工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案
- 格式:doc
- 大小:4.07 MB
- 文档页数:19
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数1t dV V dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp V V ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=t V V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
选择题(单选题)5.1 速度v ,长度l ,重力加速度g 的无量纲集合是:(b )(a )lv g;(b )v g l;(c )l gv;(d )2vg l。
5.2 速度v ,密度ρ,压强p 的无量纲集合是:(d )(a )pvρ;(b )v pρ;(c )2pvρ;(d )2pvρ。
5.3 速度v ,长度l ,时间t 的无量纲集合是:(d )(a )v lt;(b )t vl;(c )2l vt;(d )l vt。
5.4 压强差p ,密度ρ,长度l ,流量Q 的无量纲集合是:(d )(a )2Q plρ ;(b )2l pQρ ;(c )plQρ;(d )5.5 进行水力模型实验,要实现明渠水流的动力相似,应选的相似准则是:(b )(a )雷诺准则;(b )弗劳德准则;(c )欧拉准则;(d )其他。
5.6 进行水力模型实验,要实现有压管流的动力相似,应选的相似准则是:(a )(a )雷诺准则;(b )弗劳德准则;(c )欧拉准则;(d )其他。
5.7 雷诺数的物理意义表示:(c )(a )粘滞力与重力之比;(b )重力与惯性力之比;(c )惯性力与粘滞力之比;(d )压力与粘滞力之比。
5.8 明渠水流模型实验,长度比尺为4,模型流量应为原型流量的:(c )(a )1/2;(b )1/4;(c )1/8;(d )1/32。
5.9 压力输水管模型实验,长度比尺为8,模型水管的流量应为原型输水管流量的:(c )(a )1/2;(b )1/4;(c )1/8;(d )1/16。
5.10 假设自由落体的下落距离s 与落体的质量m 、重力加速度g 及下落时间t 有关,试用瑞利法导出自由落体下落距离的关系式。
解: ∵s K m g t αβγ=[]s L =;[]m M =;[]2g TL -=;[]t T =∴有量纲关系:2L M T L T αββγ-= 可得:0α=;1β=;2γ= ∴2s K gt =答:自由落体下落距离的关系式为2s K gt =。
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数1t dV V dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp V V ?,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=t V V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
第五章习题简答5-1有一薄壁圆形孔口,直径d= 10mm ,水头H 为2m 。
现测得射流收缩断面的直径d c为8mm ,在32.8s 时间内,经孔口流出的水量为0.01m 3,试求该孔口的收缩系数ε,流量系数μ,流速系数φ及孔口局部损失系数ζ。
解: 64.010822=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛==d d A A c c εs m d Q v /06.6008.08.32/01.04422=⨯⨯==ππ 62.097.064.006.0197.011197.028.9206.62222=⨯===-=-==⨯⨯==⇒=εϕμϕζϕϕgHvgH v5-2薄壁孔口出流,直径d=2cm ,水箱水位恒定H=2m ,试求:(1)孔口流量Q ;(2)此孔口外接圆柱形管嘴的流量Q n ;(3)管嘴收缩断面的真空高度。
题5-2图解:(1)孔口出流流量为s L s m gH A Q /219.1/10219.128.9202.0462.02332=⨯=⨯⨯⨯⨯⨯==πϕ(2)s L gH A Q n /612.128.9202.0482.022=⨯⨯⨯⨯⨯==πμ(3)真空高度:m H gpg p C Cv 48.1274.074.0=⨯==-=ρρ 5-3 水箱用隔板分为A 、B 两室,隔板上开一孔口,其直径d 1=4cm ,在B 室底部装有圆柱形外管嘴,其直径d 2=3cm 。
已知H=3m ,h 3=0.5m 试求:(1)h 1,h 2;(2)流出水箱的流量Q 。
题5-3图解:隔板孔口的流量 112gh A Q μ=圆柱形外管嘴的流量 ()()132222h H g A h h g A Q +=+=μμ由题意可得Q1=Q2,则()()1212122212111211303.082.004.062.022h h h H d h d h H g A gh A -⨯⨯=⨯⨯+=+=μμμμ解得m h 07.11=sL s m gh A Q mh h H h /56.3/1056.307.18.9204.0462.0243.15.007.1333211312=⨯=⨯⨯⨯⨯⨯==∴=--=--=∴-πμ5-4 有一平底空船,其船底面积Ω为8m 2,船舷高h 为0.5m ,船自重G 为9.8kN。
第五章 势流理论5-1流速为u 0=10m/s 沿正向的均匀流与位于原点的点涡叠加。
已知驻点位于(0,-5),试求: (1)点涡的强度;(2) (0,5)点的流速以及通过驻点的流线方程。
答:(1)求点涡的强度Γ:设点涡的强度为Γ,则均匀流的速度势和流函数分别为:x u 01=ϕ,y u 01=ψ;点涡的速度势和流函数为:xy arctg πϕ22Γ-=,r y x ln 2)ln(221222ππψΓ=+Γ=; 因此,流动的速度势和流函数为:θπθπϕϕϕ2cos 20021Γ-=Γ-=+=r u x y arctg x u , r y u y x y u ln 2sin )ln(202122021πθπψψψΓ+=+Γ+=+=;则速度分布为:2202y x yu y x u +⋅Γ+=∂∂=∂∂=πψϕ, 222yx x x y v +⋅Γ=∂∂-=∂∂=πψϕ; 由于)5,0(-为驻点,代入上式第一式中则得到:0)5(052220=-+-⋅Γ+πu , 整理得到:ππ100100==Γu 。
(2)求)5,0(点的速度:将π100=Γ代入到速度分布中,得到:222222050102100102y x y y x y y x y u u ++=+⋅+=+⋅Γ+=πππ,2222225021002y x x y x x y x x v +=+⋅=+⋅Γ=πππ; 将0=x 、5=y 代入上述速度分布函数,得到:201010505501022=+=+⨯+=u (m/s ),05005022=+⨯=v (m/s );(3)求通过)5,0(点的流线方程:由流函数的性质可知,流函数为常数时表示流线方程C =ψ,则流线方程为:C y x y u =+Γ+21220)ln(2π;将0=x 、5=y 代入,得到:5ln 5050)50ln(21005102122+=+⨯+⨯=ππC ;则过该点的流线方程为:5ln 5050)ln(2100102122+=++y x y ππ,整理得到:5ln 55)ln(52122+=++y x y5-2 平面势流由点源和点汇叠加而成,点源位于(-1,0),其流量为θ1=20m 3/s ,点汇位于(2,0)点,其流量为θ2=40m 3/s ,已知流体密度为ρ=1.8kg/m 3,流场中(0,0)点的压力为0,试求点(0,1)和(1,1)的流速和压力。
工程流体力学闻德课后习题答案 第五章 实际流体动力学基础5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。
试求切应力τxy 、τyx 和附加压应力p ´x 、p ´y 以及压应力p x 、p y 。
