高数A部分习题答案
- 格式:doc
- 大小:1.25 MB
- 文档页数:31
大学数学A (1)课后复习题第一章一、选择题1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2ln )(,ln 2)(x x g x x f ==B .0)(,1)(x x g x f ==C .1)(,11)(2-=-⋅+=x x g x x x f D .2)(|,|)(x x g x x f ==2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .||)(x e x f = C .x x f cos )(= D .1sin )1()(2--=x xx x f3.极限⎪⎭⎫⎝⎛+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .21D .∞ 4.极限xxx x sin lim+∞→的值为.. …….. ……..……………………………………………………………………………...…….( )A .0B .1C .2D .∞5.当0→x 时,下列各项中与 23x 为等价无穷小的是…………………………………………………….( )A .)1(3-xe x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=xx f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要8.设函数⎪⎩⎪⎨⎧<≤--<≤≤≤-=01,110,21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )A .在0=x ,1=x 处间断B .在0=x ,1=x 处连续C .在0=x 处间断,在1=x 处连续D .在1=x 处间断,在0=x 处连续 9.极限xx x 10)1(lim -→-的值为.. …….. ……..…………………………………………………………………………………….( )A .1B .e -C .e1D .e 二、填空题10.函数ln y x =的定义域为(用区间表示) . 11. 函数xxy -+=11的定义域为(用区间表示) . 12. 已知x xx f +=1)(,则=))((x f f . 13. 函数x x y 2353+-=的反函数为 .14. =→xx x 1sin lim 20 .15. 当________=α时,αx 与x 2sin 是0→x 时的同阶无穷小.16. 设21)1(lim e kx xx =+→,则=k .17. 设1sin lim0-=→xkxx ,则=k .18. =⎪⎭⎫ ⎝⎛+++∞→11232lim x x x x .9. 设⎪⎩⎪⎨⎧≤+>=0,0,1sin )(2x x a x xx x f 在点0=x 处连续,则=a . 三、解答与证明题20. 求下列数列极限 (1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n (2))12(lim +-+∞→n n n n (3)⎪⎭⎫⎝⎛++++++∞→n n n n n n n n 22221lim (4)n n n nx 10...21lim +++∞→ 21. 求下列函数极限(1)15723lim 2323+++-∞→x x x x x (2)134lim 22++∞→x x x(3)503020)12()23()32(lim ++-∞→x x x x (4)11lim 31--→x x x (5)28lim 32--→x x x (6))1311(lim 31x x x ---→ (7))1(lim x x x -++∞→ (8)xx x x ln )1(lim1-→(9)xx x sin ln lim 0→ (10)x xx 3sin 2sin lim 0→(11)30sin tan lim xx x x -→ (12)x x x 10)51(lim -→ 22. 若432lim23=-+-→x ax x x ,求a 的值. 23. 若已知411lim21=-++→x b a x x ,求a,b 值. 24. 当 a 取何值时,函数)(x f 在 x =0 处连续:(1)⎩⎨⎧≥+<=0,0,)(x x a x e x f x . (2)⎪⎩⎪⎨⎧≤+>-+=0),cos(0,11)(x x a x xx x f . 25. 证明(1)方程01423=+-x x 在区间)1,0(内至少有一个根.(2)方程x e x 3=在)1,0(内至少有一个根.第二章一、选择题1、设函数)(x f 在点0x 可导,则=-+→hx f h x f h )()2(lim000( ).(A ) )(0x f '-; (B) )(0x f '; (C) )(20x f '; (D) )(20x f '-. 2、设函数)(x f 是可导函数,且13)1()1(lim-=--→xx f f x ,则曲线)(x f y =在点))1(,1(f 处切线的斜率是 ……………………………………………( ). (A) 3; (B) 1- ; (C) 13 ; (D) 3-.3、设)()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续,则)(a f '= ………( ). (A) )(a ϕ ; (B)0; (C)a ; (D))(a a ϕ.4、若0x 为函数)(x f 的极值点,则…………………………………………( ). (A)0)(0='x f ; (B)0)(0≠'x f ; (C)0)(0='x f 或不存在; (D))(0x f '不存在.5、设)0)(1ln(≠+=a ax y ,则y ''= ( ).(A)22)1(ax a +; (B)2)1(ax a +; (C)22)1(ax a +-; (D)2)1(ax a +-. 6、由方程5ln =-y xe y 确定的隐函数)(x y y =的导数=dxdy( ). (A)1-y y xe e ; (B)y y xe e -1; (C)yy e xe -1; (D)y y e xe 1-.7、)2sin sin (lim xx x x x +∞→= ……………………………………… ( ).(A)2; (B)1; (C)3; (D)极限不存在.8、设x x y =)0(>x 则='y ( ).(A)x x ; (B) x x x ln ; (C) 1-x x ; (D))1(ln +x x x .9、曲线x y sin 1+=在点)1,0(处的切线方程是…………………………( ). (A)01=--y x (B)01=+-y x (C)01=++y x (D)01=-+y x 10.下列函数在所给区间满足罗尔定理条件的是……………………( )(A) 2(),[0,3]f x x x =∈ (B) 21(),[1,1]f x x x=∈-(C) (),[1,1]f x x x =∈-(D) ()[0,3]f x x =∈ 二、填空题11、 设x x y 2sin 2+=,则=dy .12、已知x x y n ln )3(=-,(N n n ∈≥,3),则)(n y = .13、已知过曲线24y x =-上点P 的切线平行于直线x y =,则切点P 的坐标为 . 14. 已知2)1(='f ,则=-+-→2)1()(lim31x x f x f x .15. 设x a y =(0>a 且1≠a ),则=)(n y .16. 曲线3)1(-=x y 的拐点是 . 17.设函数)(x f 在0x 处可导,则xx x f x x f x ∆∆--∆+→∆)()(lim000= .18.设⎩⎨⎧≥+<=0)(x x a x e x f x ,当a =_____时,)(x f 在x = 0处可导.19.若函数5)(23-+-=x x ax x f 在),(+∞-∞上单调递增,则a 的取值范围为 .20. 设由参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x (其中0>a )确定的函数为)(x y y =,则=dxdy. 三、解答与证明题21.设e x x e y +=,求y '. 22.求下列函数的二阶导数.(1) 设x e y x sin =,求y ''. (2) 设1arctan1xy x-=+,求y ''23. 求曲线21x y =在点(4,2)处的切线方程和法线方程. 24. 讨论下列函数在点0=x 处的连续性和可导性:(1) 0 0 )1ln()(⎩⎨⎧<≥+=x x x x x f , (2) 0 tan 01sin )(2⎪⎩⎪⎨⎧≤>=x x x xx x f . 25. 求由方程ln xy x y x e -=所确定的隐函数y 的导数dxdy. 26. 求极限: (1)]1)1ln(1[lim 0x x x -+→; (2)30sin tan lim xx x x -→; (3))arctan 2(lim x x x -+∞→π; (4)x x x +→0lim ;(5))1sin 1(lim 0x x x -→; (6)200sin lim xdt t xx ⎰→. 27. 设函数)(x y y =由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求22dx yd .28.求函数()(f x x =-. 29. 求函数32332y x x x =-++的凹凸区间、拐点. 30. 已知点)3,1(为曲线1423+++=bx ax x y 的拐点. (1) 求b a ,的值; (2)求函数1423+++=bx ax x y 的极值. 31. 设11xy x-=+,求()n y 32.设b a <<0,证明:a b ab ba a --<+ln ln 222. 33. 设0,()(0)0,x f x f ≥=连续,0'()x f x >当时,存在且'()f x 单调增加,证明:当0x >时函数()f x x 单调增加.34. 证明:当0>x 时,x x x x<+<+)1ln(1. 35. 证明:当0x >时,有1x x x e xe <-<成立.第三章一、选择题:1.下列凑微分正确的一个是 ( ) A .)2(sin cos x d xdx = ; B. )11(arctan 2xd xdx += C .)1(ln x d xdx = D. )1(12x d dx x -=2.若⎰+=,)(c x dx x f 则⎰-dx x f )32(= ( )A .2-3x+c ; B. c x +-31; C. x+c ; D. c x +-2)32(213.在以下等式中,正确的一个是 ( ) A .⎰=')()(x f dx x f B. ⎰=')(])([x f dx x f C .⎰=)(])([x f dx x f d D. ⎰='')(])([x f dx x f 4. 