当前位置:文档之家› 机组真空下降的原因分析与处理方法

机组真空下降的原因分析与处理方法

机组真空下降的原因分析与处理方法
机组真空下降的原因分析与处理方法

机组真空下降的原因分析与处理方法

前言:

汽轮机的排汽进入凝汽器汽侧,大流量的循环水送入凝结器铜管内侧,通过铜管内循环水与排汽换热把排汽的热量带走,使排汽凝结成水,其比容急剧减小(约减小到原来的三万分之一),因此原为蒸汽所占的空间便形成了真空。而不凝结气体则通过真空泵抽出,从而起到维持真空的作用。

我厂曾经多次发生凝汽器的真空下降的异常情况,给汽轮机组的安全经济运行造成一定的影响,真空每下降1Kpa将增加约3g/kw.h 煤耗;各机组都不同程度发生过凝汽器真空下降的异常情况,只是真空下降的最低数值不同。造成凝汽器真空下降的原因较多,现在就生产实际工作中遇到的造成凝汽器真空下降常见的原因与处理方法介绍给大家仅供参考、交流。

一、在汽轮机组启动过程中,造成凝汽器真空下降的原因:

1、汽轮机轴封压力不正常

(1)、原因:在机组启动过程中,若轴封供汽压力不正常,则凝汽器真空值会缓慢下降,当轴封压力低时,汽轮机高、低压缸的前后轴封会因压力不足而导致轴封处倒拉空气进入汽缸内,使汽轮机的排汽缸温度升高,凝汽器真空下降。而造成轴封压力低的原因可能是轴封压力调节阀故障;轴封供汽系统上的阀门未开或开度不足。

(2)、象征:真空表指示值下降、汽轮机的排汽缸温度的指示值上升。(3)、处理:当确证为轴封供汽压力不足造成凝汽器真空为缓慢下降

时,值班员必须立即检查轴封压力、汽源是否正常,在一般情况下,只需要将轴封压力调至正常值即可。若是因轴封汽源本身压力不足,则应立即切换轴封汽源,保证轴封压在正常范围内即可,若是无效,则应该进行其它方面检查工作。

2、凝汽器热水井水位升高

(1)、原因:凝汽器的热水井水位过高时,淹没凝汽器铜管或者凝汽器的抽汽口,则导致凝汽器的内部工况发生变化,即热交换效果下降,这时真空将会缓慢下降。而造成凝汽器的热水井水位升高的原因可能是a、凝结水泵故障;b除盐水补水量过大;c、凝汽器铜管泄漏;d、凝结水启动放水排水不畅;e、凝结水系统上的阀门开度不足造成的。(2)、象征:真空表指示下降,汽轮机的排汽缸温度上升、而凝汽器水位计、就地水位计水位也会上升。

(3)、处理:当确证为凝汽器的热水井水位升高造成凝汽器真空为缓慢下降时,值班员必须立即检查究竟是什么原因使凝汽器水位上升,迅速想办法将凝汽器水位降至正常水位值。

3、凝汽器循环水量不足

(1)、原因:当循环水量不足时,汽轮机产生的泛汽在凝结器中被冷却的量将减小,进而使排汽缸温度上升,凝汽器真空下降,造成循环水量不足的原因可能是循环水泵发生故障;循环水进水间水位低引起循环水泵汽化,使循环水量不足;机组凝汽器两侧的进、出口电动门未开到位;在凝汽器通循环水时,系统内的空气未排完。

(2)、象征:真空表指示值会下降,汽轮机的排汽缸温度的指示值上

升,凝汽器循环水的进、出口压力会波动,凝汽器循环水的进、出口水温度会发生变化(进口温度正常,出口温度升高)。

(3)、处理:当确证为凝汽器循环水量不足造成凝汽器真空为缓慢下降时,值班员应迅速检查循泵运行是否正常,进水间水位是否正常。迅速到就地检查机组凝汽器的两侧进、出口电动门是否已经开到位,两侧进、出口压力是否波动(若是波动则对其进行排空气工作,直至空气管排出水为止)。

4、处于负压区域内的阀门状态误开(或误关)

(1)、原因:由于机组启动过程中,人员操作量大,在此过程中难免会发生操作漏项或是误操作的情况,这是造成此类真空下降的主要原因。

(2)、象征:真空下降、汽轮机的排汽缸温度升高,发生的时间之前,值班人员正好完成与真空系统有关操作项目。

(3)、处理:当确证为处于负压区域内的阀门状态误开(或误关)造成凝汽器真空为缓慢下降时,值班人员应迅速将刚才所进行过的操作恢复即可。

5、轴封加热器满水或无水

(1)、原因:在机组启动过程中,由于调整不当或是轴封系统本身的原因使轴封加热器满水或是无水,将导致凝结器真空下降,造成轴封加热器满水或是无水的原因可能是轴封加热器铜管泄漏;轴封加热器至凝汽器热水井的疏水门开度不足,或是疏水门故障;轴封加热器汽侧进、出口门开度不足或旁路门被误开启,导致疏水量减少,使轴封

加热器无水。

(2)、象征:真空表指示值会下降,轴加无负压,汽轮机的排汽缸温度的指示值上升,若是轴封加热器满水,则汽轮机的高、低压缸前、后轴封处会大量冒白汽,而此时轴封压力会上升,严重时,造成轴封加热器的回汽管积水,使轴封加热器工况发生变化,导致真空下降;若是轴封加热器无水,则大量的轴封用汽在轴封加热器中未进行热交换就直接排入凝汽器内,增加了凝汽器的热负荷,导致真空下降。(3)、处理:当确证为轴封加热器满水或无水造成凝汽器真空为缓慢下降时,迅速通知值班员检查轴封加热器的水位是否正常,若是满水则开大轴封加热器疏水阀门,同时检查注水门是否关闭,开启回汽管疏水阀排除积水,调整轴加水位至1/2。若是轴封加热器无水,则先进行注水,将轴封加热器的水位调至1/2即可。

在汽轮机机组启动过程中,经常碰到的凝汽器真空缓慢下降的原因主要就是这几种。当然,这不是绝对的,但是应该遵循这样的原则:当凝汽器真空缓慢下降时,值班员应根据有关仪表,象征,工况进行综合判断,然后进行相应的处理。

二、在汽轮机组正常运行中,造成凝汽器真空缓慢下降的原因:

1、射水池的水温升高,抽气器工作失常

(1)、原因:在汽轮机机组运行过程中,由于季节的变化或是其它因素使射水池的水温升高,在抽气器的喷嘴处可能会发生汽化现象,从而使抽气工作失常,凝结器中的不能凝结气体不能及时排出,导致真空下降。造成射水池水温上升的原因可能是夏季环境温度引影响;热

力系统内有热源排入射水池内,使水温升高。

(2)、象征:凝汽器的真空值与某时期相比较有所下降,或早晚间真空值存在差值。若用测温仪或用手摸射水池水时,水温偏高,射水抽气器的下水管的温度也同样偏高。

(3)、处理:当确证为射水池水温升高造成凝汽器真空缓慢下降时,适当开启射水泵进口管上的补水门进行射水池换水工作,降低水温。必要时检查射水池溢放水管是否畅通,即可。

2、轴封加热器回汽管积水严重

(1)、原因:当轴封加热器回汽管积水时,使回汽的通流面积减少,轴封供汽系统工作失常,导致真空下降。造成轴封加热器回汽管积水的原因可能是轴封加热器水位升高;注水门忘记关闭;轴封蒸汽母管带水。