解:0y x xy yx u u x y ττμ∂⎛⎫∂==+= ⎪∂∂⎝⎭24xxu p a xμμ∂'=-=-∂,24y y u p a y μμ∂'=-=∂, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。
试求在这种流动情况下,两平板间的速度分布。
(请将d 0d px=时的这一流动与在第一章中讨论流体粘性时的流动相比较)解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。
由例5-1中的(11)式可得2d (1)2d h y p y yu v h x h h μ=-- (1) 当d 0d p x =时,y u v h=,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。
它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。
当d 0d px≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为(1)u y y yp v h h h=-- (2) 式中2d ()2d h pp v xμ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况.5-3 设明渠二维均匀(层流)流动,如图所示。
若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2xg u zhz ,单宽流量3sin 3gh q。
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数1t dV V dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp V V ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=t V V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=t t dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp VV ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=tV V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
第一章 绪论1-1.20℃的水,当温度升至80℃时,其体积增加多少 [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数) [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuATmgddsinμθ==001.0145.04.062.22sin8.95sin⨯⨯⨯⨯==δθμuAmgsPa1047.0⋅=μ1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律yuddμτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径,长度20mm,涂料的粘度μ=.s。
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水:233/410416101m N u=⨯⨯=⋅=--δμτ 油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ 1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
闻建龙主编的《工程流体力学》习题参考答案之邯郸勺丸创作第一章绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分红两大类:不克不及抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体.如空气、水等.而在同等条件下,固体则产生有限的变形.因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能产生连续不竭的变形.与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加.1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采取连续介质作为流体宏不雅流动模型,即不考虑流体份子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设.流体连续性假设是流体力学中第一个根赋性假设,将真实流体看成为连续介质,意味着流体的一切宏不雅物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学阐发来讨论和解决流体力学问题.在一些特定情况下,连续介质假设是不成立的,例如:航天器在地面稀薄气体中遨游飞翔,超声速气流中激波前后,血液在微血管(1μm)内的流动.1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体辨别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u=⨯⨯=⋅=--δμτ 油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ 1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直标的目的速度大小的散布规律是直线.1)当mm h 10=时,求薄板运动的液体阻力.2)如果h 可改动,h 为多大时,薄板的阻力最小?并计算其最小阻力值.题1-4图解:1) 23/35010)1040(157.0m N h u =⨯-⨯=-⋅=-δμτ上2) hh u h h h h u h u h u )()()(-⋅=--+⋅=+-+δδμδδμδμτττ)(==下上 要使τ最小,则分母最大,所以:02][])[(2=-='-='-h h h h h δδδ, 2δ=h1-5 直径mm d 400=,长m l 2000=输水管作水压试验,管内水的压强加至Pa 6105.7⨯时封锁,经h 1后由于泄漏压强降至Pa 6100.7⨯,不计水管变形,水的压缩率为19105.0--⨯Pa ,求水的泄漏量. 解:dpdV V 1-=κ 19105.0--⨯=Pa κ, 26/105.0m N dp ⨯-=, 32251202000441m V =⨯=π1-6 一种油的密度为3851m kg ,运动粘度为m 261039.3-⨯,求此油的动力粘度.解:s Pa ⋅⨯=⨯⨯==--361088.21039.3851ρυμ1-7 存放34m 液体的储液罐,当压强增加MPa 5.0时,液体体积减少L 1,求该液体的体积模量. 解:1963105.0105.0101411----⨯=⨯⨯⨯=-=Pa dp dV V κ 1-8 压缩机向气罐充气,绝对压强从MPa 1.0升到MPa6.0,温度从C 020升到C 078,求空气体积缩小百分数为多少.解:MRT pV =111MRT V p =,222MRT V p =)20273(101.016+=⨯MR V ,)78273(106.026+=⨯MR VMR V 311093.2-⨯=,MR V 3210585.0-⨯=第二章 流体静力学2-1 如图所示为一复式水银测压计,用来测水箱中的概略压强0p .试求:按照图中读数(单位为m )计算水箱中的概略绝对压强和相对压强.题2-1图解:加0-0,1-1,2-2三个帮助平面为等压面.表压强:绝对压强(大气压强Pa p a 101325=)2-2 如图所示,压差计中水银柱高差m h 36.0=∆,A 、B 两容器盛水,位置高差m z 1=∆,试求A 、B 容器中心压强差B A p p -.题2-2图解:作帮助等压面0-0,1-1.2-3 如图2-45所示,一开口测压管与一封锁盛水容器相通,若测压管中的水柱超出跨越容器液面m h 2=,求容器液面上的压强.题2-3图解:Pa gh p 19620298100=⨯==ρ米水柱2/0=g p ρ2-4 如图所示,在盛有油和水的圆柱形容器的盖上加荷重N F 5788=.