高数中求极限的16种方法
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
千里之行,始于足下。
极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。
在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。
本文将对极限求解的方法进行总结与归纳。
1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。
常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。
- 函数极限:幂函数、指数函数、对数函数、三角函数等。
2. 替换法:替换法是求解极限问题时常用的一种方法。
通过将极限问题中的变量进行替换,使得计算变得更加简洁。
常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。
3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。
通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。
常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。
4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。
施瓦茨不等式是求解极限问题中常用的一种方法。
它可以用来估量两个函数的内积,从而得到某些函数的极限。
施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。
常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。
高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。
设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。
极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。
要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。
常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。
二、解决极限的方法如下:1.等价无穷小代换。
只能在乘除时候使用。
2.XXX(L'Hospital)法则。
它的使用有严格的使用前提。
首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。
另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。
洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
通分之后,就能变成(1)中的形式了。
即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。
千里之行,始于足下。
16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。
在求极限的过程中,有很多种不同的方法可以使用。
本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。
1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。
这种方法适用于对于给定的变量值函数值可以直接计算的状况。
2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。
3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。
4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。
5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。
6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。
7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。
第1页/共3页锲而不舍,金石可镂。
8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。
9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。
这个法则对于解决0/0和∞/∞型的极限问题格外有用。
10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。
11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。
12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。
13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。
14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。
16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。
本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。
I. 无穷小量法无穷小量法是求解极限最常见的方法之一。
它的基本思想是将待求极限转化为无穷小量之间的比较。
下面通过一个例题来说明这个方法。
例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。
根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。
因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。
故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。
下面通过一个例题来说明夹逼法的思想。
例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。
然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。
也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。
根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。
故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。
下面通过一个例题来说明泰勒展开法的应用。