(2)、象征:当回汽管积水时,轴封加热器排汽管的外壁温度偏低,严重时,高、低压缸前后轴封处会大量冒白汽,轴加风机壳体冒水。(3)、当确证为轴封加热器回汽管积水造成凝结器真空缓慢下降时,机组人员应迅速地将轴封回汽母管上的放水门全开,进行排水工作,直至水排完为止,调整好轴加水位。

3、凝结水位升高

(1)、原因:在正常运行中,造成机组的凝结器水位升高的原因可能是除盐水补水量过大;凝结器铜管泄漏;凝结水再循环电动门误开或关不到位;低压加热器疏水泵出口压力过高和除氧器压力过高(排挤凝结水)。

(2)、象征:凝汽器水位计指示升高,运行的凝结水泵电流升高。凝结水过冷度增大。

(3)、处理:当确证为凝结水位升高造成凝结器真空缓慢下降时,值班员应迅速查明造成凝结器水位升高的原因,将凝结器水位降低至正常值即可。

4、运行人员或检修人员工作过程中发生失误、造成凝结器真空缓慢下降

(1)、原因:由于运行人员或检修人员在工作过程中发生失误,使凝汽器真空缓慢或急剧下降,造成凝汽器真空缓慢或急剧下降的原因可能是运行人员在正常操作中对系统或是其它原因误开、误关与真空系统有关的阀门;检修人员在进行与真空系统有关的检修工作时,擅自误开、误关阀门。

(2)、象征:类似的情况发生时,凝汽器真空表的指示值下降速度会出现两种象征:①、凝汽器真空缓慢下降,汽轮机的排汽缸温度上升;

②、凝汽器真空急剧下降时,汽轮机的排汽缸温度上升较快,机组运转声突变;若是误关循环水系统的阀门,则机组的凝汽器循环水压力将会发生变化。

(3)、处理:当确证运行人员或检修人员工作失误造成凝汽器真空缓慢或急剧下降时,值班人员应沉着冷静地迅速将事发前所进行的操作全部恢复。若是判断为检修人员在时进行检修工作造成的,则迅速到就地将检修人员擅自误开、误关阀门的阀门关闭即可。

5、在做与真空系统有关的安全措施时,凝结器真空缓慢下降

(1)、原因:在做与真空系统有关的安全措施的过程中,当真空系统阀门关不严密的因素存在时,凝汽器真空缓慢下降,造成的原因可能是处于负压区的设备或阀门有空气被拉入凝结器内,使真空缓慢下降。

(2)、象征:凝结器真空缓慢下降,汽轮机的排汽缸温度上升。(3)、处理:当确证为是因做安全措施而引起凝结器真空缓慢下降时,值班员应迅速将所有的安全措施恢复即可。

6、运行中机组低压加热器汽侧无水

(1)、原因:机组正常运行中,由于人员疏忽大意或是工况发生变化时未能及时调整低压加热器的水位,导致低压加热器无水位运行,这时由于低压加热器无水位,抽汽未能进行热交换就直接排向凝结器热水井,使凝结器热负荷增大,真空下降。

(2)、象征:凝汽器真空缓慢下降,汽轮机的排汽缸温度上升,就地检查可以发现运行中的低压加热器水位计无水位指示、端差加大。(3)、处理:当确证为是运行中机组低压加热器无水导致凝结器真空缓慢下降时,值班员只要将低压加热器调整至有水位显示即可。

三、在汽轮机组事故处理中,造成凝汽器真空缓慢下降的原因:

1、轴封压力过低

(1)、原因:当机组发生事故时,由于多种因素会导致轴封压力下降。例如,单机运行或两台机组运行时,在事故处理过程中由于处理不当,造成轴封压力下降压力下降,使凝汽器真空缓慢下降。

(2)、象征:凝汽器真空缓慢下降,汽轮机的排汽缸温度上升,与轴

封压力有关的表计指示值下降。

(3)、处理:

按下列几种情况进行处理:

①、单机运行发生事故的时,若发生轴封压力下降,凝结器真空缓慢下降,这时应将轴封汽源切换至冷段供给,以保证轴封压力正常。②、两台机组运行时,若壹台机组发生事故,则视除氧器的压力高、低而决定是否将轴封汽源切换至辅汽供应,以保证轴封压力正常。2、凝结器热水井满水

(1)、原因:由于在事故状态下,设备或人员的因素会使凝汽器热水井满水,而造成满水的原因可是凝结水泵跳闸;凝结水泵跳闸之后因逆止门关不严,使凝结水系统中的倒回热水井造成满水;除氧器补水量过大。

(2)、象征:凝结器真空缓慢下降,汽轮机的排汽缸温度上升,凝汽器水位计的指示值上升。

(3)、处理:当确证为凝汽器热水井满水造成凝汽器真空缓慢下降时,值班员应迅速想法将凝结器热水井的水位降至正常水位。

3、高压轴封漏汽至六抽手动门调整不及时

(1)、原因:当机组发生事故时,由于主蒸汽流量变化,轴封漏汽量发生变化,使汽轮机高压轴封处倒拉空气进入凝汽器,真空下降。(2)、象征:凝汽器真空缓慢下降,汽轮机的排汽缸温度上升。(3)、处理:当确证为高压轴封漏汽至六抽手动门调整不及时造成凝汽器真空缓慢下降时,当班人员迅速到就地适当关小高压轴封漏汽至

六抽手动门即可。

4、除盐水系统故障,或在除盐水补水管路、阀门检修工作过程中造成凝汽器真空缓慢下降的原因

在正常运中,也曾发生过因除盐水系统故障而造成凝汽器真空缓慢下降的异常现象。

(1)、原因:这种情况大都是除盐水泵跳闸;除盐水系统阀门误关(或故障);进行检修工作时引起的。空气被拉入凝汽器所致,前提条件是除氧器除盐水补水调节伐进出及调节伐均处于开启位置。

(2)、象征:凝汽器真空缓慢或急剧下降,汽轮机的排汽缸温度上升。(3)、处理:当确证为除盐水系统故障,或在除盐水补水管路上检修工作,应速汇值长,立即到就地查看,必要时关闭有关阀门即可。以上为机组各工况下较为常见的凝汽器真空缓慢下降的原因、象征与处理方法。当然,这些不是绝对原因、象征与处理方法,这就需要我们大家在工作的过程中,不断地总结和提高各方面的知识与技能。

四、提高凝汽器真空的措施:

1、加强循环水冷却塔的运行维护,发现填料和配水管损坏时及时联系检修人员进行更换和修补。利用小修时及时进行水塔损坏填料的更换和配水管断裂处的修补,消除部分区域淋水密度过大造成的效率降低,从而提高冷却塔的效率。

2、合理进行循环水泵的调度,根据气候变化适时调整循环水泵的运行台数,保证了循环水量的正常。

3、减小凝汽器端差,保证胶球清洗系统效率,提高凝汽器真空。

4、提高汽轮机真空系统严密性,汽轮机真空系统漏入过量空气,将造成铜管表面形成一层气膜,降低凝汽器铜管换热系数,另外,容易造成真空泵超负荷,从而影响凝汽器真空。

5、保证循环水水质,防止凝汽器管束结垢。根据化学监督的数据及时进行循环水浓缩倍率的调整。

6、提高真空泵的工作效率,防止不凝结气体无法及时排出而影响机组真空;