已知:cm h 301=,cm h 502=,m d 4.0=,3800m kg =油ρ.求U 形测压管中水银柱高度H .题2-4图解:油概略上压强:列等压面0-0的方程:2-5 如图所示,试按照水银测压计的读数,求水管A 内的真空度及绝对压强.已知:m h 25.01=,m h 61.12=,m h 13=.题2-5图解:a A p h h g h h g p =-+--)()(3212汞水ρρ2-6 如图所示,直径m D 2.0=,高度m H 1.0=的圆柱形容器,装水32容量后,绕其垂直轴旋转.1)试求自由液面到达顶部边沿时的转速1n ;2)试求自由液面到达底部中心时的转速2n .题2-6图解:(1)4222222D g g R H ⋅==∆ωω由旋转抛物体体积=相应柱体体积的一半 又H g D H x H 31163122+=+=∆ωH g D D g 3116422222+=⋅ωω (2)⎪⎪⎩⎪⎪⎨⎧'+⋅'-=⋅='')()(2 21])2([4132411 2222222H R H R D H D H g R πππω原体积 抛物体外柱体 抛物体式(2)代入(1) H D g =⋅'6222ω2-7如图所示离心别离器,已知:半径cm R 15=,高cm H 50=,充水深度cm h 30=,若容器绕z 轴以等角速度ω旋转,试求:容器以多大极限转速旋转时,才不致使水从容器中溢出.题2-7图解:超高 g R H 222ω=∆由:原体积=旋转后的柱体体积+抛物体体积 由g R H 222ω=∆得空的体积=)(2h H R ∆-π 空的旋转后体积=有水的旋转抛物体体积=gR R 221222ωπ 2-18 如图所示,一盛有液体的容器以等加速度a 沿x 轴向运动,容器内的液体被带动也具有相同的加速度a ,液体处于相对平衡状态,坐标系建在容器上.液体的单位质量力为a f x -=,0=y f ,g f z -=求此情况下的等压面方程和压强散布规律.题2-8图1)等压面方程2)压强散布规律 又000p p z x ===,0p c =2-19 如图所示矩形闸门AB 宽m b 3=,门重N G 9800=,060=α,m h 11=,m h 73.12=.试求:1)下游无水时的启门力T .2)下游有水时,即223h h =时的启门力T .题2-9图解:1)2/21h h h c +=对转轴A 求矩可得T :2)下游水压力P ' 作用点:离下底29.032/73.13/3==h (垂直距离) 离A :m h 66.160sin /29.060sin /2=︒-︒对A 求矩得T '2-10 如图2-52所示为一溢流坝上的弧形闸门.已知:m R 10=,门宽m b 8=,030=α.试求:作用在该弧形闸门上的静水总压力.题2-10图解:x c x A gh P ρ=5.6==c c h y ,240m b H A x =⋅=,3358121121⨯⨯==bH I cx =83.3 求z P :3.02550600774990===x z P P tg θ,︒=9.16θ 2-11 绕轴O 转动的自动开启式水闸,当水位超出m H 2=时,闸门自动开启.若闸门另一侧的水位m h 4.0=,角060=α,试求铰链的位置x .题2-21图 解:b H H g A gh P c ⋅==αρρsin 2111 (取1=b ) 第三章 流体运动学基础3-1 已知不成压缩流体平面流动的流速场为y xt v x 2+=,yt xt v y -=2,试求在时刻s t 1=时点()2 ,1A 处流体质点的加速度.解:yv v x v v t v a x y x x x x ∂∂+∂∂+∂∂= 将2 ,1 ,1===y x t 代入得:4=x a ,6=y a3-2 用欧拉不雅点写出下列各情况下密度变更率的数学表达式:1)均质流体;2)不成压缩均质流体;3)定常运动. 解:1)均质流体2)不成压缩均质流体0=dt d ρ,0=∂∂=∂∂=∂∂zy x ρρρ,即c =ρ 3)定常流动2-3 已知平面不成压缩流体的流速份量为y v x -=1,t v y =试求:1)0=t 时过()0 ,0点的迹线方程.2)1=t 时过()0 ,0点的流线方程.解:1)⎪⎪⎩⎪⎪⎨⎧=-=t dt dy y dt dx 1⎪⎩⎪⎨⎧+=+-=22121)1(C t y C t y x 将0=t 时0,0==y x 代入得021==C C ,将二式中的t 消去为: 0)1(222=--y y x , 0242232=-+-y y y x2)yx v dy v dx =, t dy y dx =-1, dy y tdx )1(-= 积分得 C y y tx +-=221将0,0,1===y x t 代入0=C ,得1=t 时的流线为:3-4 如图所示的一不成压缩流体通过圆管的流动,体积流量为q ,流动是定常的.1)假定截面1、2和3上的速度是均匀散布的,在三个截面处圆管的直径辨别为A 、B 、C ,求三个截面上的速度.2)当s m q 34.0=,m A 4.0=,m B 2.0=,m C 6.0=时计算速度值.3)若截面1处的流量s m q 34.0=,但密度按以下规律变更,即126.0ρρ=,132.1ρρ=,求三个截面上的速度值.题3-4图解:1) 2141A q v π=,2241B q v π=,2341C q v π=2)s m v /18.34.0414.021==π,s m v /74.122.0414.022==π,s m v /41.16.0414.023==π 3) s m v /18.31=, 11114.0ρρ=A v222111A v A v ρρ= 即 22112.0416.04.0πρρ⋅=v 333111A v A v ρρ= 即 23116.0412.14.0πρρ⋅=v 3-5 二维、定常不成压缩流动,x 标的目的的速度份量为1cosh +=-y e v x x ,求y 标的目的的速度份量y v ,设0=y 时,0=y v . 解:二维、定常不成压的连续性方程为:hy e x v x x cos -=∂∂, hy e yv x y cos =∂∂ 00==y y v , 0=C3-6 试证下述不成压缩流体的运动是可能存在的:1)y x v x +=22,z y v y +=22,()xy z y x v z ++-=42)()2222y x xyzv x +-=,()()22222y x z y x v y +-=, 22y x y v z += 3)yzt v x =,xzt v y =,xyt v z =解:不成压缩流体的连续性方程为:0=∂∂+∂∂+∂∂zv y v x v z y x (1) 1)x x v x 4=∂∂,y yv y 4=∂∂,y x z v z 44--=∂∂代入(1)中满足. 2)()()()()()()42222222242222222822222y x y x yz x y x yz y x x y x xyz y x yz x v x ++-+-=+⋅+⋅-+-=∂∂,()()00022222=+⋅-+⋅=∂∂y x y y x z v z代入(1)中满足. 3)0=∂∂x v x ,0=∂∂yv y ,0=∂∂z v z 代入(1)中满足. 3-7 已知圆管层流运动的流速散布为()[]22204z y r lgh v f x +-=μρ,0=y v ,0=z v 试阐发流体微团的运动形式. 解:线变形:0=xx ε,0=yy ε,0=zz ε纯剪切角变形:旋转角速度:3-8 下列两个流场的速度散布是: 1)Cy v x -=,Cx v y =,0=z v2)22y x Cxv x +=,22y x Cyv y +=,0=z v试求旋转角速度(C 为常数). 解:1)0=x ω,0=y ω,()c c c z =--=)(21ω2)0=x ω,0=y ω,()()0202021222222=⎪⎪⎭⎫ ⎝⎛+⋅--+⋅-=y x y cx y x x cy z ω2-9 气体在等截面管中作等温流动.试证明密度ρ与速度v 之间有关系式x 轴为管轴线标的目的,不计质量力.