设x x f 3sin )(=',则⎰dx x f )(是 ( )A .cos3x ; B. cos3x+c ; C.c x +-3cos 31; D.2193sin c x c x++- 5. 若,0(),0x x x f x e x ≥⎧=⎨<⎩,则21()d f x x -=⎰( ). A. 13e -- B. 13e -+ C. 3e - D. 3e + 6. 下列定积分是负数的是( )(A )dx x ⎰20sin π(B)dx x ⎰20cos π(C)dx x ⎰ππ2sin (D)dx x ⎰ππ2cos7. 若4)12(1=+⎰dx x a,则a = ( )(A) 3 (B) 2 (C) 0 (D) 48.若⎰∞-=31dx e kx ,则k=( ) (A)31 (B)-31(C) 3 (D)-3 9.=+⎰)1(212x dt t t dx d ( ) (A )x x+12(B) 212-+x x(C) 241x x + (D) 2512x x +10.若,21)(21)(0-=⎰x f dt t f x且1)0(=f ,则=)(x f ( ) (A)2x e (B)x e 21 (C)x e 2 (D)x e 221 二、填空题: 1.x d xdx 3(arcsin ________312=-).2.⎰=+________________912dx x .3.若⎰+=,3cos )(c x dx x f 则f (x )= .4. ⎰='____________________)()(22dx x f x xf . 5. F(x ) =dt t x ⎰+223,则=')1(F _________.6. 极限020cos d limxx t t x→⎰= ;7. 23423sin 1x e xdx x x -++⎰= 8.设()f x 连续,(0)1f =,则曲线0()d xy f x x =⎰在()0,0处的切线方程是 ;三、解答题:1、2x dx 2、⎰-+322x x dx3、⎰+dx x x214、422331.1x x dx x ⎛⎫++ ⎪+⎝⎭⎰ 5、cos 2.cos sin xdx x x -⎰6、dx x x ⎰-42 7、⎰-+211xdx8、⎰xdx x arctan 29、1x ⎰10、10d e ex xx-+⎰11、10x ⎰12、22()e d xx x x --+⎰;13.40d 1cos2xx xπ+⎰;14.41x ⎰;15.1d ln x x x+∞⎰16.2203sin d limx x t t x→⎰;17.求曲线xxe y e y -==,及直线1=x 所围成的平面图形的面积.18. 求由曲线)cos 2(2θ+=a r 所围图形的面积19. 由曲线2y x =和2x y =所围成的图形绕y 轴旋转后所得旋转体体积. 20. 计算曲线)3(31x x y -=上相应于31≤≤x 的一段弧的弧长大学数学A (1)复习题参考答案第一章一、选择题1、D2、A3、C4、B5、C6、B7、A8、C9、D二、填空题10、]3,0( 11、)1,1[- 12、x x21+ 13、)23(2353≠-+=x x x y 14、0 15、1 16、2 17、-1 18、e 19、0三、解答与证明题20(1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n )1113121211(lim +-++-+-=∞→n n n 1)111(lim =+-=∞→n n . (2)2111211lim12lim )12(lim=+++=+++=+-+∞→∞→∞→nn n n n n n n n n n . (3)因为 1212222222+≤++++++≤+n n n n n n n n n n n n ,而 11lim lim 2222=+=+∞→∞→n n n n n n n , 所以121lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n nn . (4)因为n nn n n nn n n nn 101010...101010...211010=+++<+++<=,110lim 10lim 1==∞→∞→nn nn ,故1010...21lim =+++∞→n n n n n .21(1)15723lim2323+++-∞→x x x x x 33115723lim x xx x x +++-=∞→53=.(2)331341lim 134lim 2222=++=++∞→∞→xx x x x x . (3)503020)12()23()32(lim ++-∞→x x x x 503020122332lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=∞→x x x x 503020)02()03()02(++-=3023⎪⎭⎫⎝⎛=. (4)11lim31--→x x x 1)1)(1(lim333231-++-=→x x x x x 3)1(lim 3321=++=→x x x .(5)12)42(lim 28lim2232=++=--→→x x x x x x . (6)112lim 131lim )1311(lim 2132131-=+++-=--++=---→→→xx x x x x x x x x x . (7))1(lim x x x -++∞→011lim=++=+∞→xx x .(8)11)1(lim ln )1(lim11=--=-→→x x x x x x x x .(9)0sin lim ln sin lnlim 00==→→xxx x x x . (10)x xx 3sin 2sin lim0→3232lim 32lim 00===→→x x x x . (11)30sin tan limx x x x -→30)cos 1(tan lim x x x x -⋅=→3202lim x x x x ⋅=→21=. (12)xx x 1)51(lim -→ xt 51-== tt t 511lim -∞→⎪⎭⎫ ⎝⎛+511lim -∞→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=t t t 5-=e .22 解 由题意知 0)2(lim 23=+-→a x x x ,即06232=+⨯-a ,从而3-=a .23 解 因1→x 时, 012→-x , 而函数极限存在, 则)1(0→→++x b a x即 0lim 1=++→b a x x从而01=++b a (1)故原式=)1)(1)(1(1lim 11lim121a a x x x x x a a x x x ++++--=-+-+→→ aa a x x x +=++++=→141)1)(1(1lim1即41141=+a(2) 由(1)(2)解得1,0-==b a .24 解 (1)因为 a x a x f x x =+=++→→)(lim )(lim 0,1lim )(lim 0==--→→x x x e x f ,而 ,)0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =,须且只须 1=a .所以当且仅当1=a 时,函数)(x f 在0=x 处连续.(2)因为 21111lim 11lim )(lim 00=++=-+=+++→→→x xx x f x x x , a x a x f x x cos )cos(lim )(lim 00=+=--→→,而 ,cos )0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =, 须且只须 21cos =a ,即32ππ±=k a )(Z k ∈. 所以当且仅当32ππ±=k a )(Z k ∈时,函数)(x f 在0=x 处连续.25 证 (1)令14)(23+-=x x x f ,则)(x f 在[0,1]上连续, 且,02)1(,01)0(<-=>=f f由零点定理知,),1,0(∈∃ξ使,0)(=ξf 即01423=+-ξξ,所以方程01423=+-x x 在(0,1)内至少有一个根.(2)设x e x f x3)(-=,则)(x f 在]1,0[上连续,且03)1(,01)0(<-=>=e f f ,故由零点定理知方程在)1,0(内至少有一个根.第二章一、选择题1、C2、D3、A4、C5、C6、B7、A8、D9、B 10、D 二、填空题11、dx x x )2cos 2(2+ 12、21x -13、)415,21(- 14、1215、n x a a )(ln 16、(1,0) 17、)(20x f ' 18、1. 19、),31(+∞ 20、t tcos 1sin -.三、解答与证明题21、解:1-+='e x ex e y .22、解:(1)(sin cos )xy e x x '=+,(sin cos )(cos sin )2cos x x x y e x x e x x e x ''=++-=.(2) 2111111x y x x x '-⎛⎫'=⎪+⎝⎭-⎛⎫+ ⎪+⎝⎭()()2222(1)1(1)(1)(1)1x x x x x x -+--+=⋅+++- 22212(1)(1)x x --==++()1211y x -'⎡⎤''=-+⎢⎥⎣⎦()()22222121x x x x -=+⋅=+23、解:2121-='x y ,所以4121)4(421=='=-x x y , 所以切线方程为)4(412-=-x y ,法线方程为)4(42--=-x y . 24、解:(1)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.10lim 0)0()(lim )0(00'=--=--=++→→+x x x f x f f x x ,10)1ln(lim 0)0()(lim )0(00'=--+=--=+-→→-x x x f x f f x x ,所以函数在0=x 处可导. (2)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.01sin lim 001sinlim 0)0()(lim )0(0200'==--=--=+++→→→+xx x x x x f x f f x x x , 10tan lim 0)0()(lim )0(00'=--=--=--→→-x x x f x f f x x ,所以函数在0=x 处不可导.25、解:两边同时对x 求导得,11ln ()xy y x y e y xy x ''--=+,所以,1ln xyxy yye x y x xe--'=+. 26、解:(1)原式=)1ln()1ln(limx x x x x ++-→=20)1ln(lim xx x x +-→=xx x 2111lim 0+-→=)1(21lim 0x x +→=21.