干式真空泵常见故障及解决办法

干式真空泵常见故障及解决办法 干式真空泵需要在纯粹的容积水平上运行,且与旋片式真空泵相比,罗茨泵不具有内部压缩功能。它能够对排气压力进行压缩。与旋片式真空泵相比,与介质接触的所有部件都是无油的,而且,所有适用于罗茨泵的部件同样适用于干式真空泵。干式真空泵常见故障及解决办法 1、在极限压力下运行 对于在最大差压下运行的罗茨泵,在对其进行冷却前,不建议将其直接置于极限压力下运行。在极限压力下,由于真空泵转速过快,最小或零气体通过量不会通过气体或外壳表面散发任何热量。由于温度的突然升高,转子和外壳之间的的气隙太小,泵会停止转动。在严重情况下,这会导致真空泵完全失效。 2、不当的温度波动 在罗茨泵塞仍然很热的情况下,环境温度突然大幅度下降将会造成泵壳收缩,导致泵停止转动。如图1所示,这在极限压力下作业时会尤其重要。因此,必须不惜一切代价避免环境温度的突变。另外,操作人员一定要注意不要突然打开附近的百叶窗、其他门等,特别是在冬天。 另外,对于那些自立式泵,要将其放在屋檐或天蓬下,以免其受到雨淋。如果在发生火灾时,将水直接对准泵,泵壳可能会爆炸,尤其是那些由灰口铸铁制作的壳体更容易发生爆炸。球墨铸铁版的泵,由于其材料的较高强度,更适合于承受这样的热波动。 3、温度控制 如果将罗茨泵以其最大差压运行,则需要在排气端安装一个温度传感器,用以防止过热及由此产生的任何损害。这会在限定的温度时产生警报,并且当其达到最大允许气温时,将会关闭泵。 4、快速抽空 在应用中,必须实现几秒钟的抽取周期,因此操作人员必须要确保罗茨泵和前级泵的比例为1:2。保证这一比例非常的必要,因为前级泵以100 hPa压强将空气泵出占用了大部分的泵出时间,而罗茨泵只需从10 hPa起的压力就可以有效运转。因此,前级泵尺寸必须相应地大一些才行。 5、启动泵 如果使用了多级泵站或者多个并行操作的真空泵组合,那就有必要以交错的间隔来启动这些泵,最先要启动的是大气泵,这样可以避免过度的电力峰值以及保护高成本的断路器。这通过计时元件可很容易地在控制器和PLC中实现。还有一种方法,就是使用一个变频器,缓慢地启动泵。 6、液体侵入

各种真空机组.doc

各种真空机组 罗茨滑阀真空机组 罗茨滑阀真空机组是以罗茨泵为主,滑阀泵为前级泵的中高真空获得设备。全套机组由罗茨泵、滑阀泵、管道(含不锈钢波纹管)、阀门电拉箱等组成。此型号机组可以分为2大类,由H型滑阀泵与罗茨泵组成的真空机组和引进美国KINNEY技术生产的KT,KDH系列滑阀泵与无腐蚀性,对泵油不起化学反应的气体,在开气阀的条件下可抽除少量可凝性气体。后者真空机组还是有KT,KDH系列滑阀泵在13300pa情况下长时间的运转、节能、无振动,占地面积小等优点。 机组广泛应用于真空冶炼、铜液脱气、真空干燥、真空浸透,真空浓缩,真空模拟装置、电子器件排气、以及其他真空作业等。 根据实际需要机组可以设计成多套并联,以提高机组的抽气能力。 在低真空处理水蒸气的工艺中,凯尼水蒸气处理系统是最经济有效的解决方案。 凯尼水蒸气处理系统泵阻止水蒸气在滑阀真空泵内凝结。

滑阀泵的油箱设计为各种变持续的真空压差。油泵确保在油泵处于真空状态下正常的供油量。 型号转速 RPM 功率 KW 补充 水量 L/M 进水 口 NPT 排水 口 NPT 处理水蒸 气量 KG/HR 重 量 KG 长 MM 宽 MM 高 MM VHS 870, 2800 15 0.8 3/4” 1/2”, 3/2” 18 850 1500 1100 2000 2)1/2”为KT300的接口,3/2”为SZ-2的接口 JZJS真空机组是以罗茨泵为主泵(包括中间泵)为前级泵的真空机组。全套机组有罗茨泵,水环泵、管道、阀门、汽水分离器、电拉箱等组成。 罗茨水环真空机组

不同型号的罗茨泵、水环泵的组合,可以分为不同的罗茨泵水环泵真空机组。可适用于不同的工况条件。从二级(一台罗茨泵,一台水环泵)串联组成的真空机组到四级(三台罗茨泵,一台水环泵)串联组成的真空机组。可以获得650-0.1pa的不同极限真空,从而满足不同的工艺要求。 由于罗茨泵的转子的特点(即转子与泵体有一定的间隙,泵腔内无润滑油)和水环泵的特点(即叶轮与泵壳间有一定的间隙)泵腔内无润滑油,和水环泵的特点(即叶轮与泵壳间有一定的间隙和采用水作为泵体和叶轮间的密封介质),因此本型号机组的最大特点是适合抽除含有粉尘,大量可凝性和带有一定腐蚀性的气体。同时避免了其他真空机组中可凝性气体对机械泵真空油氧化的不足之处,并可以消除真空泵油对真空系统的污染。 JZJX型真空机组是以罗茨泵为主泵,旋片泵为前级泵的中高真空获得设备。全套机组由罗茨泵,旋片泵,管道(含波纹管),阀门,电拉箱等组成。此型号机组的最大特点:一是弥补了双级旋片泵在1000~1pa时抽速减小的缺陷,二是与相同抽速的双级旋片泵相比,具有节能显著的效果。

