5)

)()(lim )!1(11)1()

1(11s F s s ds

d r c r r r s s --=--→

原函数)(t f 为 [])()(1

s F L

t f -=

⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11

111

1111)()()

( t s n

r i i t s r r r r i

e c e c t c t r c t r c ∑+=---+⎥⎦

⎤⎢⎣⎡+++-+-=112211

1

)!2()!1( (F-6)