例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。
详解高数求极限的方法极限主要包括数列极限和函数极限,两者的求法大同小异,如果分开讨论,比较麻烦,其实数列也可以看作是以正整数n为自变量的函数,所以它们也是可以综合起来的。
接下来介绍求极限的常用方法:一、求极限最常用到的方法,还是利用极限的四则运算法则。
它是基于一些常见的极限,再根据下面的法则求极限,包括:1、相反的收敛数列极限相反;2、互为倒数的收敛数列极限也互为倒数,其中除数不为零;3、和差积商的极限等于极限的和差积商,前提是这些数列的极限都存在,且作为除数的数列及极限非0;4、收敛的正项数列的幂的极限等于极限的幂,不论是乘方还是开方;5、以及收敛数列的绝对值收敛于极限的绝对值等。
二、利用极限的单调有界定理。
其中有界性是数列收敛的必要条件,如果数列无界,就一定发散,但有界数列却不一定收敛。
三、利用两个常见的极限求极限,就是当x趋于0时,sinx/x 的极限和1的无穷次方类型的极限。
四、等价无穷小替换,要熟记常见的等价无穷小的类型。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!五、用洛必达法则,针对0/0型或无穷/无穷型,对分子分母同时求导后求极限的方法。
主要分三种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方:对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)六、利用泰勒公式求极限的方法。
(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助。
16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
2020考研高数求极限的16个方法及常考题型2017考研高数求极限的16个方法及常考题型极限可以说是高数的重点,是每年都必考的一个知识点,复习高数的时候,求极限大家一定要多理解多做题,下面总结了16类求极限的方法及一些常考察的题型,把它们掌握了,相信对于求极限的问题已经基本可以解决了。
解决极限的方法如下:1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
考研数学:求极限的16种方法1500字求极限是数学中一个重要的概念和技巧,经常会在高等数学、微积分、函数分析等课程中出现。
在考研数学中,求极限也是一个比较常见的题型,有时候会要求借助不同的方法来求解极限。
以下是16种常见的求极限的方法:方法1:代入法代入法是求极限中最基本的方法之一,特别适用于极限问题中有指定点的情况。
代入的点可以是有限点或无限点,通过将极限值代入原函数中,来求得极限。
方法2:夹逼定理夹逼定理也是一种常用的方法,适用于需要用两个已知函数夹住待求函数的情况。
通过取两个已知函数逐渐逼近待求函数,来求得极限。
方法3:集中取值法集中取值法是一种常用的方法,适用于需要对待求函数的取值进行讨论的情况。
通过将待求函数的取值限制在一个区间内,来求得极限。
方法4:变量代换法变量代换法是一种常用的方法,适用于需要通过变换变量来求得极限的情况。
通过进行恰当的变换变量,将原极限转化为另一个更容易求解的极限。
方法5:公共因子法公共因子法是一种常用的方法,适用于需要将待求函数的表达式进行分解的情况。
通过进行恰当的分解,将待求函数表达式中的公共因子提取出来,来求得极限。
方法6:三角函数极限法三角函数极限法是一种常用的方法,适用于需要进行三角函数的极限转化的情况。
通过使用三角函数的性质和公式,将原极限转化为更容易求解的三角函数极限。
方法7:幂函数极限法幂函数极限法是一种常用的方法,适用于需要进行幂函数的极限转化的情况。
通过使用幂函数的性质和公式,将原极限转化为更容易求解的幂函数极限。
方法8:自然对数极限法自然对数极限法是一种常用的方法,适用于需要进行自然对数的极限转化的情况。
通过使用自然对数的性质和公式,将原极限转化为更容易求解的自然对数极限。
方法9:常数e极限法常数e极限法是一种常用的方法,适用于需要进行常数e的极限转化的情况。
通过使用常数e的性质和公式,将原极限转化为更容易求解的常数e极限。
方法10:斜率法斜率法是一种常用的方法,适用于需要进行斜率的极限转化的情况。
大一高数求极限的方法总结大一高等数学中,求极限是一个非常重要的概念和技巧。
在学习求极限的过程中,我们需要掌握一些基本的方法和技巧。
下面是对一些常用的求极限方法进行总结。
一、无穷小量代换法当我们在求一个函数的极限时,可以将函数中的无穷小量用一个新的无穷小量来代替,从而简化计算。
例如,当求极限lim(x->0)(sinx)/x时,可以将sinx用x来代替,即lim(x->0)x/x=1二、夹逼定理夹逼定理是一种非常常用的求极限方法。
当我们无法直接计算一个函数的极限时,可以通过找到两个已知的函数,使它们的极限分别为L和L’,并且夹在待求函数的极限值周围时,我们可以得出待求函数的极限也为L。
三、洛必达法则洛必达法则是一种非常常用的求导法则,它可以用来求解一些不定型的极限。
当我们在计算一个函数的极限时,如果得到的结果为0/0或者∞/∞的形式,那么我们可以使用洛必达法则来求解极限。
具体做法是对分子和分母同时求导,并再次计算极限,直到得到一个有限的值。
四、泰勒展开法当我们计算一些函数在一点的极限时,可以使用泰勒展开来逼近函数的值。
泰勒展开是将一个函数表示为无限项的级数,通过截取有限项来逼近函数的值。
这样可以大大简化我们的计算过程。
五、换元法有时候我们可以通过进行一些变量的替换来改变函数的形式,从而更容易求解极限。
例如,当我们计算lim(x->0)(3^(2x)-2^x)时,可以令y=2^x,然后再进行计算,就可以得到较为简单的表达式。
六、分数的极限当我们计算一个函数的极限时,如果得到的结果为一个分数形式,可以进行有理化来方便我们的计算。
有理化的方法有分子分母同时乘以一些适当的因式、差化积等。
七、级数化积当我们计算一个函数的极限时,通常可以将函数展开为一个级数,然后进行计算。
例如,当我们计算lim(x->0)(e^x-1)/x时,可以将e^x展开为一个级数,再进行计算。
八、寻找特殊点有时候我们可以通过找到一些特定的点来计算极限。
高数中求极限的16种方法极限的保号性很重要就是说在一定区间内函数的正负与极限一致解决极限的方法如下:1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0LHopital 法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4 取大头原则最大项除分子分母!!!!!!!!!!!面对无穷大比上无穷大形式的解决办法看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。
其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。
本文将介绍求极限的常用方法,并提供相应的例题和详解。
一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。
具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。