10kV真空断路器常见故障的原因运行分析

10kV真空断路器常见故障的原因运行分析 摘要:对张家口供电企业日前运行的几种10 kV真空断路器常见故障的原因进行了深入地分析,针对性地提出了改进建议。 要害词:真空断路器;故障;运行真空断路器以其结构简单、机电寿命长、维护量小、无火灾危害和适宜频繁操作等优异特性在中压系统中得到广泛应用。张家口供电企业自1996年10 kV开关无油化改造以来,至今已全部更换为真空断路器,型号有ZN28A12、ZN2812T、ZN1210T、ZN6312(VS1)。日前存在以下问题:a. 真空灭弧室的损坏。 b. SN1010II 型断路器改造为ZN28A12型后,辅助开关转换不到位或操纵回路断线。c. VS1型断路器(ZN63A和ZN63C)操纵回路断线,开关合不上闸。 d. ZN1210T型断路器出现拒合故障。1真空灭弧室的运行分析1.1运行分析真空灭弧室是真空断路器的核心部件,它主要由动静触头、屏蔽罩、波纹管、波壳及上下法兰组成。真空断路器开断时,在动静触头分断的瞬间要产生电弧,而真空断路器的灭弧介质正是真空。因此,灭弧室的真空度在使用寿命中必需保持在必定水平之上,灭弧室真空度与试验电压曲线图见图1。试验证实,在高真空状态下,当真空度达到10-2Pa以下时,真空间隙的击穿电压不再随真空度的继续提高而升高。通常情况下真空灭弧室内真空度在10-5~10-7 Pa之间。这对于确保熄弧和开关的可靠工作有重要意义。真空灭弧室内的真空度可用磁控真空度测试仪测量。以往测试中多采纳最简便的间接测量真空灭弧室真空度的方法,即工频耐压法。它是将灭弧室的触头分开,使触头间达到额定开距,然后按技术数据(断口间42 kV/min)进行1 min工频电压试验,能够承受试验电压的灭弧室证实其内部保持有足够的真空度。此种检测方式只能判定灭弧室的优劣,没有真空压力测试数据,不能确定灭弧室真空度的大小,因此效果差、效率低,有时会造成误断。1.2缺陷案例a. 2000年6月,采纳工频耐压法测量柳树屯501开关C相真空度时,当电压升至20 kV时,灭弧室内发生持续放电,击穿,表明真空度已严峻降低。真空灭弧室规格为ZMD10/3150,陶瓷管,开断电流40 kA。b. 2001- 06- 13,使用ZK1真空度测试仪测试柳树屯545开关A相真空度为6.2×10-1 Pa,数值超标。随后对其做断口耐压试验,电压升至28 kV时,真空灭弧室中间接封处放电,重复2次试验,结果相同。该灭弧室规格为ZMD10/2500,陶瓷管,电流2 500 A,开断电流31.5 kA。开关1997年11月运行。c. 2001- 07-14,测试沙城501开关A相真空度为2×10-4Pa,合格。随后对其做断口耐压试验,发现电压升不起来,重复2次试验,结果相同。拆下真空灭弧室后摇摆,闻声内部有金属撞击声。该灭弧室规格为ZMD10/1250,陶瓷管,电流2 500 A,开断电流为31.5 kA。开关2000年11月投运。1.3缺陷分析DL/T 4032000《12~40.5 kV高压真空断路器订货技术条件》中明确规定:真空灭弧室伴同真空断路器出厂时的真空灭弧室内部气体压强不得大于1.33×10-3Pa,其上应标明编号及出厂年月。灭弧室内部处于不高于10-3 Pa的高真空状态,而在触头分离时形成的断口就是产生真空电弧和进行熄弧过程的弧腔。柳树屯501开关C相、545开关A相真空度下降的主要原因是密封处出现微观漏孔使得外部空气中的气体分子逐渐进入灭弧室内引起压力增大,随时间推移呈上升趋势,形成慢性漏气。沙城501开关A相灭弧室损坏的原因是,在真空灭弧室中,为使断口具有足够的耐压,已装有屏蔽罩,屏蔽罩由不锈钢制成,固定在2个氧化铝瓷绝缘筒中间接缝处,这就是常见的陶瓷外壳真空灭弧室中间封接式内屏蔽结构,用于汲取弧腔中在开断电流时真空电弧的金属蒸汽,使之沉淀并附着在罩内,而不是飞溅到内壁上,幸免由此降低灭弧室的绝缘强度。它的合理安排还起着改善断口电场分布的作用,提高断口耐压和绝缘恢复强度。因此屏蔽罩的松动有可能是断口耐压不合格的原因。上述真空灭弧室在短期运行内之所以损坏与出厂工艺有关,还有待进一步商榷。2ZN28A12型断路器的运行分析自1999年以来,ZN28A12型断路器是悬挂式结构,主要应用在GG1A柜无油化改造中。采纳ZN28A12型真空断路器代替SN1010II

机组真空下降的原因分析与处理方法

机组真空下降的原因分析与处理方法 前言: 汽轮机的排汽进入凝汽器汽侧,大流量的循环水送入凝结器铜管内侧,通过铜管内循环水与排汽换热把排汽的热量带走,使排汽凝结成水,其比容急剧减小(约减小到原来的三万分之一),因此原为蒸汽所占的空间便形成了真空。而不凝结气体则通过真空泵抽出,从而起到维持真空的作用。 我厂曾经多次发生凝汽器的真空下降的异常情况,给汽轮机组的安全经济运行造成一定的影响,真空每下降1Kpa将增加约3g/kw.h 煤耗;各机组都不同程度发生过凝汽器真空下降的异常情况,只是真空下降的最低数值不同。造成凝汽器真空下降的原因较多,现在就生产实际工作中遇到的造成凝汽器真空下降常见的原因与处理方法介绍给大家仅供参考、交流。 一、在汽轮机组启动过程中,造成凝汽器真空下降的原因: 1、汽轮机轴封压力不正常 (1)、原因:在机组启动过程中,若轴封供汽压力不正常,则凝汽器真空值会缓慢下降,当轴封压力低时,汽轮机高、低压缸的前后轴封会因压力不足而导致轴封处倒拉空气进入汽缸内,使汽轮机的排汽缸温度升高,凝汽器真空下降。而造成轴封压力低的原因可能是轴封压力调节阀故障;轴封供汽系统上的阀门未开或开度不足。 (2)、象征:真空表指示值下降、汽轮机的排汽缸温度的指示值上升。(3)、处理:当确证为轴封供汽压力不足造成凝汽器真空为缓慢下降

时,值班员必须立即检查轴封压力、汽源是否正常,在一般情况下,只需要将轴封压力调至正常值即可。若是因轴封汽源本身压力不足,则应立即切换轴封汽源,保证轴封压在正常范围内即可,若是无效,则应该进行其它方面检查工作。 2、凝汽器热水井水位升高 (1)、原因:凝汽器的热水井水位过高时,淹没凝汽器铜管或者凝汽器的抽汽口,则导致凝汽器的内部工况发生变化,即热交换效果下降,这时真空将会缓慢下降。而造成凝汽器的热水井水位升高的原因可能是a、凝结水泵故障;b除盐水补水量过大;c、凝汽器铜管泄漏;d、凝结水启动放水排水不畅;e、凝结水系统上的阀门开度不足造成的。(2)、象征:真空表指示下降,汽轮机的排汽缸温度上升、而凝汽器水位计、就地水位计水位也会上升。 (3)、处理:当确证为凝汽器的热水井水位升高造成凝汽器真空为缓慢下降时,值班员必须立即检查究竟是什么原因使凝汽器水位上升,迅速想办法将凝汽器水位降至正常水位值。 3、凝汽器循环水量不足 (1)、原因:当循环水量不足时,汽轮机产生的泛汽在凝结器中被冷却的量将减小,进而使排汽缸温度上升,凝汽器真空下降,造成循环水量不足的原因可能是循环水泵发生故障;循环水进水间水位低引起循环水泵汽化,使循环水量不足;机组凝汽器两侧的进、出口电动门未开到位;在凝汽器通循环水时,系统内的空气未排完。 (2)、象征:真空表指示值会下降,汽轮机的排汽缸温度的指示值上

热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

热电厂汽轮机凝汽器真空度下降成因及处理 措施探究(2021) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 凝汽设备是凝汽式汽轮机的重要组成部分,而凝汽器真空度直接影响整个热电厂的运行稳定性、经济性、可靠性与安全性,因此为了防止凝汽器出现真空下降的状况,应该准确的分析引起凝汽器真空下降的原因,并采取相应的措施进行处理,保证汽轮机正常的运行。 1.热电厂汽轮机凝汽器真空下降的原因 1.1.凝汽器真空系统不严密。真空系统存在小漏点时,不凝结的汽体会进入处于真空转台的位置,泄露到凝汽器中,如果不凝结的汽体过多,并滞留在凝汽器中影响传热,很容易造成真空异常下降。凝汽器真空系统不严密造成的真空下降的主要表现为:凝汽器出口循环水温与汽轮机排汽温度的差值增大,凝结水冷却度增大。 1.2.凝汽器水侧泄露。凝汽器铜管泄露会导致硬度较高的冷却水进入凝汽器汽测,提升凝汽器水位,引起凝汽器真空下降,此外,其还会导致水质变坏,腐蚀或锅炉或其他设备,甚至会引起锅炉爆管。