解:1)假设所研究的气体为完全气体,合适RT p ρ=2)等截面一维流动,合适0=∂∂xv由连续性方程:0)(=∂∂+∂∂x v t ρρ (1) 得0=∂∂+∂∂xv t ρρ (2) 对(2)求t 的偏导数:0222=∂∂∂+∂∂∂∂+∂∂t x v xt v t ρρρ (3)对x 的偏导数:0222=∂∂+∂∂∂x v x t ρρ 即 02222=∂∂+∂∂∂xv x t v ρρ (4) 由完全气体的一维运动方程:xpx v v t v ∂∂-=∂∂+∂∂ρ1 (5) 转化为: tvx v v t v x p ∂∂-=∂∂-∂∂-=∂∂ρρ (0=∂∂xv) 对x 求导:t vx x t v t v x x p ∂∂∂∂-=∂∂∂-∂∂∂∂-=∂∂ρρρ222 (0=∂∂xv) (6) 题目中: ()[]()xt v x v p v x RT v x ∂∂∂∂-∂∂=+∂∂=+∂∂ρρρρ22222222 (7)对比(3)和(4)发明(加上(7))()[]ρρRT v xt +∂∂=∂∂22222得证.第四章 流体动力学基础3-1 不成压缩理想流体作圆周运动,当a r ≤时,速度份量为yv x ω-=,x v y ω=,0=z v 当a r >时,速度份量为22r ya v x ω-=,22r x a v y ω=,0=z v 式中, 222y x r +=,设无穷远处的压强为∞p ,不计质量力.试求压强散布规律,并讨论.解:a r ≤时,y v x ω-=,x v y ω=,质点做等ω的旋转运动. 对二元流动,略去质量力的欧拉微分方程为:⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂+∂∂∂∂-=∂∂+∂∂ypy v v x v v xpy v v x v v y y y x x y x x ρρ11 (1)由速度散布得:0=∂∂x v x ,ω-=∂∂y v x,ω=∂∂x v y ,0=∂∂yv y 于是欧拉方程(1)成为:上二式辨别乘以dy dx ,,相加积分得:c v c r c y x p +=+=++=22)(2222222ρρωρω (2)在涡核鸿沟上0v v =,则c v p +=2200ρ (3)积分常数2200v p c ρ-= (4)于是旋涡中任一点的压强为[(4)代入(2)]:a r >时当a r >时,是无旋流动,由拉格朗日积分c v p =+22ρ当∞→r ,0=∞v ,∞=p p ,得∞=p c .于是22v p p ρ-=∞涡核鸿沟 220v p p ρ-=∞3-2 一通风机,如图所示,吸风量s m q 335.4=,吸风管直径m d 3.0=,空气的密度329.1m kg =ρ.试求:该通风机进口处的真空度V p (不计损失).题3-2图解:1-1断面处: v v gh p 水ρ=列0-0,1-1,B 、E21z z =,01=p ,s m d q v /57.613.04135.441222=⨯==ππ,01=v23.19381.9257.6122222-=⨯-=-=g v g p ρ,22221v p ρ-= Pa p 24458.929.123.1932-=⨯⨯-= (真空度)3-3 如图所示,有一管路,A 、B 两点的高差m z 1=∆,点A 处直径md A 25.0=,压强Pa p A 41084.7⨯=,点B处直径m d B 5.0=,压强Pa p B 4109.4⨯=,断面平均流速s m v B 2.1=.试求:断面平均流速A v 和管中水流标的目的.题3-3图解:s m d v Q BB /235.05.0412.141322=⨯⨯=⋅⋅=ππ 水流标的目的B A →.3-4 图所示为水泵吸水管装置,已知:管径m d 25.0=,水泵进口处的真空度Pa p V 4104⨯=,底阀的局部水头损失为gv 282,水泵进口以前的沿程水头损失为g v 22.02,弯管中局部水头损失为gv 23.02.试求:1)水泵的流量q ;2)管中1-1断面处的相对压强.题3-4图解:(1) 列水面,进口的B.E•h g v g p z g v g p z w +++=++222222221111αραρ (1) gv •g v g v g v h w 25.823.022.02822222222=++= (2) (2)代入(1)2248.004.10v +-=, s m v /5.12= (2) 列水面0-0,1-1处B.E3-5 一虹吸管,已知:m a 8.1=,m b 6.3=,由水池引水至C 端流入大气.若不计损失,设大气压的压强水头为m 10.求:1)管中流速及B 点的绝对压强.2)若B 点绝对压强的压强水头下降到m 24.0以下时,将产生汽化,设C 端坚持不动,问欲不产生汽化,a 不克不及超出多少?解:1) 列水面A,出口C 的B.E列水面A,顶点B 处的B.EPa p 52938-= (相对压强)Pa p 48387=绝 (绝对压强,Pa p a 101325=)2)列水面A,顶点B 处的B.E3-6 图为射流泵装置简图,利用喷嘴处的高速水流产生真空,从而将容器中流体吸入泵内,再与射流一起流至下游.若要求在喷嘴处产生真空压强水头为m 5.2,已知:m H 5.12=、mm d 501=、mm d 702=.求上游液面高?1=H (不计损失)题3-6图解:不计损失,不计抽吸后的流量增加(即抽吸开始时)列0-0,2-2断面的B.Egv H 2221=, 122gH v = 2211A v A v =,1212212gH d d v = (1)列0-0,1-1的B.E当m 41.1H 1=时,射流泵开始抽吸液体,其任务条件(不计损失)为m 41.1H 1>.3-7 如图所示,敞口水池中的水沿一截面变更的管路排出的质量流量s kg q m 14=,若mm d 1001=、mm d 752=、mm d 503=, 不计损失,求所需的水头H ,以及第二管段M 点的压强,并绘制压强水头线.解:s kg q m /14=化成体积流量: s m q /014.01000143==s m d q v /78.11.041014.0412211=⨯==ππ,s m v /17.32=, s m v /13.73=列0-0,3-3的B.E 列0-0,M 处的B.E3-8 如图所示,虹吸管直径cm d 101=,管路末端喷嘴直径cm d 52=,m a 3=,m b 5.4=.管中充满水流并由喷嘴射入大气,忽略摩擦,试求1、2、3、4点的表压强.题3-8图解:列0-0,出口2'-2'的B.Egv b 222'=, s m gb v /4.95.481.9222=⨯⨯==' 列0-0,1的B.Egv g p 2021+=ρ,s m d v d v /35.2104.952221222=⨯='= 同理Pa p p 3.276113-== 列0-0,2的B.Eg v g p a 2022++=ρ,s m d v d v /35.2104.952221222=⨯='= 列0-0,4的B.EkPa p 76.21-=,kPa p 2.322-=,kPa p 76.23-=,kPa p 4.411=3-9 如图所示,一射流在平面上以s m v 5=的速度冲击一斜置平板,射流与平板之间夹角060=α,射流断面积2008.0m A =,不计水流与平板之间的摩擦力.试求:1)垂直于平板的射流作用力. 2)流量1q 与2q 之比.题3-9图解:()x x x v v Q F 1122ββρ-=∑对本题就写为:(0.1=β)︒--=60cos 02211Qv v q v q (1)列入口,出口1;入口,出口2的B.E,可得v v v ==21,(1)式成为:解得:Q q 431=,Q q 412=,1/3/21=q q3-10 如图所示,水流经一水平弯管流入大气,已知:mm d 1001=,mm d 752=,s m v 232=,水的密度为31000m kg .求弯管上受到的力.(不计水头损失,不计重力)题3-10图解:(1) 列1-1,出口2-2的B.E•gv g p z g v g p z 2222222111++=++ρρ (1) 21z z =,?1=p ,02=p ,s m v /232=s m A v Q /10.0075.041233222=⨯⨯⨯==π,s m A Q v /9.121.04110.0211=⨯==π81.929.1281.92239810221⨯-⨯=p ,Pa p 1812951= 列所画控制体的动量方程:()()⎩⎨⎧-=∑-=∑y y y x x x v v Q F v v Q F 11221122ββρββρ 取0.121==ββ N F x 3.721=,N F y 1150=3-11 图所示的一洒水器,其流量恒定,s m q 34106-⨯=,每个喷嘴的面积20.1cm A =,臂长cm R 30=,不计阻力.