(2)30sin tan lim x x x x -→=30)1cos 1(sin lim xx x x -→=x x x x x cos )cos 1(sin lim 30⋅-→121lim 320⋅⋅=→x x x x =21. (3))arctan 2(lim x x x -+∞→πx x x 1)arctan 2(lim -=+∞→π22111limxx x -+-=+∞→11lim 22=+=+∞→x x x .(4)xx x +→0lim =xx xx x x eeln lim ln 00lim +→+=→,0ln lim 0=+→x x x ,所以原极限10=e .(5))1sin 1(lim 0x x x -→ x x x x x sin sin lim 0-=→20sin lim xx x x -=→x x x 2cos 1lim 0-=→2sin lim 0x x →=0=. (6)2sin lim x dt t x x ⎰→=x x x 2sin lim 0→=21.27、解:22111221dy dy t dt t dx t dx dt t -+===+, 22221()12241d dy d y t dt dx dx t dx t dt t +===+.28、解:函数定义域为),(+∞-∞.'()f x =,令'()0f x =,得驻点1=x ,1x =-为不可导点.由上表可以看出,函数在),1(),1,(+∞--∞上单调上升,函数在(1,1)-上单调下降;函数在1-=x 处取得极大值0)1(=-f ,在1=x 处取得极小值343)1(-=f , 29、解:函数定义域为),(+∞-∞.2363y x x '=-+,666(1)y x x ''=-=-, 令0y ''=,得x =1.当1x >时,0y ''>;当1x <时,0y ''<,所以函数的拐点为(1,3),在(-∞,1)上是凸的;在(1,+∞)上是凹的. 30、解:(1)b ax x y ++='232,a x y 26+=''.由条件,有⎩⎨⎧+=+++=ab a 2601413,解得9,3-=-=b a .(2)149323+--=x x x y ,函数定义域为),(+∞-∞.)3)(1(3963)(2-+=--='x x x x x f ,)1(666)(-=-=''x x x f .令0)(='x f ,得稳定点 11-=x ,32=x . 又012)1(<-=-''f ,012)3(>=''f故149323+--=x x x y 在点1-=x 处取极大值,极大值为19)1(=-f , 在点3=x 处取极小值,极小值为13)3(-=f .31. 解:122111x y x x--+==-+++()2121(1)y x '=-+,()()()312121y x ''=--+ ()()()41212(3)1y x '''=---+…… ()n y()()1121!1nn n x +=-+32. 证明:令x x f ln )(=, 则)(x f 在],[b a 上连续,在),(b a 内可导.所以由Lagrange 中值定理知,),(b a ∈∃ξ,使)()()(ξf ab a f b f '=--,即ξ1ln ln =--a b a b .又由),(b a ∈ξ,故22211ba ab +>>ξ.. 即222ln ln ba aa b a b +>--. 33. 证明:1)令()(0)f x F x x x=>()2'()()(2)'()xf x f x F x x-=2(0)0'()[()(0)]f xf x f x f x =-- 2'()'()(0)xf x xf x xξξ-<<微分中值定理 '()'()f x f xξ-=当0x >时,'()f x 单调增加 ∴'()'(),'()'()0f f x f x f ξξ<->即故有()'()0.(0,)f x F x x>+∞即在单调增加 34. 证明:令)1ln()(u u f +=,则)(u f 在],0[x 上满足Lagrange 中值定理条件,故),0(x ∈∃ξ,使)0)(()0()(-'=-x f f x f ξ,即)0(11)01ln()1ln(-+=+-+x x ξ,即ξ+=+1)1ln(x x . 又由),0(x ∈ξ,故x xx x <+<+ξ11,即x x xx <+<+)1ln(1. 35. 证明:令()[],0,t f t e t x =∈,()t f t e =在[]0,x 应用拉格朗日中值定理 ()00,0x e e e x x ξ-=-<ξ<x e 是单调增函数,0x e e e ξ∴<<,故有1xxx e xe <-<,0x > 证毕第三章一、选择题1-5 DCBDA 6-10 CBCDC 二、填空题 1.3 2. 11arctan 33x C + 3. -3sin3x 4. 221()+C 4f x5. -2 6. -1 7. 0 8.y x =三、解答题1. 572222=557x dx x dx dx x x C --=-+⎰⎰2.2111=23(3)(1)41311ln ||43dx dx dx dx x x x x x x x Cx ⎛⎫=- ⎪+-+--+⎝⎭-=++⎰⎰⎰⎰3. 22221(1)1=ln |1|+C 1212x d x dx x x x +=+++⎰⎰ 4. 42232233113arctan .11x x dx x dx x x C x x ⎛⎫++⎛⎫=+=++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰5.22cos 2cos sin (cos sin )sin cos .cos sin cos sin x x x dx dx x x dx x x C x x x x-==+=-+--⎰⎰⎰ 6.dx x x ⎰-42=c xx +--)2arccos 24(tan 227.⎰-+211xdx =cxx x +-+-211arcsin8.⎰xdx x arctan 2=c x x x x +++-)1ln(6161arctan 312239.令t x tan =,则1x ⎰=3344111cos d ln sin 21cos t t t t ππππ-=+⎰=10. 10d e e x x x -+⎰=112200e 1d de e 1e 1x x x x x =++⎰⎰1arctan(e )arctan e 4xπ==-11.10x ⎰=102⎰2121216π===⎰12. 22()e d xx x x --+⎰=22220002e d 2de 2e2e d xxx x x x x x x ----=-=-+⎰⎰⎰262e =-13.40d 1cos2x x x π+⎰=442001d d tan 2cos 2x x x x x ππ=⎰⎰ 444000111ln 2tan tan d lncos 228284x x x x x πππππ=-=+=-⎰14. 41x⎰412ln x =⎰4112x x ⎤=-⎥⎦⎰124ln 2x ⎡⎤=-⎢⎥⎣⎦⎰ 14218ln 22d x x -=-⎰8ln24=-15. ee 11d d(ln )ln(ln )ln ln e x x x x xx +∞+∞+∞===+∞⎰⎰ 16. 22220322000sin d 2sin 22(2)8=333lim lim lim x x x x t t x x x x x →→→==⎰17.如图所示,解方程组xxy e y e -⎧=⎨=⎩,得交点(0,1),所求面积为11100()d []2x x x x A e e x e e e e---=-=+=+-⎰18.解:∵1D :⎩⎨⎧+<<<<)cos 2(200θπθa r∴12220141122[2(2cos3)]4[4(sin 3sin 6)1823212D D S S a d a a ππθθπθθθπ==+=+++=⎰19. 思路: 该平面图形绕y 轴旋转而成体积V 可看作1D :⎩⎨⎧≤≤≤≤yx y 010绕y 轴旋转而成的体积1V ,减去2D :⎩⎨⎧≤≤≤≤2010y x y 绕y 轴旋转而成的立体体积2V 所得,见图解: πππ103)()(102221021=-=-=⎰⎰dy y dy y V V V20.解:12y '==, ∴3432322(21)214)1(113123313122-=+=+=-+='+=⎰⎰⎰x x dx x x dx x x dx y s ba。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln lnx+2x-2x+22-x2.()002lim1cos tt xx e e dtx-→+-=-⎰( )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导 5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________.7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞=9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________. 11.函数3229129y x x x =-+-的单调减少区间是___________. 12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6aa π==⎰则___________. 14.设2cos xz y=则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.a ⎰20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