真空泵的常见故障及排除方法

真空泵的常见故障及消除方法 一、真空泵的常见故障,有以下几类: ①真空度降低; ②泵不能正常运转,甚至“卡死”; ③在运转中,有较大的噪音、杂音; ④泵体密封不好—漏油; ⑤在启动时,大量喷油滴、油雾,污染环境; ⑥启动困难。 下表列出了真空泵的常见故障、产生原因和消除方法。 二、故障产生的故障原因及排除方法 (一)、造成真空度低原因(注:括号内为排除方法): 1.油量不足(换油) 2.油脏或乳化(换油) 3.泵油牌号不符或混油,夏季使用黏度过小的油(换油) 4.漏气(检查轴封、排气阀、端盖、进气口等) 5.配合间隙过大或有磨损和划痕(部位的密封情况,并修换密封圈,检查泵腔、转子、旋片、端盖板之间的配合间隙,清除杂物、杂质,按精度要求修磨) 6.油路不通,泵腔内没有保持适当的油量(调节油路的进油量, 清洗时用高压空气吹通油孔,把沉积物清洗干净) 7.泵运转中温升太高,使泵油浓度变稀,密封性变差,油蒸气压增大(通冷却水降温, 检查配合间隙按精度要求进行修理) 8.泵中隔板压入时过盈量过大,使泵腔鼓起变形,漏气(修整泵腔或换泵、报废) 9.排气阀片损坏密封不好(修换阀片) 10.装配不当,端盖板螺钉松紧不一,转子轴心位移(重新装配) 11.旋片活动不好(修磨转子和旋片的配合,调换弹簧) 12.被抽气体温度过高(热气体被抽入泵之前加冷却装置)

13.进气管内的过滤网被堵(取出进气口过滤网清洗干净烘干后再装好) 14.气镇阀垫圈损坏或没拧紧加油到油标中心(换垫圈,拧紧气镇阀) (二)、真空泵电动机超负荷运转,甚至转不动, 发生“卡死” 现象(注:括号内为排除方法): 1.弹簧损坏,使旋片受力不均匀(换弹簧) 2.装配不当,使某局部受力(重新装配) 3.由于过滤网损坏,外部污物如金属屑、颗粒等落入泵腔内(拆泵检查、清洗、装好过滤网) 4.端面间隙过小,泵温升过高(修磨转子旋片,调整间隙) 5.泵油变质或结垢,油黏度不恰当(换油) 6.转子损坏(重配新件) 7.轴和轴套配合过紧,缺油润滑(强油路润滑) 8.中间气道不畅通(清理中间气道或换用薄一点的橡皮垫) 9.轴中十字接头损坏(修换转子轴或十字接头) (三)、真空泵在运转中有杂声噪音(注:括号内为排除方法): 1.弹簧断,运转中发出旋片的冲击声(换弹簧) 2.装配不当,零件松动,致使运转声音不正常(重新装配) 3.泵腔内有脏物,零件有毛刺或变形,运转发生障碍(拆洗、检查、修磨) 4.泵腔内油的润滑不良(疏通和调节油路) 5.泵腔内的有害空间太大(属泵本身的毛病,可将中隔板偏移几厘米以减小有害空间) 6.电机故障(换修电机) (四)、真空泵漏油(注:括号内为排除方法): 1.轴承、端盖、油窗、放油孔、油箱等部位的密封件损坏或者没有压平压紧(调换新密封件;装配时注意位置正确,螺钉拧紧,并使压力均匀适当) 2.箱体有漏孔(堵漏) (五)、真空泵喷油: 1.油量过多(放出多余油量) 2.突然暴露大气(开泵时应注意断续启动电机。因系统损坏而暴露大气,应注意关闭低真空

提高600MW火力发电机组真空系统经济性能

提高600MW 火力发电机组真空系统经济性能 黄剑、李军 (中国电力平圩发电有限责任公司 安徽淮南 202089) 摘要:对于凝汽式汽轮机组,需要在汽轮机的汽缸内和凝汽器汽侧建立一定的真空。凝汽器真空过高或过低都将影响汽轮机的效率。如何建立和维持真空,减少真空泵故障的发生。为此,本文针对性的提出了三套可行性设计方案加以解决。并通过比对优化从方案中优选出在真空泵前加装蒸汽喷射器节能装置,提高了真空泵的安全、经济运行,增强了真空泵的抽气能力。对于真空系统的节能降耗和发电机组的经济性运行都具有积极的意义。 关键词:火电厂 真空系统 可行性方案 经济性 1、系统概况 安徽淮南平圩发电有限责任公司一期工程为引进国外技术、国内制造的2×630MW 燃煤亚临界发电机组,由哈尔滨汽轮机制造厂生产,汽轮机型号为N630—167/537/537,四缸四排汽、再热冷凝式。凝汽器型号为N-4000,抽气管路布置为高低压凝器中的空气管采用串联结构,不凝结气体由高压侧流向低压侧,最后由低压凝器冷端汇于一根母管上,再分配至三台真空泵(如图1)。机组运行时,二台真空泵投运一台备用。 图1:真空系统图 对于凝汽式汽轮机组,需要在汽轮机的汽缸内和凝汽器汽侧建立一定的真空,机组运行时需要不断的将由不同途径漏入的不凝结气体从汽轮机及凝汽器中抽出。真空系统就是用来