求1)转速为多少?2)如不让它转动,应施加多大力矩?题3-11图解:1)出口相对流速 s m A Q w /31012106244=⨯⨯⨯==-- 取固定于地球坐标系:()1122v v Q Fββρ-=∑对系统而言 0=∑F ,R w v ωα-=sin 2,01=v代入动量方程:0sin =-R w ωα,s rad R w /07.73.045sin 3sin =︒⨯==αω 2)不转动动量方程两端R ⨯,得动量矩方程:()11122r v R v Q R Fββρ-=⨯∑ 取0.121==ββ,01=r ,w v =2或:1) 由于无阻力,则出口速度w 的切向份量=洒水器的圆周速度R w ωα=sin ,s rad Rw /07.7sin ==αω 3-12 图为一水泵的叶轮,其内径cm d 201=,外径cm d 402=,叶片宽度(即垂直于纸面标的目的)cm b 4=,水在叶轮入口处沿径向流入,在出口处与径向成030流出,已知质量流量s kg q m 92=,叶轮转速min 1450r n =.求水在叶轮入口与出口处的流速1v 、2v 及输入水泵的功率(不计损失).题3-12图解:1)如图示叶片进出口速度三角形进口:11u v m ⊥,11v v m =,01=u v 出口:22u v m ⊥,2230cos v v m =︒,︒=30cos 22m v v泵体积流量:s m q Q m/092.010003==s m S Q v m /68.3025.0092.011===,s m S Q v m /84.105.0092.022=== s m v v m /68.311==,s m v v m /126.260cos 22=︒=2)泵扬程:由泵基本方程式()11221u u v u v u gH -=, 01=u v , s m Dnu /369.30602==π, s m v v m u /062.160cot 22=︒⋅=功率kW gQH p 986.2==ρ第四章 相似理论与量纲阐发4-1 相似流动中,各物理量的比例系数是一个常数,它们是否都是同一个常数?又,是否各物理量的比例系数值都可以随便取吗?解:相似流动中,各物理量的比例是一个常数,其中l k ,v k ,ρk 是各自独立的,基本比例尺确定之后,其它一切物理量的比例尺都可以确定.基本比例尺之间的换算关系需满足相应的相似准则(如Fr,Re,Eu相似准则).线性比例尺可任意选择,视经济条件、场地等条件而定.4-2 何为决定性相似准数?如何选定决定性相似准数?解:若决定流动的作用力是粘性力、重力、压力,则只要满足粘性力、重力相似准则,压力相似准则数自动满足.所以,按照受力情况,辨别确定这一相似相似流动的相似准则数.对主要作用力为重力,则决定性相似准则数为Fr相似准则数,其余可不考虑,也能达到近似相似.对主要作用力为粘性力,则其决定性相似准则数为Re相似准则数.4-3 如何安插模型流动?如何将模型流动中测定的数据换算到原模型流动中去?解:1.模型的选择为了使模型和原型相似,除要几何相似外,各主要相似准则应满足,如Fr,Re相似准则.2.模型设计通常按照实验场地、经费情况、模型制作和量测条件,定出线性比例尺k,再以l k缩小原型的几何尺寸,得出模型的几何鸿沟.l选定模型相似准则,由选定的相似准则确定流速比尺及模型的流量.3.数据换算在模型上丈量的数据由各类比尺换算至原型中.4-4 何谓量纲?何为基本量纲?何谓导出量纲?在不成压缩流体流动问题中,基本量纲有哪几个?量纲阐发法的依据是什么?解:物理量单位的种类称量纲.物理量的量纲分为基本量纲和导出量纲,在流体力学中,长度、时间和质量的量纲][L 、][T 、][M 为基本量纲,在与温度有关的问题中,还要增加温度量纲○H .导出量纲有:][v ,][a ,][ρ,][F 等.量纲阐发法的依据是:量纲和谐性原理.4-5 用量纲阐发法时,把原有的n 个有量纲的物理量所组合的函数关系式转换成由m n i -=个无量纲量(用π暗示)组成的函数关系式.这“无量纲”实是由几个有量纲物理量组成的综合物理量.试写出以下这些无量纲量Fr .Re ,Eu ,Sr ,Ma ,L C (升力系数),P C (压强系数)辨别是由哪些物理量组成的?解:gl v Fr 2=,υvl =Re ,2v p Eu ρ=,vtl Sr =,cv Ma =,221∞=v LC L ρ,221∞=v DC D ρ,221∞∞-=v p p C p ρ4-6Re 数越大,意味着流动中粘性力相对于惯性力来说就越小.试解释为什么当管流中Re 数值很大时(相当于水力粗糙管流动),管内流动已进入了粘性自模区.解:当雷诺数超出某一数值后,由流动阻力实验可知,阻力系数不随Re 而变更,此时流动阻力的大小与Re 无关,这个流动规模称为自动模型区.若原型与模型流动都处于自动模型区,只需几何相似,不需Re 相等,就自动实现阻力相似.工程中许多明渠水流处于自模区.按弗劳德准则,设计的模型只要进入自模区,便同时满足阻力相似.4-7 水流自滚水坝顶下泄,流量s m q /323=,现取模型和原型的尺度比4/1/==p m l l l k ,问:模型流动中的流量m q 应取多大?又,若测得模型流动的坝顶水头m H m 5.0=,问:真实流动中的坝顶水头p H 有多大?解:用Fr 相似准则1)25l q k k =2)lH k k =41==p m p m l l H H m H H m p 25.044=⨯== 4-8 有一水库模型和实际水库的尺度比例是225/1,模型水库开闸放水4min 可泄空库水,问:真实水库将库水放空所需的时间p t 多大?解:用Fr 相似准则: 21lt k k =4-9 有一离心泵输送运动粘度s m p /108.1825-⨯=υ的油液,该泵转速min /2900r n p =,若采取叶轮直径为原型叶轮直径3/1的模型泵来做实验,模型流动中采取C ︒20的清水(s m m /10126-⨯=υ),问:所采取的模型的离心泵的转速m n 应取多大?解:采取Re 相似准则速度比尺:18833/1108.18/10156=⨯⨯==--l v k k k υ v n l k k k =,18893/11883===l v n k k k1889=p m n n ,min /139********r n m =⨯= 4-10 气流在圆管中流动的压降拟通过水流在有机玻璃管中实验得到.已知圆管中气流的s m v p /20=,m d p 5.0=,3/2.1m kg p =ρ,s m p /101526-⨯=υ;模型采取m d m 1.0=,3/1000m kg m =ρ,s m m /10126-⨯=υ.试确定:(1)模型流动中水流m υ;(2)若测得模型管流中2m 管流的压降2/5.2m kN p m =∆,问:气流通过20m 长管道的压降p p ∆有多大? 解:1)采取Re 相似准则:ppp mmm l v l v υυ=2)采取欧拉相似准则: 22pp p m m mv p v p ρρ∆=∆ 4-11Re 数是流速v ,物体特征长度l ,流体密度ρ,以及流体动力粘度μ这四个物理量的综合表达,试用π定理推出雷诺的表达式. 解:),,,(Re μρv l f =取l ,ρ,v 为基本量,则:γβαρμπvl =][ 3-ML ρ;][ L l ;][ 1-LT v ;][ 11--T ML μ解得:1=α,1=β,1=γvlvl υρμπ==, υvl =Re4-12 机翼的升力L F 和阻力D F 与机翼的平均气动弦长l ,机翼面积A ,遨游飞翔速度v ,冲角α,空气密度ρ,动力粘度μ,以及c 等因素有关.试用量纲阐发法求出与诸因素的函数关系式. 解:),,,,,,(C V A L f F μρα=各物理量的量纲为:L AvαρμC FL2L1-LT13-ML11--T ML1-LT2-MLT取l ,v ,ρ为基本量2=α,2=β,1=γρπ22v L A=21=α,01=β,01=γ2LA A =π 12=α,12=β,12=γvLρμπμ=03=α,13=β,03=γvC C =π 第六章 流动阻力与水头损失3-1 试判别以下两种情况下的流态:1)某管路的直径cm d 10=,通过流量m q 33104-⨯=的水,水温C T 020=.2)条件与上相同,但管中流过的是重燃油,运动粘度s m 2610150-⨯=ν.