上海交通大学第一学期高数a类期末考试题及答案解析一、单项选择题(每小题3分,共15分)1. 已知 x=0 是 f\left( x \right) =\frac{x+b\ln\left( 1+x \right)}{ax-\sin x} 的可去间断点,则 a,b 的取值范围是()解:2. 下列反常积分中,收敛的是()解:3. 设函数 f(x) 在区间 [-a,a] 上二阶可导,且 f\left( x \right) >0,f'\left( x \right) >0,f''\left( x \right) <0 ,下列函数中,在区间 [-a,a] 上恒正、单调递减且为下凸函数的是()解:4. 积分 \int_0^{\pi}{|\sin \left( 4x+1 \right)|\mathrm{d}x}= ()解:5. 设函数 f(x) 在 R 上连续, g\left( x \right)=\int_0^{x^2}{\mathrm{e}^{-t^2}\mathrm{d}t} .对于两个命题:①若 f(x) 为偶函数,则 F\left( x \right)=\int_0^x{f\left( t \right) g\left( t \right)\mathrm{d}t} 为奇函数;②若 f(x) 为单调递增函数,则 G\left( x \right)=\int_0^x{\left( f\left( x \right) -f\left( t \right) \right) g\left( t \right) \mathrm{d}t} 存在极小值.下列选项正确的是()解:二、填空题(每小题3分,共15分)6. 设 f\left( x \right) =x\mathrm{e}^x, 则曲线 y=f(x) 的拐点是_____________.解:7. 直线 L_1:\frac{x-1}{-1}=\frac{y}{-4}=\frac{z+3}{1} 和 L_2:\frac{x}{2}=\frac{y+2}{-2}=\frac{z}{-1} 的夹角为_____________.解:8. 设函数 f\left( x \right) =\mathrm{arctan} x ,常数a>0 ,若 f\left( a \right) -f\left( 0 \right)=f'\left( \xi \right) a\,\,, 则 \underset{a\rightarrow 0^+}{\lim}\frac{\xi ^2}{a^2}= _____________.解:9. 极坐标曲线 r=2cos3\theta 上对应于\theta=\frac{5}{6}\pi 的点处的切线方程为_____________.解:10. 一阶常微分方程 y'\left( x \right) =\frac{y}{x+y^2} 的通解为_____________.解:视为关于 x 的一阶线性微分方程,然后利用公式直接求解即可:\frac{\mathrm{d}x}{\mathrm{d}y}=\frac{x}{y}+y\Rightarr ow x=y^2+Cy三、(本大题共8分)11. 设 y=y(x) 是由方程 y^3-2x\int_0^y{\sin^2t\mathrm{d}t=x+\pi ^3} 所确定的可导函数,求\frac{\mathrm{d}y}{\mathrm{d}x}\mid_{x=0}^{} .解:。
考研高数a真题及答案解析A真题及答案解析考研数学是研究生招生考试中不可或缺的一项科目,而高等数学A部分更是其中最为关键的知识点。
为了帮助考生更好地备考,我们将为大家提供一道典型的高数A真题及答案解析。
首先,让我们来看一下这道真题:【题目】设函数f(x)在区间[a,b]上可导,且f(a)=f(b)=0,证明存在一点ξ∈(a,b),使得f′(ξ)=f(ξ)。
接下来,我们将逐步解析这道题:1. 首先,我们需对问题进行分析,理解题目的意思。
题目要求我们证明在函数f(x)在区间[a,b]上可导的前提下,存在一个点ξ使得f′(ξ)=f(ξ)。
2. 接下来,我们需要考虑如何使用中值定理来证明这个结论。
根据中值定理,如果一个函数在某个区间上可导,并且在区间的两个端点上取到相同的函数值,那么在这个区间内必定存在一个点,使得其导数等于函数值。
3. 现在,我们可以开始着手证明了。
首先,我们设h(x) = f(x) - f′(x),这样我们的目标就是要证明在某个点ξ上,h(x)等于零。
4. 由于f(x)在区间[a,b]上可导,那么h(x)也在这个区间上可导。
根据导数的定义,我们可得h′(x) = f′(x) - f′′(x)。
5. 接下来,我们来观察h′(x)的值。
由于f′(x)可导,则h′(x)也可导。
我们在这里使用了函数的可导性的性质,即如果一个函数在某个点可导,则它在这个点的左右导数存在且相等。
6. 根据题设,我们知道f(a) = 0,因此h(a) = f(a) - f′(a) = 0 - f′(a) = - f′(a)。
同样地,我们可得h(b) = - f′(b)。
7. 现在,我们来分析h(a)和h(b)的符号。
根据题设可知f(a) = f(b) = 0,即f(a)和f(b)都等于零。
因此,我们可以得出结论:h(a)和h(b)的符号相反。
8. 根据导数的连续性,我们可以知道在区间[a,b]上,h(x)的符号一定发生了改变,即h(x)在这个区间内至少存在一个根。
(答案要注明各个要点的评分标准)一、填空题(每小题3分,共15分)1、32xy ; 2、212xxC eC e -+;3、0; 4、32R π; 5、11()!n n x x n ∞+=-∞<<+∞∑。
二、选择题(每小题3分,共15分)B ; A ; D ; B ; C三、计算题(每小题7分,共21分)1、解:dz z z dydx x y dx ∂∂=+∂∂ -----------------3分 11xe x y=+⋅ -----------------3分 1x x+=-----------------1分 2、解:212022yy Dxydxdy dy xydx -=⎰⎰⎰⎰-----------------3分12350(44)y y y y dy =-+-⎰ -----------------3分34=-----------------1分 3、解:xdydz ydzdx zdxdy ∑++⎰⎰(111)dxdydz Ω=++⎰⎰⎰ -----------------5分36π= -----------------2分四、计算题(每小题7分,共21分) 1、解:补充1:0, :11L y x =-→,11()()()()x y x y L LL e y dx e x dy e y dx e x dy +=+-+-+-+⎰⎰ 原式 -----------------2分112x Ddxdy e dx -=--⎰⎰⎰ -----------------4分1e e π-=--+ -----------------1分2、解:cos cos sin ()xdx xdxx y e e e dx C --⎰⎰=+⎰ -----------------4分sin ()x e x C -=+ -----------------3分3、(1)解:(1,1,2)(1,1,2)(,,)f f f gradf x y z i j k x y z ⎛⎫∂∂∂=++ ⎪∂∂∂⎝⎭ -----------------2分42i j k =++-----------------1分(2)设其方向为l ,与l 同向的单位向量为:11(cos,cos,cos )()34322πππ= -----------------1分(1,1,2)(1,1,2)1122ff f f lx y z ⎛⎫∂∂∂∂=⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭ -----------------1分11421222=⨯+⨯+⨯1(52=+ -----------------2分 五、计算题(每小题8分,共16分) (1)解: 收敛半径1l i m1n n R n→∞+==, ---------------1分当1x =时,级数1n n ∞=∑发散; ---------------1分当1x =-时,级数11(1)n n n ∞-=-∑发散; ---------------1分故收敛域为(1,1)-。
高数A (一)习题答案习题2-1 (A)1.63. 4. (1) ;)(0x f ' (2) ;)(0x f '- (3) ;)0(f ' (4) .)(20x f '5. (1);54x (2);3231-x (3) ;3.231.x (4) 32--x ; (5) 2527x ; (6) 1013x 103--.6. (1) 19.6 米; 19.6 米/秒 .7. 切线方程 ,0632=--+πy x法线方程 .03232=-+-πy x 8.(2,4).9. (1)在0=x 连续且可导; (2)在0=x 连续且可导. 10. ;0)0(='+f ;-1)0(='-f )(x f 在点0=x 处不可导.习题2-1 (B)4.e1. 7. 0)0(='f .习题2-2 (A)1.(1) 33464xx x --; (2) 21232121----x x ; (3) x x sin 5cos 3+;(4) x x x x x x tan sec cos sin 22++; (5) 1ln +x ; (6)x x x x x22csc sec tan 21-+; (7) 2ln log 22xx x +; (8) b a x --2; (9)2)cos 1(1sin cos x x x +++;(10)2sin cos x xx x -; (11)2ln 1xx- (12)3)2(xe x x-; (13) x x x x x x x x sin ln cos cos ln 22⋅⋅-+⋅⋅;(14) x x cos 2;2. (1) 218332ππ-; (2) )42(22π-; (3) 181-;(4) 1517)2(,253)0(='='f f . 3. 3t 2t ==或.4. 切线方程 x y 2=,法线方程 x y 21-=.5. (1) 410; (2) 0 ; (3) 410- .13.(1)4)32(10+x ; (2) )31(cos 3x --; (3)212x x+; (4) a a e xxln +; (5)22)110(ln10102e 2+⋅+-x x x x x ; (6) 4x12-x ; (7) 222sin x a x x ---; (8) )(sec 3322x x ;(9) x2x ee +1; (10) a x x x 2ln )1(12+++. 14.(1) 322)41(38-+x x ; (2) )2(cos 2ln 2x x ⋅(3) x e x e xx 3sec 33tan 21222--+-; (4) 122-x x x ;(5)x xarctan 122+; (6)xxx-33sin 3ln 3cos 3;(7)221xx -; (8)22xa +1;(9) sec x ; (10) csc x .15.(1) )(cos 22cos 22x x x-; (2) csc x ; (3)2ln 22)1(22arctanx xx x x e ++; (4))(ln ln ln 1x x x ;(5)22)arccos (12x x x-; (6) -2sec2x .16.(1) cosh(cosh x )sinh x (2))(ln cosh 12x x ; (3) (3sinh x +2)sinh x cosh x (4) ⎪⎭⎫ ⎝⎛+a x a 1x e x cosh 2sinh 22cosh ; (5) )1(cosh 222x x --; (6) 22224++x x x;(7)1242-x x e e ; (8) x 3tanh .17. (1))32(2x x +; (2) )3sin 93cos 7(x x e x --;(3) 2ln 2cos 2sin 2ln 2sin xxxx +; (4)222)arcsin (1arcsin 1x x x -x x --;(5)1ln 1+-n x x n ; (6) 3xx arctan 962+;(7) x cosh 12; (8) 222arctan2x)()4x 1()4x 1(2arctan2x )4x 1(4++-+.