建立和维持汽轮机组的低背压和凝汽器的真空。而真空泵的抽吸能力直接影响汽轮机的效率。在机组多年的运行和维护中发现真空泵存在不少问题。 2、机组运行中真空泵存在的主要问题: 1)真空泵抽吸能力下降,影响凝汽器换热效果。 2)运行中泵体内有汽蚀现象使得泵体振动大,事故率增加。 3)设备检修周期缩短,维护成本高上升,经常发生叶片与叶轮轮毂处产生多处裂纹;泵两端分配器出现汽蚀凹槽。泵体二端排气遮断阀板和阀片断裂。 3、机组运行中真空泵抽气能力下降的原因分析: 水环真空泵是利用容积变化实现抽真空的设备,转子在泵内偏心安装,转动时会迫使工作液沿泵壳内壁形成一个与其同向旋转的液环,此时会在两相邻叶片、叶轮轮毂和液环内表面之间形成气腔,随转子的转动此气腔在泵的吸气区体积逐渐增大,其内部压力下降,从而将气体吸入泵内。相反气腔在排气区体积逐渐缩小,内部压力上升,从而将气体排出。凝器中的气汽混合物经过真空泵的抽吸进入汽水分离器。分离出来的气体排入大气,分离出来的水与补水一同进入热交换器进行冷却。冷却后的工作水分为两路,一路经喷嘴喷入真空泵入口,冷却凝器来的气汽混合物,提高真空泵的抽吸能力;一路直接进入真空泵作为工作水,维持真空泵的水环和水环的温度,工作水温的高低对真空泵的吸入能力影响很大。 平圩电厂一期600MW机组真空泵泵内工作水利用开式冷却水进行冷却,水源为循环水,补水为闭式水。由于夏季机组高负荷运行和循环水冷却水温度的升高,真空泵工作水温甚至超过30℃,此时工作水对应的饱和蒸汽压力就会提高,水的汽化压力也随之升高,部分工作水会发生汽化,体积膨大,而使真空泵抽吸能力明显下降,空气在凝器内积聚,影响凝汽器换热效果。此时真空泵的排气压力也急剧上升,液环内(吸入腔)的汽泡迅速冷凝并使气泡产生破裂,产生汽蚀现对叶轮表面形成伤害并造成泵体振动。随着真空的上升,汽蚀和振动都将加剧,水环也在增大,因而叶片负荷也急剧增加,长时间运行不仅使泵叶轮产生裂纹,还会因为振动使轴承的使用寿命缩短,设备运行可靠性大大降低。 通过分析,降低真空泵进口压力或降低工作水的温度将会提高真空泵的抽气能力,可增强真空系统设备的安全可靠运行,对于整个真空系统的节能降耗及发电机组的经济性都具有积极的影响。 4、可行性方案设计、特点分析 为了真空泵可靠运行,降低真空泵进口压力或降低工作水的温度,提高真空泵的抽气能力。为此进行了调研和可行性的方案设计,提出了三套方案加以解决,并对三套方案的可靠性和特点进行了比对分析,从中优选出适合我厂实际情况的方案: 方案一:加装一套真空泵智能制冷冷却装置 通过直接降低真空泵的工作水温,达到降低凝汽器背压的目的。制冷装置采用以溴化锂或氟里昂为介质的。能提高凝汽器真空0.2KPa左右。系统主要由制冷动力装置、蒸发器、热力膨胀阀、冷凝器、干燥过滤器、冷却水循环水系统、冷冻水循环系统及冷冻水泵、膨胀水箱及补水管路、电气高低压开关、PLC控制程序系统等组成(如图2)。

断路器常见的问题及处理办法

高压断路器是电力系统中最重要的开关设备,它担负着控制和保护的双重任务,如断路器不能在电力系统发生故障时及时开断,就可能使事故扩大,造成大面积停电。为了满足开断和关合,断路器必须具备三个组成部分;①开断部分,包括导电、触头部分和灭弧室。②操动和传动部分,包括操作能源及各种传动机构。③绝缘部分,高压对地绝缘及断口间的绝缘。此三部分中以灭弧室为核心。 断路器按灭弧介质的不同可分为: 油断路器,利用绝缘油作为灭弧和绝缘介质,触头在绝缘油中开断,又可分为多油和少油断路器。 压缩空气断路器,利用高压力的空气来吹弧的断路器。 六氟化硫断路器,指利用六氟化硫气体作为绝缘和灭弧介质的断路器。 真空断路器,指触头在真空中开断,利用真空作为绝缘和灭弧介质的断路器。 断路器的分合操作是依靠操作机构来实现,根据操作机构能源形式的不同,操作机构可分为:电磁机构,指利用电磁力实现合闸的操作机构。 弹簧机构,指利用电动机储能,依靠弹簧实现分合闸的操作机构。 液压机构,指以高压油推动活塞实现分合闸的操作机构。 气动机构,指以高压力的压缩空气推动活塞实现分合闸的操作机构。 操作机构还有组合式的,例如气动弹簧机构是由气动机构实现合闸,由弹簧机构分闸。操作机构一般为独立产品,一种型号的操作机构可以配几种型号的断路器,一种型号的断路器可以配几种型号的操作机构。 下面就不同灭弧介质的断路器和不同型式操作机构分别介绍断路器在运行时最常见的故障,以及原因分析。 1.断路器本体的常见故障 1.1油断路器本体 序号常见故障可能原因 1 渗漏油固定密封处渗漏油,支柱瓷瓶、手孔盖等处的橡皮垫老化、安装工艺差和固定螺栓的不均匀等原因。 轴转动密封处渗漏油,主要是衬垫老化或划伤、漏装弹簧、衬套内孔没有处理干净或有纵向伤痕及轴表面粗糙或轴表面有纵向伤痕等原因。 2 本体受潮帽盖处密封性能差。 其他密封处密封性能差。 3 导电回路发热接头表面粗糙。 静触头的触指表面磨损严重,压缩弹簧受热失去弹性或断裂。 导电杆表面渡银层磨损严重。 中间触指表面磨损严重,压缩弹簧受热失去弹性或断裂。 4 断路器本体内部卡滞导电杆不对中。灭弧单元装配不当、传动部件及焊接尺寸不合格和灭弧单元与传动部件装配时间隙不均匀。 运动机构卡死。拉杆装配时接头与杆不在一条直线、各柱外拐臂上下方向不在一条直线上。 5 断口并联电容故障并联电容器渗漏油。 并联电容器试验不合格。 2真空断路器本体

提高汽轮机真空的措施及经济性分析

中国?海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集 155 提高汽轮机真空的措施及经济性分析 张运耀,周天旺,钟定辉 江西省贵溪电厂 摘要:对汽轮机凝结器真空在夏季偏低的原因进行了综合分析,提出了提高凝结器真空的措施和循环水泵增容改造后的经济分析。 关键词:发电厂;汽轮机;真空;分析;措施 1 概况 江西省贵溪电厂装有4台125MW机组,配了5台沅江48Ⅰ—26Ⅱ型循环水泵供机组各冷却用水,循泵额定流量为16200t/h,扬程为28.7m,泵转速为375r/min,机组采用开式循环,水源取自信江河水,丰水期为直流供水,枯水期启用4000m2自然通风冷却塔,作为信江上游的补充水源。4台机组投产以来,夏季凝结器真空一直偏低,有时在86.66kPa以下,机组被迫降出力运行,虽然曾采取了一些措施,如提高凝结器真空严密性;提高凝结器的清洁度,停机后采用高压水冲洗,加强一次旋转滤网的维护;提高回热油汽系统的投入率和减少本体疏水内漏降低凝结器热负荷等,也取得了一定效果。但均未能根本解决夏季的凝结器真空低的状况。 2 夏季汽轮机真空偏低的主要原因 厂家设计夏季工况进水温度为33℃时,各回热抽汽正常投用,汽轮机排汽量为297t/h,冷却倍率为64.87。理论上按该冷却倍率计算,凝结器需冷却水量为72395t/h,加上机房其它设备用水7674t/h及生活用水270t/h,共需循环水量为80339t/h,系统配置5台循泵,并列运行时,实测流量仅有70500t/h,按这样最理想计算5泵4机运行循环倍率仅为56,实际运行中若某级回热抽汽停用或少量阀门内漏,进入凝结器热负荷增加,循环倍率仅为50左右,若出现一台循泵停运4机4泵的运行方式,循环倍率会更低,而且贵溪地区夏季气温常达35℃,水量就相差更远。根据凝结器的热平衡方程式: - D co(i co-t co)= D w(t w2-t w1) 式中D co——凝结的蒸汽量; D w——冷却水量; i co——汽轮机排汽的焓; t co——凝结水的饱和温度; t w2-t w1 =△t冷却水温升。 近似计算中可取 i co-t co = 2176.7kJ/kg - 则m= t? 520 从实际运行数值来看,△t夏季常在13℃,由此估算,实际循环倍率比理论计算循环倍率会更低。 根据上述分析和现场大量的对比试验可以判断影响夏季真空低的主要原因为水量不足,循环倍率过小。 3 提高真空的主要措施 3.1 电机增容改造 针对影响真空的主要因素,解决的途径是增加循环水量,通过对变频调速改造、水泵直径加大和电机增容等3个方案的技术经济比较,最后选择了电机增容方案,即电机由1600kW增容到2000kW,保持定子外壳不变,电机极数由16级改为14级。 根据n o = 2 3000 p 式中n o——电机转速(r/min);P——电机级数。 在电机转速由375提高到428.5 r/min时,经华东电力试验研究院用超声波流量计测试,单泵流量达17376t/h,即循泵改造后流量增加了3276t/h。 3.2 水泵叶轮高效改造 考虑到循泵增容改造后会偏离最佳工况点运行,效率必然下降,加之原设计效率不高,故对水泵进行高效改造。 水泵改造采用更换叶轮和密封环,其它流道均不变的改造方案,为此,我们委托北京水科院