2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。
3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。
则可以得到 lim[f(x)] = lim[g(x)] = A。
下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。
解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。
则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。
二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。
具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。
其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。
高数求数列极限的方法
求解数列的极限通常可以采用以下方法:
1. 通过数列的通项公式来进行推导。
如果能够找到数列的通项公式,那么可以直接将自变量趋于无穷大或其他特定值,从而得到极限值。
2. 利用数列的性质来进行分析。
有些数列具有特定的性质,比如递推关系、对称性、特定的递增递减性等,可以利用这些性质来推导数列的极限。
3. 使用重要的极限定理。
比如夹逼定理、单调有界数列极限定理、柯西收敛原理等。
这些定理可以用于判断数列是否有极限,以及求得极限值。
4. 利用等比数列或等差数列的性质。
对于等比数列和等差数列,常常可以通过求和公式或差分公式来求得数列的极限。
5. 运用洛必达法则。
当遇到不定型的极限表达式时,可以利用洛必达法则将其转化为极限值已知的形式,从而求得极限。
需要注意的是,求解数列极限的方法并不限于以上几种,具体问题需要具体分析,并根据数列的特点选择相应的方法。
高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((3)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件。
是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。
另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用 (2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
高数中求极限的16种方法——好东西
首先对极限的总结如下:
极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致
一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)
二、求极限的方法如下:
1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)
2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)
首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0
注意:罗比达法则分为3种情况
0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)
3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)
E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助
4.面对无穷大比上无穷大形式的解决办法
取大头原则,最大项除分子分母!!!!!!!!!!!
5.无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!
6.夹逼定理(主要对付数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7.等比等差数列公式应用(对付数列极限,q绝对值符号要小于1)
8.各项的拆分相加(来消掉中间的大多数,对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9.求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn 的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化
10.两个重要极限的应用。
第一个是X趋近0时候的sinx与x比值。
第二个是趋近无穷大无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用第2 个重要极限)
11.还有个方法,非常方便的方法,就是当趋近于无穷大,不同函数趋近于无穷的
速度不一样!
x的x次方>x!>指数函数>幂数函数>对数函数(画图也能看出速率的快慢) !!!!!! 当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12. 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13.假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的
14.还有对付数列极限,走投无路的时候可以考虑转化为定积分。
一般是从0到
1的形式。
15.单调有界的性质
对付递推数列时候使用,证明单调性!!!!!!
16直接使用求导数的定义来求极限,
(一般都是x趋近于0时候,在分子上f(x加减个值)加减f(x)的形式,看见了要注意)
(当题目中告诉你F(0)=0时候 f(0)导数=0的时候就是暗示你一定要用导数定义!!!!)
一,求极限的方法横向总结:
1.带根式的分式或简单根式加减法求极限:
1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上)
2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到
2.分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。
3.等差数列与等比数列和求极限:用求和公式。
4.分母是乘积分子是相同常数的n项的和求极限:列项求和
5.分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。
6.运用重要极限求极限(基本)。
7.乘除法中用等价无穷小量求极限。
8.函数在一点处连续时,函数的极限等于极限的函数。
9.常数比0型求极限:先求倒数的极限。
10.根号套根号型:约分,注意别约错了。
11.三角函数的加减求极限:用三角函数公式,将sin化cos
二,求极限的方法纵向总结:
1.未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。
2.未知数趋近于0或无穷:1)将x放在相同的位置
2)用无穷小量与有界变量的乘积
3)2个重要极限
4)分式解法(上述)。