习题2-2 (B)1. (1)22)1(2x x-; (2) 23323)2()321()(-)2()211(x x-x-x x x x-x++;(3) )cos (cos )cos sin ()cos (sin )sin (sin αx x αx x x x x α++++-;(4) 23)cos 1(sin 2sin )cos 1(x xx x +++; (5) 22)tan (sec 2-tan 2x x x x x +;(6) )sec 2()ln 2(cos )tan (cos 1)tan ()ln 2(sinx 222x x x x x x x xx x x +-++-+--;(7) )49283(224+-x x x ; (8))ln (1x x 2-+.2.2)()(d xx g x g x dx y -'=. 3. 切线方程:022=--y x 和 022=+-y x .6. (1) 400英尺;(2) v(2) = 96英尺/秒 ; v(8) = - 96英尺/秒 ; (3) 10秒 7. (1) )()(e ()()(x x x f x f x e f x f e )e f e '+'; (2) )()]([x f x f f '';(3) x x f x x f )sin2(cos )sin2(sin 22'-'; (4) )(n n 1n b ax f x a -+'. 8. (1))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'-'=. (2))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'+'=. 9. x21)(='x f ; 21)21(='f .10. x xx f 121)(3---='. 12. (1) 211x +; (2)xx x xxx +++++2)21(1211; (3) 242x -;(4) xx x 2455ln 212⋅++; (5) a b a b x b b a a x a b xa b ln 11⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-;(6) ()2111ln ln a aa x axa xa a x a a x a a +-+-++; (7) 222-1)(1)-(12xx x +;(8) x e x x 1sin 222sin-; (9) 3/22)(1arcsin x x x -; (10) xx x x 21254e11ln55151++--. 13. )1(sin )1(sin 1cos 22x f x f x x'-. 14.)(22x xcos dx y d =; )()(22x cos x d y d =; )(32)(23x cos x x d y d =. 15. )2arcsin()]([x x f ='ϕ; 411)]([xx f -='ϕ; 412])]([[xx x f -='ϕ.16.1sin cos 222+πππe e e .17.)()1(2x 2x xe sin x xe dx yd +=. 18. 2e .习题2-3 (A)1. (1) 214x-; (2) x e 214-; (3) x x x sin cos 2-; (4) x exsin 22-; (5) 2/3222)(x a a --; (6) 232)1(/x x +-; (7) )23(222x xe x +; (8) 3)22(xx x e 2x +--; (9) x x tan sec 22; (10) 212tan 2xxx arc ++.习题2-3 (B)1. (1) n! (2) 1)1(!2)1(+--n nx n (3) )2(!)2()1(1≥---n xn n n ;(4) ]2)1(2[21π-+n x sin -n ; (5) )(n x e x +;(6) ])1(1)2(1[!)1(11++----n n n x x n ; (7) ])(1)()1([!)1(1nn n nbx a bx a b n -++---; (8) n m x n mm m m -++---1)1()11()21()11(1 ;(9) ]22[2π⋅+-n x cos n(10) 11)21(!2+--n n x n 2. (1) x cos e y x 4)4(-=; (2) x cosh xsinhx y 100)100(+=; (3) )2sin 212252cos 502sin (2250)0(x x x x x y 5++-=; 3. (1) )()(222x f 4x x f 2''+'; (2) 22x f x f x f x f )]([)]([)()('-''. 5. 21+=x y , 3x y )2(2+=''. 7. 0=+y dt yd 22.8. 0=+y dt yd 22.习题2-4 (A)1.(1) x y y -; (2) ax y x ay 22--; (3) yy xe e +-1; (4) y x y x e x y e ++-- (5) )(1)(11xy cos x yxy cos y x +-+ (6) )(1)(2222y x f 2y y x f 2x +'-+'. 3. 切线方程:022=-+a y x ; 法线方程:0=-y x .4. (1) ]1)1([)1(222x2xsinxx cos ln cosx x sinx +++⋅+; (2) ]2222[)(2x cot x sec cosx x tan ln sinx tanx cosx ⋅⋅+⋅-;(3) ]163112[)1(3)1(232x xx x x x x 2++--++-+; (4)])(251121[2)1(3122x x x x x x x 35-+++-+; (5) ])1(21[121xx xe e cotx x e sinx x --+-; (6) )1()1()(1lnx x lnxlnlnx lnx 2x x-++-;(7) )1(1+++-lnx x ln x x x ππππ;(8) ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛x a b b a ln a x x b b a ba x .5. (1)t 2a 3b dx y d =; (2) t cos 2cos2tdx y d =; (3)ϕtan dxy d -=; (4) θθθθθθcos -sin -sin -cos dx y d 1=. 6. (1) 切线方程:042=-+y x ; 法线方程:032=-+y x . (2) 切线方程:01234=-+a y x ; 法线方程:0643=+-a y x .习题2-4 (B)1. (1) )()()()()()()(x ln x x ln x x ln x x 2ϕϕψϕϕψψ'-';(2) )()()()()()()()()(x x x ln x x x x x 2x ψϕψψϕϕψψϕ'-'. 2. ye e x y d dx yx y x --=++.3. (1) θθa sec dx y d 222=; (2) )(1t f dxy d 22''=;(3) )1(2222t t 6dyx d +=; (4) )1(832533t t dx y d +-=;(5) 343381tt dx y d -=; 4.4π. 5. 2e .6. 0 .8. (1) a (1)= - 6 (m/s 2) ; a (3)= 6 (m/s 2 ). (2) |v(2)| = 3 (m/s) ;9. 144π (m 2/s)10. 20402516.π≈(m/min). 11.640225144.π=(cm/min).12. 70 英里/小时. 习题2-5 (A)2. (a ) 0dy y 0dy 0y >->>∆∆,,;(b ) 0dy y 0dy 0y <->>∆∆,,; (c ) 0dy y 0dy 0y <-<<∆∆,,; (d ) 0dy y 0dy 0y >-<<∆∆,,.3. (1) dx x x)12(3+-; (2) dx x x x )2cos 22(sin +; (3) dx e x x 2x )1(2+; (4)dx xx412+-; (5) dx x x e x )]cos(3)[sin(3----; (6) dx x x x )21(sec )21(tan 8223++;(7)dx x xx 222)]1([ln 16---; (8)dx x x x xxx +++++2)211(211.4. (1)dx xy x +--182; (2) dx y x csc )(2+-; 5. (1) C x +2; (2) C x +223; (3) C t sin +; (4) C t cos 1+-ωω;(5) C x ++)(1ln ; (6) C e x +--221; (7) C x +2; (8) C x +3tan 31.习题2-5 (B)1. h R 0π2.2. 7683,4,0010,.V l .r l r V 2='===∆π, 0037680.dV V =≈∆; 用铜约为033550.(克).3. 0021021603.π-≈-. 4. 050.T =∆(秒),设摆长约需加长 d l , d l 2292140050..≈⨯=π(厘米) .5. R 约增加了43.63 cm 2, 扇形面积约增加了 104.72 cm 2 .6. (1) 0. 87476 ; (2) - 0. 96509 .7. (1) 7430''o ; (2) 260'o .8. (3) 01309054tan .≈'; 0020)0021(ln ..≈.9. (1) 9.9867; (2) 2.0052 .总复习题二一、1. B 2. D 3. A 4. A 5. D 二、1. 充分; 必要; 充要.2. t 2e t t f =)(, t 2e 2t t f )1()(+='.3.1)1='-0(x f . 4. 1+=x y . 5. b. 6. [10, 20] .三、1. 212xx y +='.2. (1))]}([)]([)]([)({)]([)(2222222222x f sin x f x f cos x f x 4x f cos x f dx yd 2'-''+'=;(2) )(4)(2)()(2)]([2222222x f x x f x f x f x f dxyd ''+'+''+'=.3.xx ydx y d ln 2-=. 4. 32222)1ln ()1ln ()1ln (++-+=y xy x x y y dx y d . 5. 322)1(f f dx y d '-''=. 6. ⎪⎩⎪⎨⎧>-<≤<='1,110,20,3)(2x x x x x x f7. (1)⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0,21)0(0,)1()()()(2x g x x e x x g x g x x f x;(2) )(x f ' 在 ),(∞+-∞上是连续函数。