_汽轮机凝汽器真空度下降原因分析

汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述: 一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。 ⑵循环水量不足 循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决: ①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。

10kV真空断路器常见故障及处理

10kV真空断路器常见故障及处理 随着真空断路器的广泛应用,不少10 kV 少油断路器已更换为真空断路器。由于生产厂家不同,一部分真空断路器性能较好,检修、维护工作量小,供电可靠性高;也有一部分真空断路器性能很差,存在的问题比较多;还有一些真空断路器缺陷极其严重,容易造成事故越级,导致大面积停电。 1 、真空泡真空度降低 1.1 故障现象 真空断路器在真空泡内开断电流并进行灭弧,而真空断路器本身没有定性、定量监测真空度特性的装置,所以真空度降低故障为隐性故障,其危险程度远远大于显性故障。 1.2 原因分析:真空度降低的主要原因有以下几点: (1) 真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏点; (2) 真空泡内波形管的材质或制作工艺存在问题,多次操作后出现漏点; (3) 分体式真空断路器,如使用电磁式操作机构的真空断路器,在操作时,由于操作连杆的距离比较大,直接影响开关的同期、弹跳、超行程等特性,使真空度降低的速度加快。 1.3 故障危害

空度降低将严重影响真空断路器开断过电流的能力,并导致断路器kg。com的使用寿命急剧下降,严重时会引起开关爆炸。 1.4 处理方法 (1) 在进行断路器定期停电检修时,必须使用真空测试仪对真空泡进行真空度定性测试,确保真空泡具有一定的真空度; (2) 当真空度降低时,必须更换真空泡,并做好行程、同期、弹跳等特性试验。 1.5 预防措施 (1) 选用真空断路器时,必须选用信誉良好的厂家所生产的成熟产品; (2) 选用本体与操作机构一体的真空断路器; (3) 运行人员巡视时,应注意断路器真空泡外部是否有放电现象,如存在放电现象,则真空泡的真空度测试结果基本上为不合格,应及时停电更换; (4) 检修人员进行停电检修工作时,必须进行同期、弹跳、行程、超行程等特性测试,以确保断路器处于良好的工作状态。 2 、真空断路器分闸失灵 2.1 故障现象

660MW超超临界机组汽轮机真空系统节能运行分析

660MW超超临界机组汽轮机真空系统 节能运行分析 摘要:针对某厂660MW#7机组汽轮机真空系统设计布置及运行情况进行分析,为提高机组凝汽器真空,进一步降低机组煤耗,提出新的建议及改造方案,不断提高机组运行经济性。 关键词:抽真空系统;真空泵;节能改造。 1抽真空系统布置方式节能分析 1.1概述 我厂四期#7机组为超超临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机,型号为N660-27/600/600,机组凝汽器为双背压汽轮机,给水泵汽轮机排汽入单独的凝汽器。每台主汽轮机设置3台50%机械水环式真空泵组,2台运行1台备用。在机组启动建立真空期间,3台泵同时投入运行。型号:2BW5353-0EL4平面泵。循环水系统采用带自然通风冷却塔的再循环扩大单元制供水系统。机组配循环水泵两台(每台机组配置一台定速电机和一台双速电机)。冷却塔一座,循环水供水和排水管各一根,回水沟一条。 1.1.1凝汽器介绍 本机组所采用凝汽器是表面式的热交换器,冷却水在管内流动过程中与管外的排汽进行热交换,使排汽凝结成水,同时使凝汽器形成真空。凝汽器采用双背压设计,即两个凝汽器在运行中处于两个不同的压力下工作。当循环水进入第一个凝汽器后吸收热量,水温升高,然后再进入第二个凝汽器(第一个凝汽器出口水温即为第二个凝汽器的入口水温)。由于凝汽器的特性主要取决于冷却水的温度,不同的水温对应不同的背压,于是在两个凝汽器中形成了不同压力,即低压凝汽器和高压凝汽器。双背压凝汽器的优点: ①根据传热学原理,双背压凝汽器的平均背压低于同等条件下单背压凝汽器的背压,因此汽机低压缸的焓降就增大了,从而提高了汽轮机的经济性。 图(1)凝汽器结构 ②双背压凝汽器的另一个优点 就是低背压凝汽器中的低温凝结水 可以进入高背压凝汽器中去进行加 热,既提高了凝结水温度,又减少了 高背压凝汽器被冷却水带走的的冷 源损失。低背压凝汽器中的低温凝结 水通过管道利用高度差进入高背压 凝汽器管束下部的淋水盘,在淋水盘 内,低温凝结水与高温凝结水混合在 一起,再经盘上的小孔流下,凝结水 从淋水盘孔中下落的过程中,凝结水 被高背压低压缸的排汽加热到相应 的饱和温度。在相同条件下,双背压 凝汽器的平均压力低于循环水并联 的单压凝汽器的压力,可提高循环效 率。凝汽器结构见图(1)。凝汽器两个壳体底部为连通的热井,上部布置有低压加热器、小汽机排汽管、减温减压器和低压侧抽气管等。凝汽器抽空气管布置在其管束区中心以抽吸其内的不凝结气体。高、低压凝汽器中的抽空气管采用串联结构,不凝结气体由高压侧流向低压侧,最后由低压凝汽器冷端引向真空泵。这种结构可减轻真空泵的负担,减少其备用台数,使系统简化。 1.1.2主机凝汽器规范 表(1):本机组凝汽器规范

提高汽轮机真空确保机组安全经济运行

摘要:汽轮机真空是关系到汽轮机安全、经济运行的一项重要指标, 对引起其下降的原因与部位进行诊断, 并采取有效的措施提高真空系统的真空是生产部门一项基础性工作。文章结合动力公司6MW机组长期存在真空不足的问题, 对引起真空下降的因素进行了较全面的分析,同时对近年来真空技术的主要研究成果与经验进行了介绍, 并就提高汽轮机真空的其他措施作了一些有益的探讨。 关键词:汽轮机真空安全经济性