解:1)s m A Q v /51.01.04110423=⨯⨯==-π,s m /10126-⨯=υ 2320Re >紊流2)s m /1015026-⨯=υ3-2 1)水管的直径mm 10,管中水流流速s m v 2.0=,水温C T 010=,试判别其流态.2)若流速与水温同上,管径改成mm 30,管中流态又如何?3)流速与水温同上,管流由层流转变成湍流的直径多大? 解:水C T ︒=10,s m /10308.126-⨯=υ1)2320152910308.101.02.0Re 6<=⨯⨯==-υvd,层流2)2320458710308.103.02.0Re 6>=⨯⨯==-υvd ,湍流 3)υcc vd =Re ,mm m v d c c 15015.02.010308.12320Re 6==⨯⨯=⋅=-υ 3-3 一输水管直径mm d 250=,管长m l 200=,测得管壁的切应力2046m N =τ.试求:1)在m 200管长上的水头损失.2)在圆管中心和半径mm r 100=处的切应力. 解:1)如图示控制体2)Rr 0ττ=,0=r ,m r 1.0=时0046=⨯=R τ,2/8.362/25.01.046m N =⨯=τ 或d Lp τ4=∆,2/8.3620021.01472002 m N L r p =⨯⨯=∆=τ 3-4某输油管道由A点到B 点长m l 500=,测得A点的压强Pa p A 5103⨯=,B点压强Pa p B 5102⨯=,通过的流量s m q 3016.0=,已知油的运动粘度s m 2610100-⨯=ν,3930m kg =ρ.试求管径d 的大小.解:设流动为层流,则由流量公式:lpd Q μπ1284∆=υvd=Re ,s m d Qv /169.1132.041016.04122=⨯==ππ2320154310100132.0169.1Re 6<=⨯⨯=-,层流3-5 如图3-31所示,水平突然缩小管路的cm d 151=,cm d 102=,水的流量23m q =,用水银测压计测得cm h 8=,试求突然缩小的水头损失.图3-31 题3-5图解:列1-1,2-2的B.E第七章有压管路、孔口、管嘴的水力计算7-1如图所示的实验装置,用来测定管路的沿程阻力系数λ和当量粗糙度∆,已知:管径mm d 200=,管长m l 10=,水温C T 020=,测得流量s m q 315.0=,水银测压计读数m h 1.0=∆.试求:1)沿程阻力系数λ.2)管壁的当量粗糙度∆.题7-1图解:1)()()Pa gh p 6.123601.081.9100013600=⨯⨯-=-'=∆ρρgv d l h f 22λ=, 022.078.41081.922.026.1222=⨯⨯⨯⨯=⋅⋅=lv g d h f λ 2)尼古拉兹阻力平方区公式 或由00155.0/=∆→d λ,mm 31.0=∆7-2 在图所示的管路中,已知:管径cm d 10=,管长m l 20=,当量粗糙度mm 20.0=∆,圆形直角转弯半径cm R 10=,闸门相对开度6.0=d h ,水头m h 5=,水温C T 020=,试求管中流量q .题7-2图解:列0-0,1-1的B.Eλ:由d /∆查阻力平方区λ:002.010020.0==∆d ,023.0=λ ξ:5.0=进ξ,29.0=弯ξ(0.1=Rd),06.1=阀ξ7-3 如图所示,用一根普通旧铸铁管由A 水池引向B 水池,已知:管长m l 60=,管径mm d 200=.有一弯头,其弯曲半径m R 2=,有一阀门,相对开度5.0=d h ,当量粗糙度mm 6.0=∆,水温C T 020=.试求当水位差m z 3=时管中的流量q .题7-3图解:列上下水池水面的B.Eλ:003.02006.0==∆d ,026.0=λ ξ:5.0=进ξ,29.0=弯ξ,06.2=阀ξ,1=出ξ代入:7-4如图所示,水由具有固定水位的贮水池中沿直径mm d 100=的输水管流入大气.管路是由同样长度m l 50=的水平管段AB 和倾斜管段BC 组成,m h 21=,m h 252=.试问为了使输水管B 处的真空压强水头不超出m 7,阀门的损失系数ς应为多少?此时流量q 为多少?取035.0=λ,不计弯曲处损失.题7-4图解:列水池水面-出口C 的B.E()gv 235272阀ξ+= (1)列水池水面-B 处的B.E289.09v =s m v /17.3= (2)代入(1):7.17=阀ξs m Q /025.03=7-5 如图所示,要求包管自流式虹吸管中液体流量m q 3310-=,只计沿程损失,试确定:1)当m H2=,m l 44=,s m 2410-=ν,3900m kg =ρ时,为包管层流,d 应为多少?2)若在距进口2l 处断面A 上的极限真空的压强水头为m 4.5,输油管在上面贮油池中油面以上的最大允许超高max z 为多少?题7-15解:1)列上-下水面的B.Eg v d l H 22λ=,Re 64=λυvd =Re 241d Q v π=541014.9-⨯=d ,m d 055.0=或:层流流量公式 l pd Q μπ1284∆=,2=∆gpρ4128d gl pg Q υρπ∆=,442128gdlQ d πυ=, m d 055.0=校核:231Re = 2)列上水池水面-A 的B.Em gp4.5-=ρ,28.023164Re 64===λ,s m v /42.0= 7-6 如图所示,水从水箱沿着高m l 2=及直径mm d 40=的铅垂管路流入大气,不计管路的进口损失,取04.0=λ.试求:1)管路起始断面A 的压强与箱内所维持的水位h 之间的关系式,并求当h 为若干时,此断面绝对压强等于MPa 098.0(1个工程大气压).2)流量和管长l 的关系,并指出在怎样的水位h 时流量将不随l 而变更.题7-6图解:列0-0,1-1的B.Egv g v d l l h 2222+=+λ (1)列0-0,A 的B.Egv g p h A 22+=ρ (2)从(1)中解出gv 22,则为dll h g v λ++=122 (3)代入(2)得:要使Pa Pa p A 46108.910098.0⨯=⨯=(绝对压强),求?=h ,即0=A p (相对压强)代入065406540=-=h p A ,m h 1=2)由式(3)解出d l l h gv λ++=12dl lh g d vA Q λπ++==12412 要使Q 与l 无关,则l l h +=+1,m h 1=,此时7-7两容器用两段新的低碳钢管连接起来,已知:cm d 201=,m l 301=,cm d 302=,m l 602=,管1为锐边入口,管2上的阀门的阻力系数5.3=ς.当流量为s m q 32.0=时,求必须的总水头H .题7-7图解:列上、下水池水面的B 、Eλ:钢管 mm 05.0=∆,00025.0200/05.0/1==∆d查莫迪图中的Ⅱ区,得:014.01=λ,013.01=λξ:5.0=入口ξ,5.3=阀门ξ,56.11023011A A 22222122212====扩大⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-d d ξ,1=进口ξ 1v ,2v :7-8一水泵向如图所示的串联管路的B 、C 、D 点供水,D 点要求自由水头mh F 10=.已知:流量m q B 3015.0=,sm q C 301.0=,sm q D 33105-⨯=;管径mm d 2001=,mm d 1502=,mm d 1003=,管长m l 5001=,m l 4002=,m l 3003=.试求水泵出口A 点的压强水头()g p A ρ.题7-8图解:gv d l g v d l g v d l h g p f A 222233332222221111λλλρ+++= s m d Q v /96.02.04103.04122111=⨯==ππ,s m v /85.015.041015.022=⨯=π29.1882.195.252.310=+++=m7-9在总流量为s L q 25=的输水管中,接入两个并联管道.已知:cm d 101=,m l 5001=,mm 2.01=∆,cm d 152=,m l 9002=,mm 5.02=∆,试求沿此并联管道的流量分派以及在并联管道入口和出口间的水头损失. 