《高等数学教程》第一章 习题答案习题1-1 (A)1.(1)),2()2,1()1,(+∞⋃⋃-∞ (2)]1,0()0,1[⋃-(3)),1()1,1()1,(+∞⋃-⋃--∞ (4)πk x ≠且),2,1,0(2±±=+≠k k x ππ (5)),2,1,0()352,32( ±±=++k k k ππππ(6)]3,1[- 2.202)(6,916,6h x +++ 3.0,22,22,21 5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数(6)当)(x f 为奇函数或偶函数时,该函数为偶函数;当)(x f 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数6.(1)是周期函数,π2=T (2)是周期函数,4=T (3)是周期函数,4=T (4)不是周期函数7.(1)a cx b dx y -+-=(2)2arcsin 31xy = (3)21-=-x e y (4)xxy -=1log 2(5)2xx e e y --=8.(1)2,x a u u y -== (2)2,x u e y u == (3)cos ,lg ==u u y (4)x v tgv u u y 6,,2=== (5)21,,cos ,xw e v v u arctgu y w -==== (6)22,ln ,ln ,x w w v v u u y ====9.(1)]1,1[- (2) zk k k ∈+])12(,2[ππ (3)]1,[a a --(4)若210≤<a ,则]1,[a a D -=;若21>a ,则=D Ф. 10.4)]([x x =ϕϕ,xx 22)]([=ψψ,x x 22)]([=ψϕ,22)]([x x =ϕψ. 11.1,4-==b a12.⎪⎩⎪⎨⎧>-=<=0,10,00,1)]([x x x x g f ,⎪⎪⎩⎪⎪⎨⎧>=<=-1,1,11,)]([1x e x x e x f g13.)20(,])2([22r h h r h V <<-=π14.πααπααππ20,4)2(242223<<--=r V 15.),2(,])[(32232+∞--=r r r h h r V π16.(1)⎪⎩⎪⎨⎧≥<<⋅--≤≤=1600,751600100,01.0)100(901000,90x x x x p(2) ⎪⎩⎪⎨⎧≥<<-≤≤=-=1600,151600100,01.0311000,30)60(2x x x x x x x x p p(3)21000=p (元)习题1-1 (B)1.)(x f 为偶函数.2.41)1(,2)(222-+=--=xx xx f x x f 3.⎩⎨⎧≥<=0,0,0)]([2x x x x g f ,⎩⎨⎧≥<=0,0,0)]([2x x x x f g4.22123x x ++ 8.⎩⎨⎧-≤-<<--=-1,101,1)(x x e x f x9.]0,(,)1ln()(-∞-=x x g10.奇函数,偶函数,偶函数,偶函数. 12.1)2005(=f习题1-2 (A)1.(1)121+n ,0 (2)11)1(1+-+n n ,0 (3)2+n n,1 (4)1)1()1(+-⋅+n n ,没有极限(5)222)1(1)1(2)1(1+++++++n n n n ,21 (6)2)2)(1()1(++-n n ,没有极限.2.(1)17; (2)24; (3)]3[ε3.0,]1[ε习题1-3 (A)3.0002.0=δ4.397≥Z6.1)(lim )(lim 00==+-→→x f x f x x ,1)(lim 0=→x f x 1)(lim 0-=-→x x ϕ,1)(lim 0=+→x x ϕ,)(lim 0x x ϕ→不存在.习题1-4 (A)3.(1)0; (2)0; (3)04.0lim 1=-→y x ; ∞=→y x 1lim 习题1-4 (B)3.x x y cos =在),(+∞-∞上无界,但当+∞→x 时,此函数不是无穷大. 5.当1,0==b a 时,)(x f 是无穷小量; 当b a ,0≠为任意实数时,)(x f 是无穷大量.习题1-5 (A)1.(1)0; (2)1; (3)1; (4)103; (5)231aa -; (6)23x ; (7)34; (8)1-. 2.(1)43-; (2)0; (3)∞; (4)41-;(5)503020532⋅; (6) 41-.3.(1)⎪⎩⎪⎨⎧>-=<<1,11,010,1a a a ; (2)3; (3)34; (4)21-4.(1)10; (2)2)(m n mn -; (3)n m; (4)0; (5)0; (6)21; (7)43; (8)21.习题1-5 (B)1.(1)2; (2)21-; (3)561-; (4)2)13(2-a (5)23; (6)⎪⎩⎪⎨⎧<∞=>2,2,12,0k k k ; (7)2; (8)0 .2.1,1-==βα3.9=a4.1,1-==b a5.不一定.习题1-6 (A)1.(1)2; (2)3; (3)21; (4)-1; (5)a cos ; (6)2π; (7)1; (8)2; (9)1; (10)x . 2.(1)1-e ; (2)2e ; (3)2-e ; (4)2-e ; (5)1-e ; (6)2e .习题1-6 (B)1.(1)21; (2)π2; (3)1; (4)0;(5)0; (6)1; (7)0; (8)1-e . 2.(4)3; (5)251+. 习题1-7 (A)1. 当0→x 时,34x x -比32x x +为高阶无穷小.2. (1)同阶,但不是等价; (2)同阶,且为等价.3.21=α 4.m =α6.(1)23; (2)⎪⎩⎪⎨⎧>∞=<nm n m nm ,,1,0; (3)21;(4)21; (5)b a ; (6)41.习题1-7 (B)1.(1)32; (2)2e ; (3)21; (4)0; (5)1; (6)41-; (7)∞; (8)1. 5.x x x x p 32)(23++=. 6.a A ln .习题1-8 (A)1.1=a2.)(x f 在0=x 处连续3.(1)1=x 为可去间断点,补充2)1(-=f2=x 为第二类间断点(2)0=x 和2ππ+=k x 为可去间断点,补充0)2(,1)0(=+=ππk f f ;)0(≠=k k x π为第二类间断点.(3)1=x 为第一类间断点 (4)0=x 为第二类间断点.4.(1)1=x 为可去间断点,补充32)1(=f ;(2)0=x 为可去间断点,补充21)0(=f ;(3)1=x 为可去间断点,补充2)1(π-=f ;0=x 为第二类间断点;(4)2=x 为可去间断点,补充41)2(=f ;0=x 为第一类间断点;2-=x 为第二类间断点. (5)0=x 为第一类间断点; (6)a x =为第一类间断点; (7)1=x 为第一类间断点; (8)1-=x 为第二类间断点.习题1-8 (B)1. 1±=x 为第一类间断点.2. 1,0==b a3. 25=a 4. ),2,1,0(22 ±±=-=n n a ππ5. 0,=-=b a π6. (1)当1,0≠=b a 时,有无穷间断点0=x ; (2)当e b a =≠,1时,有无穷间断点1=x .习题1-9 (A)1.连续区间为:),2(),2,3(),3,(+∞---∞21)(l i m 0=→x f x ,58)(lim 3-=-→x f x ,∞=→)(lim 2x f x .2.连续区间为:),0(),0,(+∞-∞.3. (1) -1; (2) 1; (3) h ; (4) -1; (5) 22-; (6) -2; (7) 1; (8) 1; (9) ab ; (10) 5e ; (11) -1; (12) 2. 4. 1=a 5. 1=a习题1-9 (B)1. (1)0=x 为第一类间断点; (2)1-=x 为第一类间断点; (3)0=x 为第一类间断点; (4)1±=x 为第一类间断点; (5)无间断点.2. 1,0==b a3. (1)1-e ; (2)21-e ; (3)a e cot ; (4)0;(5)0; (6)-2; (7)21; (8)82π.4.21总复习题一一. 1. D 2. D 3. D 4. B 5. C 6. D 7. D 8. C 9. D 10. D二.1. ⎪⎩⎪⎨⎧≥<-=-0,0,)(22x x x x x x f2. ]2,2[,)1arcsin(2--x3. -14. 必要,充分5. 必要,充分6. 充分必要7.21 8. b a = 9.56 10. 第二类,第一类 三. 1. 11)(-+=x x x ϕ 2. 20051,20052004=-=βα 3. 1lim =∞→n n x 4. 4 5. 4e 6. -50 7.a ln 218. 当0≤α时,)(x f 在0=x 处不连续;当1,0-=>βα时,)(x f 在0=x 处不连续; 当1,0-≠>βα时,)(x f 在0=x 处不连续. 9. 82-部分习题选解 习题1-2 (B)1. 根据数列极限的定义证明:(1))0(1lim 时>=∞→a a nn证明:(ⅰ) 0>∀ε当1>a 时,令)0(1>+=n n n h h a n nn n n n n nh h h n n nh h a >++-++=+=∴ 22)1(1)1( εεan na h n ><<<∴0∴取1][+=εaN ,当N n >时,有ε<<=-nah a n n 1,即1lim =∞→n n a(ⅱ)当1=a 时,显然成立. (ⅲ)当10<<a 时,令11>=ab ∴11lim lim ==∞→∞→nn nn ab∴1lim =∞→nn a 综合(ⅰ),(ⅱ),(ⅲ),∴当0>a 时,有1lim =∞→nn a . 习题1-6 (B)3.设0,00>y x ,n n n y x x =+1,21nn n y x y +=+. 