1引言 真空系统是凝汽式汽轮机的一个重要组成部分,其严密性与稳定性直接影响整个设备运行的热经济性和安全性。国家电力行业标准对真空系统的严密性要求非常严格。真空是电厂运行人员的主要监视参数。真空提高,机组出力增加;真空降低1kPa,汽轮机的汽耗量将增加1.5 %~2.5 %;真空过低,汽轮机的排汽温度将升高,使得低压缸或低压轴承座等部件受热膨胀,甚至使机组产生振动;真空过低时还会增强汽轮机和冷凝管的振动,破坏凝汽器水侧的严密性。但是真空也不是越高越好,因为真空过高的情况下,当蒸汽在汽轮机末级动叶斜切部分已达膨胀极限时,汽轮机功率不再随真空提高而增加。而动力公司现运行两台汽轮发电机组,型号为:C6-3.43/0.49抽汽凝汽式机组,额定发电量为6MW,主蒸汽压力为3.43Mpa,抽汽压力为0.49~0.69Mpa, 额定进汽量为60T,设计凝汽器额定真空为0.086Mpa。汽轮发电机组真空系统包括轴封、凝汽器、射水式抽气器等设备。自1997年11月运行以来,至今已经14年,随着设备逐渐老化,汽轮机组运行长期达不到额定真空值,在0.076~0.064MPa之间波动。给机组安全稳定运行埋下了严重的安全隐患并且影响了机组经济运行。只有将汽轮发电机组凝汽器真空度提高到额定值,彻底消除凝汽器系统缺陷,调整优化工艺参数,加强技术培训等措施,才能切实保障机组持续、稳定的发电、供热,提高机组运行的经济效益。本文结合生产实践,首先分析动力公司现有6MW抽汽凝气式机组真空系统真空度下降的原因,然后探讨并结合具体情况实施了几种提高真空的措施。 图1 汽轮机真空系统简图

真空断路器的常见故障及处理方法

编号:AQ-JS-06168 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 真空断路器的常见故障及处理 方法 Common faults and treatment methods of vacuum circuit breaker

真空断路器的常见故障及处理方法 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1、真空泡真空度降低 故障现象: 真空断路器在真空泡内开断电流并进行灭弧,而真空断路器本 身没有定性、定量监测真空度特性的装置,所以真空度降低故障为 隐性故障,其危险程度远远大于显性故障。 原因分析: 真空度降低的主要原因有以下几点: (1)真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏 点; (2)真空泡内波形管的材质或制作工艺存在问题,多次操作后出 现漏点; (3)分体式真空断路器,如使用电磁式操作机构的真空断路器, 在操作时,由于操作连杆的距离比较大,直接影响开关的同期、弹

跳、超行程等特性,使真空度降低的速度加快。 故障危害: 真空度降低将严重影响真空断路器开断过电流的能力,并导致断路器的使用寿命急剧下降,严重时会引起开关爆炸。 处理方法: (1)在进行断路器定期停电检修时,必须使用真空测试仪对真空泡进行真空度的定性测试,确保真空泡具有一定的真空度; (2)当真空度降低时,必须更换真空泡,并做好行程、同期、弹跳等特性试验。 预防措施: (1)选用真空断路器时,必须选用信誉良好的厂家所生产的成熟产品; (2)选用本体与操作机构一体的真空断路器; (3)运行人员巡视时,应注意断路器真空泡外部是否有放电现象,如存在放电现象,则真空泡的真空度测试结果基本上为不合格,应及时停电更换;

各指标对煤耗影响

600MW机组各项指标对煤耗影响 1.负荷降低1%,机组的热耗将会增加0.089%~0.1%,煤耗 大约增加0.3%,1.1 g/kWh 2.主汽压降低1MPa,煤耗增加1.53g/kWh; 3.主汽温提高1℃,煤耗降低0.059 g/kWh; 4.再热汽温提高1℃,煤耗降低0.032 g/kWh; 5.再热器喷水减少1t/h,煤耗降低0.103 g/kWh; 6.凝汽器端差下降1℃,煤耗0.68 g/kWh; 7.真空上升1kPa,煤耗下降1.2 g/kWh; 8.给水温度提高1℃,煤耗下降0.05%,0.16 g/kWh; 9.排烟温度下降10℃,煤耗下降1.88 g/kWh; 10.锅炉效率提高1%,煤耗下降4 g/kWh; 11.氧量比标准上升1%,煤耗增加1.57 g/kWh; 12.空冷机组影响煤耗10 g/kWh;国电600MW亚临界机组 对标供电煤耗332 g/kWh; 300MW机组省煤节电经验数据 1.负荷降低10%,煤耗大约增加 2.95g/kWh,降低20%增加 6.92g/kWh,降低30%增加18.90g/kWh,降低40%增加 26.23g/kWh 2.主汽压降低1MPa,煤耗增加2.1g/kWh;降低2MPa,煤耗 增加3.58g/kWh;

3.主汽温降低5℃,煤耗增加0.95 g/kWh;主汽温降低10℃, 煤耗增加1.51 g/kWh; 4.再热汽温降低5℃,煤耗增加0.79 g/kWh;再热汽温降低 10℃,煤耗增加1.68 g/kWh; 5.真空度下降1%,煤耗增加3.6 g/kWh; 6.端差上升1℃(夏/冬),煤耗增加1.93 /0.85g/kWh 7.高加解列/低加解列,煤耗增加9.55/8.02g/kWh 8.给水温度下降10℃,煤耗增加0.95g/kWh; 9.给水调门压差增加1MPa,煤耗增加0.36g/kWh; 10.排烟温度上升10℃,煤耗增加1.66g/kWh; 11.空气预热器漏风率增大1%,煤耗增加0.14g/kWh; 12.飞灰含碳量增加1%,煤耗增加1.23 g/kWh; 13.排污率增大1%,煤耗增加1.18g/kWh; 14.厂用电率上升1%,煤耗增加3.78g/kWh;

汽轮机真空下降原因的分析

第二章汽轮机真空下降的原 因 在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。而凝汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要考核指标。凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,从而提高凝汽器性能,维持机组经济真空运行,以便直接提高整个汽轮机组的热经济性。 第一节汽轮机凝汽器真空度下降的主要特征 在汽轮机组的正常运行中我们可以通过各种仪表、数据来了解和分析汽轮机凝汽器的真空度好坏情况。一般汽轮机凝汽器真空度下降的主要特征有: (1)真空表指示降低; (2)排汽温度升高; (3)凝结水过冷度增加;

(4)凝汽器端差增大; (5)机组出现振动; 第二节汽轮机凝汽器真空度下降原因分析 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述:一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环 毕业设计(论文)说明书专用第7页 水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停

汽轮机凝汽器真空度下降原因论文

浅析汽轮机凝汽器真空度下降的原因摘要:凝气设备是汽轮机组重要辅机之一,凝汽器用来冷却汽轮机排汽,使之凝结为水,再由凝结水泵送到除氧器,经给水泵送到锅炉。凝结水在发电厂是非常珍贵的,尤其对高温、高压设备。在汽轮机排汽口造成高度真空,使蒸汽中所含的热量尽可能被用来发电,因此,凝汽器工作的好坏,对发电厂经济性影响极大。在正常运行中凝汽器有除气作用,能除去凝结水中的含氧,从而提高给水质量防止设备腐蚀。因此在汽轮机运行中,监视和保证凝结水是非常重要的。 关键词:汽轮机、凝汽器真空度 abstract: the gas equipment of the steam turbine unit is one of important auxiliary machine, condensed steam turbine exhaust steam used for cooling, condenses into water, then the condensate pumps to the deaerator, the pump to the boiler. condensate in the power plant is a very precious thing, especially for high temperature and high pressure equipment. in the steam turbine exhaust steam mouth cause high vacuum, make steam as far as possible contains quantity of heat is used to make electricity, therefore, condenser work is good or bad, the economy influence on power stations is great. in normal operation of condenser have in addition to gas effect, can remove condensate of oxygen, so as to improve the quality

相关主题
文本预览
相关文档 最新文档