解:002.01002.011==∆d ,022.01=λ (查莫迪图,按阻力平方区) 003.01505.022==∆d ,025.02=λ (同上)由2kQ H =,528d g l k πλ=(并联管21H H H +=,21Q Q Q +=) 对管路1:21215221512118.909811.014.381.9500022.088Q Q Q d g l H =⨯⨯⨯⨯==πλ (1) 对管路2:2121522152222)(9.24506)(15.014.381.9900025.08)(8Q Q Q Q Q Q d g l H -=-⨯⨯⨯⨯=-=πλ(2) (1)=(2)2121)(9.245068.90981Q Q Q -= 已知025.0=Q 则 s L s m Q Q Q /5.16/0165.00085.0025.0312==-=-=7-10 如图所示, 分叉管路自水库取水.已知:干管直径m d 8.0=,长度km l 5=,支管1的直径m d 6.01=,长度km l 101=,支管2的直径m d 5.02=,长度km l 152=,.管壁的粗糙度均为mm 0125.0=∆,遍地高程如图3-40所示.试求两支管的出流量1q 及2q .题7-10图 解:000016.08000125.0==∆d 009.0=λ 支管1:gv d l g v d l H 222111121λλ+= 2126.787.230v v += (1)支管2:gv d l g v d l H 222222122λλ+= 2228.1387.240v v += (2) 2139.056.0v v v += (3)(1)、(2)、(3)汇总⎪⎩⎪⎨⎧+=+=+=2122221239.056.08.1387.2406.787.230v v v v v v vs m v /75.11=,s m v /55.12=,s m v /51.13=7-11 如图所示,一水箱用隔板分红两部分A 和B .隔板上有一孔口,直径cm d 41=.在B 的底部有一圆柱形外伸管嘴,直径cm d 32=,管嘴长cm l 10=,水箱A 部分水深坚持恒定,m H 3=,孔口中心到箱底下的距离m h 5.01=.试求:1)水箱B 部分外水位稳定之后的2h 和3h .2)流出水箱的流量q .题7-11图解:孔口流量系数62.0=ϕ, 管嘴流量系数82.0=ϕ孔口流量=管嘴流量 ()212A H H g Q -⋅孔孔孔=ϕ(1) ()l H g Q +⋅22A 嘴嘴嘴=ϕ (2)(1)=(2))1.0(55.0)3(22+=-H H , m H 9.12=则m h H h 4.1122=-=,m h 1.13=7-12 已知:管道长m l 800=,管内水流流速s m v 10=,水的体积模量2901003.2m N K ⨯=,3310m kg =ρ,管径与管壁厚度之比100=e D ,水的体积模量与管壁弹性模量之比01.00=E K .当管端阀门全部封闭时间s t s 2=时,求水击压强p ∆.解:s m Eekd k C /4.100710001.0110001003.219=⨯+⨯=+=ρ。
6 • 12水管直径d= 10 cm 管中流速v 二1 m/s ?K 温为10°C .试判别流态口又流速等于多少时,流态将发生变化?解:查 P5 表 14 知 t=10r C T 1^1.31 xlO-em^/sRe -空"-―=.6> 104 > 2300紊流V 131XL0-6 R 轧二也二 2300二 2300x ]二 2丸0」引"" 二 O03m, v d 0*16 - 14有一矩形断面的小排水沟,水深15 cm ,底宽20 cm , 流速0.15 m/s ,水温1O C C ,试判别流态。
: R =—=―——二一 、-—_ _o o^H ;/ b + 2/i 0.2,22 汁uR 0.15x0.06 “F __r w + R" 一 二—品=^/0>575 緊流v 1 j1xiQ 6 - 16应用细管式粘度计测定油的粘浇系数。
已知细管直径d 二8nim .测量段长匸2 m .实测油的流MQ = 70 cm^/s ,水银压解: u = = — = 13 9c tn i s 901bh 0 2 0.15 差计读值h = 30cm ,油的密度尸=901kg/m 3o 试求油的运动粘変計和动力粘H 0 一. 4 • "0A, = zd 2g urJ d 2頁打型=422.8 ・咖心=2.9S K 1 Of% Mu(W*200V139139^0.008校核流态2乎-冷"璋层流.假设成立6・13油管[8径了5伽渺的密度901 kg/m3运动粘滯系数0,9 cm2/s , 在管轴位置安放连接水银压差计的皮托管,水银面高差hp= 20 mm ,试求油的流量。
此图有误解:恥込也厂】塑空怙心⑴撷H901n = ^IgAii = 71^ 6 > 0.282 =2.3 5tnJs设为层流v=u/2V 2 4 2 4校核心卩沿釜髓"层流6 - 23输水管道中设有阀门.已知管道直径为50 mu ,通过流量为3,34闻冰银压差计读值Ah = 150 m,沿程水头损失不计,试求阀门的局部阻力系数。
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()cSt St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-6 相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/s μ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s1-7 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1mm ,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-8 如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhg h hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-22-2 今有U 形管,内装水和四氯化碳(CCl 4),如图所示。
工程流体力学闻德课后习题答案 第五章 实际流体动力学基础5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。
试求切应力τxy 、τyx 和附加压应力p ´x 、p ´y 以及压应力p x 、p y 。
解:0y x xy yx u u x y ττμ∂⎛⎫∂==+= ⎪∂∂⎝⎭24xxu p a xμμ∂'=-=-∂,24y y u p a y μμ∂'=-=∂, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。
试求在这种流动情况下,两平板间的速度分布。
(请将d 0d px=时的这一流动与在第一章中讨论流体粘性时的流动相比较)解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。
由例5-1中的(11)式可得2d (1)2d h y p y yu v h x h h μ=-- (1) 当d 0d p x =时,y u v h=,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。
它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。
当d 0d px≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为(1)u y y yp v h h h=-- (2) 式中2d ()2d h pp v xμ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况.5-3 设明渠二维均匀(层流)流动,如图所示。
若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2xg u zhz ,单宽流量3sin 3gh q。
解:(1)因是恒定二维流动,0y xz u u u ttt,u u x =,0y u ,0zu ,由纳维——斯托克斯方程和连续性方程可得2210x x u p f x z μρρ∂∂-+=∂∂,10zp f z ρ∂-=∂,0x u x ∂=∂ sin xf g ,cos zf g 。