证明:n n n n y x ∞→∞→=lim lim 证明:2nn n n y x y x +≤),2,1,0(011 =≤≤∴++n y x n nnnn n n n nn n n n n y y y y x y x x x y x x =+≤+==≥=∴++2211),2,1,0( =n 由此可知数列}{n x 单调增加,数列}{n y 单调减少, 又011110y y y y x x x x n n n n ≤≤≤≤≤≤≤≤≤++ ∴}{n x 与}{n y 都是有界的.由“单调有界数列必有极限”准则, ∴}{n x ,}{n y 都收敛.设b y a x n n n n ==∞→∞→lim ,lim由21n n n y x y +=+,2lim lim n n n n n y x y +=∴∞→∞→ b a b a b =⇒+=∴2即n n n n y x ∞→∞→=lim lim . 习题1-10 (B)3.设函数)(x f 在]1,0[上非负连续,且0)1()0(==f f ,试证:对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=. 证明:令)1,0(,)()()(∈∀+-=l l x f x f x F )(x f 在]1,0[上连续,)(l x f +在]1,[l l --上连续, )(x F ∴在]1,0[l -上连续.又 0)1()1()1()1(0)()()0()0(≥-=--=-≤-=-=l f f l f l F l f l f f F )0)((≥x f 0)1()0(≤-⋅∴l F F(ⅰ)若0)0(=F ,取00=x ,即)()0(l f f = (ⅱ)若0)1(=-l F ,取l x -=10,即)1()1(f l f =- (ⅲ))01(,0)0(≠-≠l F F 0)1()0(<-⋅∴l F F 由零点存在定理,必存在一点]1,0[0l x -∈,使0)(0=x F , 即)()(00l x f x f +=.综合(ⅰ),(ⅱ),(ⅲ),对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.总复习题一三.11.设)(x f 在],[b a 上连续,且)(x f 在],[b a 上无零点. 证明)(x f 在],[b a 上不变号.证明:(反证法)假设)(x f 在],[b a 变号, 即],[,21b a x x ∈∃,使0)(,0)(21<>x f x f 即0)()(21<⋅x f x f )(x f 在],[b a 上连续,∴)(x f 在],[21x x 上连续. 由零点存在定理知,),(),(21b a x x ⊂∈∃ξ,使0)(=ξf 即ξ是)(x f 在],[b a 上的一个零点. 这与)(x f 在],[b a 上无零点矛盾, )(x f ∴在],[b a 上不变号.。
《高等数学a》综合练习题高等数学A综合练习题答案1.求函数 f(x) = 3x^2 - 2x + 1 的导数。
答:f'(x) = 6x - 22.求函数 f(x) = ln(x^2 + 1) 的导数。
答:f'(x) = (2x) / (x^2 + 1)3.求函数 f(x) = e^x * sin(x) 的导数。
答:f'(x) = e^x * sin(x) + e^x* cos(x)4.求函数 f(x) = x^3 - 3x^2 + 5x - 2 的极值点。
答:f'(x) = 3x^2 - 6x+ 5 令 f'(x) = 0,解得 x = 1 f''(x) = 6x - 6 f''(1) = 0 所以 x = 1 是 f(x) 的极值点。
5.求函数 f(x) = x^3 - 2x^2 + x 的最大值和最小值。
答:f'(x) = 3x^2 -4x + 1 令 f'(x) = 0,解得 x = 1/3 或 x = 1 f''(x) = 6x - 4 f''(1/3) = -2/3 f''(1) = 2 所以 x = 1 是 f(x) 的最小值点,最小值为 f(1) = -4/3 x = 1/3 是 f(x) 的最大值点,最大值为 f(1/3) = 2/276.求函数 f(x) = 2x^3 - 3x^2 - 36x 的拐点。
答:f''(x) = 6x - 6 令f''(x) = 0,解得 x = 1 f'''(x) = 6 所以 x = 1 是 f(x) 的拐点。
7.求函数 f(x) = x^4 - 4x^3 + 6x^2 的凹凸区间。
答:f''(x) = 12x^2 -24x 令 f''(x) = 0,解得 x = 0 或 x = 2 f'''(x) = 24x - 24 f'''(0)= -24 f'''(2) = 24 所以 x < 0 或 0 < x < 2 是 f(x) 的凹区间,2 < x 是 f(x) 的凸区间。
大一高等数学a教材答案详解Chapter 1: Functions and Limits1.1 Introduction to FunctionsIn this chapter, we will explore the concept of functions and their properties. A function is a rule that assigns each element from one set to another set. It is represented by f(x), where x is an element from the domain and f(x) is the output value. Functions can be represented graphically, algebraically, or numerically.1.2 Limits and ContinuityLimits are used to describe the behavior of a function as x approaches a certain value. The limit of a function f(x) as x approaches a can be denoted as limₓ→a f(x). Continuity of a function is determined by the existence of a limit at a certain point and the value of the function at that point.1.3 DifferentiationDifferentiation is the process of finding the derivative of a function. The derivative represents the rate of change of a function at a particular point. It is denoted as f'(x) or dy/dx. The derivative can be used to find the slope of a tangent line, determine critical points, and analyze the behavior of functions.Chapter 2: Derivatives2.1 Basic Rules of DifferentiationIn this chapter, we will discuss the basic rules of differentiation. These rules include the power rule, product rule, quotient rule, and chain rule.These rules allow us to find the derivative of various functions by applying specific formulas and techniques.2.2 Applications of DerivativesDerivatives have various applications in real-life situations. They can be used to find maximum and minimum values, solve optimization problems, determine velocity and acceleration, and analyze growth and decay models. This chapter will address these applications and provide practical examples.2.3 Higher Order DerivativesHigher order derivatives refer to derivatives of derivatives. The second derivative represents the rate of change of the first derivative, while the third derivative represents the rate of change of the second derivative, and so on. Higher order derivatives can provide information about the curvature and concavity of a function.Chapter 3: Integration3.1 Antiderivatives and Indefinite IntegralsAntiderivatives are the opposite of derivatives. They represent the original function whose derivative is equal to a given function. The process of finding antiderivatives is called integration. The indefinite integral represents a family of functions, with the constant of integration accounting for the infinite number of antiderivatives.3.2 Definite IntegralsDefinite integrals are used to calculate the accumulated change of a function over a specific interval. The definite integral of a function f(x) froma tob is denoted as ∫[a, b] f(x) dx. It represents the area under the curve of the function between