因是均匀流,压强分布与x 无关,0xp=∂∂,因此,纳维——斯托克斯方程可写成22sin 0x u g z μθρ∂+=∂,1cos 0pg zθρ∂--=∂ 因u x 只与z 方向有关,与x 无关,所以偏微分可改为全微分,则22d sin0d xu g z ,积分得1d sin d x u gz C z ρθμ-=+, 212sin 2x gu z C z C ρθμ=-++,当0z ,0x u ;h z =,d 0d x u z ,得1sin g C h ,0C 2=,2sin sin 2x g g u z hz ρρθθμμ=-+,2sin (2)2x g u zh z(2)2d sin (2)d 2h h x g qu zzh z z333sin ()sin 233g h gh h。
5-4 设有两艘靠得很近的小船,在河流中等速并列向前行驶,其平面位置,如图a 所示。
(1)试问两小船是越行越靠近,甚至相碰撞,还是越行越分离。
为什么?若可能要相碰撞,则应注意,并事先设法避免。
(2)设小船靠岸时,等速沿直线岸平行行驶,试问小船是越行越靠岸,还是越离岸,为什么?(3)设有一圆筒在水流中,其平面位置如图b 所示。
当圆筒按图中所示方向(即顺时针方向)作等角转速旋转,试问圆筒越流越靠近D 侧,还是C 侧,为什么?解:(1)取一通过两小船的过流断面,它与自由表面的交线上各点的22pu zg g应相等。
现两船间的流线较密,速度要增大些,压强要减小些,而两小船外侧的压强相对要大一些,致使将两小船推向靠近,越行越靠近,甚至可能要相碰撞。
事先应注意,并设法避免、预防。
(2)小船靠岸时,越行越靠近岸,理由基本上和上面(1)的相同。
(3)因水流具有粘性,圆筒旋转后使靠D 侧流速增大,压强减小,致使越流越靠近D 侧。
5-5 设有压圆管流(湍流),如图所示,已知过流断面上的流速分布为71max )(r yu u =,max u 为管轴处的最大流速。
试求断面平均流速v (以u max 表示)和动能修正系数α值。
解:设17n, 0max 02000d 1()2()d r n Au A Q yvur y yAAr r max max 20.8167(1)(2)u u n n 03332max 0max 00011d [()]2π()d 2π()3132r n Ay u Au r y y u r r n n 33d 1.058Au Av A5-6 设用一附有水银压差计的文丘里管测定倾斜管恒定水流的流量,如图所示。
已知d 1 =0.10m ,d 2 =0.05m ,压差计读数h =0.04m,文丘里管流量系数μ =0.98,试求流量Q 。
解:由伯努利方程得221112221222p v p v z z g g g gααρρ++=++ (1) 由连续性方程得222122210.05()()0.250.1d v v v v d === (2) 由压差计得 1122()p g z z z h p gz gh ρρρ+-++=++Hg1212()()p pz z g gρρ+-+()()g g h h g ρρρρρρ--==HgHg 1212()()p p z z g g ρρ+-+136001000()12.61000h h -== (3) 将式(2)(3)代入(1)得222221221222120.06250.9375()()2g 2g 2g 2g 2g p p v v v v v z z g g ρρ+-+=-=-=220.937512.62gv h =,212.60.0429.8m/s 3.246m/s 0.9375v ⨯⨯⨯== 2233322ππ0.05 3.246m /s 6.3710m /s 44-==⨯⨯=⨯d Q v330.98 6.2410m /s Q Q Q 实μ-===⨯5-7 设用一附有水银压差计的文丘里管测定铅垂管恒定水流流量,如图所示。
已知d 1 =0.10m ,d 2 =0.05m ,压差计读数h =0.04m,文丘里管流量系数µ =0.98,试求流量Q .请与习题5-6、例5-4比较,在相同的条件下,流量Q 与文丘里管倾斜角是否有关。
解:与习题5-6的解法相同,结果亦相同,(解略).它说明流量Q 与倾斜角无关. 5-8 利用文丘里管的喉道负压抽吸基坑中的积水,如图所示。
已知d 1 =50mm ,d 2 =100mm ,h =2m ,能量损失略去不计,试求管道中的流量至少应为多大,才能抽出基坑中的积水。
解:对过流断面1-1、2-2写伯努利方程,得2211222p v v g g gρ+= 221122p vv g g ρ-=2222424244218161611()()124192ππ9.8π0.10.05Q Q Q g d d =-=-=- 1ph gρ<-当时,积水能被抽出,则 2124192Q -<-332m /s 0.0127m /s 12419Q >=,30.0127m /s 所以管道中流量至少应为。
5-9 密度为860kg/m 3的液体,通过一喉道直径d 1 =250mm 的短渐扩管排入大气中,如图所示。
已知渐扩管排出口直径d 2 =750mm ,当地大气压强为92kPa ,液体的汽化压强(绝对压强)为5kPa ,能量损失略去不计,试求管中流量达到多大时,将在喉道发生液体的汽化。
解:对过流断面1-1,2-2写伯努利方程22112222p v p v g g g gρρ+=+ 222112()2p p v v ρ-=-222424244121616860111()16()2ππ2π0.250.75Q Q d d ρ=-=⨯⨯⨯- 32(925)10176252Q -⨯=30.703m /s Q =管道中流量大于0.703m 3/s 时,将在喉道发生液体的汽化。
5-10 设一虹吸管布置,如图所示。
已知虹吸管直径 d =150mm ,喷嘴出口直径d 2 =50mm ,水池水面面积很大,能量损失略去不计。
试求通过虹吸管的流量Q 和管A 、B 、C 、D 各点的压强值。
解:对过流断面1-1,2-2写伯努利方程,可得22400002v g ++=++28.85m/s v =,223322ππ0.058.85m /s 0.0174m /s 44==⨯⨯=Q d v由连续性方程得 222A B C D 250()8.85()m/s 0.983m/s 150d v v v v v d =====⨯=22222C A BD 0.983m 0.0493m 222229.8v v v v g g g g =====⨯ 对过流断面1-1、A -A 写伯努利方程,可得A40030.0493p g ++=-+ρ+ 3229.810(430.0493)N/m 68.12kN/m =⨯⨯+-=A p同上,可得20.48kN/m =-B p ,220.08kN/m =-C p ,238.72kN/m =D p5-11 设有一实验装置,如图所示。
已知当闸阀关闭时,点A 处的压力表读数为27.44×104Pa (相对压强);闸阀开启后,压力表读数为5.88×104Pa ;水管直径d =0.012m ,水箱水面面积很大,能量损失略去不计,试求通过圆管的流量Q 。
解:由题意得,水箱高度是ρAp g。
对过流断面1-1,2-2,写伯努利方程可得: 220002ρρ++=++A p p v g g g4423327.4410 5.88109.8109.81029.8v ⨯⨯-=⨯⨯⨯ 20.77m/s v =2333π0.01220.77m /s 2.3510m /s 4Q Av -==⨯⨯=⨯5-12 设有一管路,如图所示。
已知A 点处的管径d A =0.2m ,压强p A =70kPa ;B 点处的管径d B =0.4m ,压强p B =40 kPa ,流速v B =1m/s ;A 、B 两点间的高程差△z =1m 。
试判别A 、B 两点间的水流方向,并求出其间的能量损失w AB h 。
解:220.41m/s 4m/s 0.2==⨯=B A B A d v v d ()(),22w 22ρρ++=+++A A B B A B AB P v p v z z h g g g g 3232w 3370104 4.010119.81029.89.81029.8⨯⨯+=+++⨯⨯⨯⨯AB h 11 1122w 7.140.821 4.080.05+=+++AB hw 2.83m =AB h H 2O 水流由A 点流向B 点。