the limits a and b. This chapter will discuss the properties and techniques of definite integration.3.3 Applications of IntegrationIntegration has various applications, including calculating areas and volumes, solving differential equations, determining average values, and analyzing accumulation problems. These applications will be explored in this chapter, along with practical examples.Chapter 4: Techniques of Integration4.1 Integration by SubstitutionIntegration by substitution is a technique used to simplify integrals by replacing variables or functions. It involves choosing an appropriate substitution and applying the chain rule in reverse. This method can be used to solve complex integrals and make them more manageable.4.2 Integration by PartsIntegration by parts is another integration technique that allows us to find the integral of a product of two functions. It involves choosing one function to differentiate and the other function to integrate. This method is useful for integrating products of functions such as polynomials, exponentials, logarithms, and trigonometric functions.4.3 Trigonometric IntegralsTrigonometric integrals involve integrating functions that contain trigonometric functions like sine, cosine, tangent, secant, etc. These integralscan be solved using trigonometric identities and substitution techniques specific to trigonometric functions.In conclusion, the first-year high school mathematics A textbook provides a comprehensive introduction to functions, limits, derivatives, and integration. It covers the fundamental concepts and techniques necessary for further study in advanced mathematics. By understanding and applying the principles discussed in this textbook, students will acquire a solid foundation in calculus and its applications.。
高一数学必修一课本a版习题答案在高一数学必修一课本A版中,包含了大量的习题,旨在帮助学生巩固和深化对数学概念的理解和应用。
以下是一些习题的答案,但请注意,这些答案仅供参考,学生应该通过自己的学习和理解来完成习题。
第一章:集合与函数1. 集合的并集、交集、补集:- 并集:A∪B = {x | x ∈ A 或x ∈ B}- 交集:A∩B = {x | x ∈ A 且x ∈ B}- 补集:A' = {x | x ∉ A}2. 函数的定义域和值域:- 定义域:所有自变量x的集合- 值域:所有因变量y的集合3. 函数的单调性:- 增函数:如果对于所有x1 < x2,都有f(x1) ≤ f(x2)- 减函数:如果对于所有x1 < x2,都有f(x1) ≥ f(x2)第二章:数列1. 等差数列的通项公式:- an = a1 + (n - 1)d2. 等差数列的前n项和:- Sn = n/2 * (a1 + an)3. 等比数列的通项公式:- an = a1 * r^(n-1)4. 等比数列的前n项和:- Sn = a1 * (1 - r^n) / (1 - r),对于r ≠ 1第三章:三角函数1. 三角函数的基本关系:- sin²θ + cos²θ = 12. 正弦函数和余弦函数的图像:- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)3. 正弦定理和余弦定理:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2ab * cosC第四章:解析几何1. 直线的点斜式:- y - y1 = m(x - x1)2. 圆的标准方程:- (x - h)² + (y - k)² = r²3. 椭圆的方程:- (x - h)²/a² + (y - k)²/b² = 1第五章:概率统计1. 事件的概率:- P(A) = 事件A出现的次数 / 总的可能次数2. 互斥事件的概率:- P(A ∪ B) = P(A) + P(B),如果A和B互斥3. 独立事件的概率:- P(A ∩ B) = P(A) * P(B),如果A和B独立请注意,这些答案只是一些基本的数学概念和公式,实际的习题答案可能会根据具体的题目而有所不同。
高中数学课本a版课后习题答案在高中数学的学习过程中,课后习题是帮助学生巩固课堂知识、提高解题技能的重要环节。
然而,并不是所有的学生都能在第一时间内找到解题的思路和方法。
因此,课后习题的答案成为了很多学生在自学过程中的重要参考。
注意:下面提供的答案仅供参考,解题的过程和理解才是学习的关键。
强烈建议学生们在尝试自己解决问题后再参考答案。
第一章:函数习题1:函数的定义域和值域的确定。
- 答案:要确定函数的定义域,需要找出函数表达式中所有变量的取值范围。
值域则是函数输出值的集合,通常通过分析函数的性质或者图像来确定。
习题2:函数的单调性。
- 答案:函数的单调性可以通过求导数来判断。
如果函数在某个区间内的导数始终大于0,则该区间内函数是单调递增的;如果导数始终小于0,则函数是单调递减的。
习题3:函数的奇偶性。
- 答案:判断函数的奇偶性,需要将函数表达式中的自变量x替换为-x,然后比较原函数与新函数的关系。
如果相等,则函数是偶函数;如果互为相反数,则函数是奇函数。
第二章:三角函数习题1:三角函数的基本性质。
- 答案:正弦函数sin(x)和余弦函数cos(x)在单位圆上分别对应角度x的y坐标和x坐标。
它们的基本性质包括周期性、对称性等。
习题2:三角函数的图像。
- 答案:正弦函数的图像是波形图,周期为2π,余弦函数的图像与正弦函数类似,但相位移动了π/2。
习题3:三角恒等式的应用。
- 答案:三角恒等式如sin²(x) + cos²(x) = 1,可以用来简化三角函数表达式,也可以用来证明其他三角恒等式。
第三章:解析几何习题1:直线方程的求解。
- 答案:直线方程可以通过点斜式、两点式或者一般式来表示。
根据已知条件选择合适的方法求解。
习题2:圆的方程。
- 答案:圆的标准方程为(x - h)² + (y - k)² = r²,其中(h, k)是圆心坐标,r是半径。
习题3:椭圆、双曲线和抛物线的方程。
高一数学必修一a版课本习题答案高一数学必修一a版课本习题答案涵盖了多个章节,包括但不限于集合、函数、不等式、数列等基础数学概念。
以下是一些习题的答案示例:第一章:集合1. 集合A={1, 2, 3},集合B={3, 4, 5},求A∪B。
答案:A∪B={1, 2, 3, 4, 5}2. 集合A={x | x > 0},集合B={x | x < 10},求A∩B。
答案:A∩B={x | 0 < x < 10}第二章:函数1. 已知函数f(x) = x^2 - 4x + 3,求f(x)在x=2时的值。
答案:f(2) = 2^2 - 4*2 + 3 = 4 - 8 + 3 = -12. 判断函数f(x) = 1/x是否具有奇偶性。
答案:函数f(x) = 1/x是奇函数,因为f(-x) = -1/x = -f(x)。
第三章:不等式1. 解不等式2x + 5 > 3x - 2。
答案:将不等式转化为x < 7。
2. 解不等式组:\[ \begin{cases}x + 3 > 0 \\2x - 5 < 3\end{cases} \]答案:解得 -3 < x < 4。
第四章:数列1. 已知等差数列的首项a1=2,公差d=3,求第5项a5。
答案:a5 = a1 + 4d = 2 + 4*3 = 14。
2. 已知等比数列的首项a1=2,公比q=2,求前5项的和S5。
答案:S5 = a1 * (1 - q^5) / (1 - q) = 2 * (1 - 2^5) / (1 - 2) = 62。
第五章:三角函数1. 已知sinθ = 3/5,且θ在第一象限,求cosθ。
答案:根据Pythagorean identity,cosθ = √(1 - sin^2θ) = √(1 - (3/5)^2) = 4/5。
2. 求角度θ,使得tanθ = 1。
答案:θ = 45° 或π/4 弧度。
一、单项选择题(每小题3分,共30分)请将答案填在下面表格内!切记!题号 1 2 3 4 5 6 7 8 9 10 答案 A A B B C A C A D D 得分1、已知向量(1,1,0)MA = ,(1,0,1)MB =,则AMB ∠=( )。
(A) 3π (B)6π (C) 4π (D) 2π2、函数()y x f ,在点()00,y x 处可微分是()y x f ,在该点处连续的( )条件。
(A) 充分 (B) 必要 (C) 充分必要 (D) 既不充分也不必要3、函数22y x z -=在点)1,1(沿方向(1,3)的方向导数为( )。
(A )31+ (B )31- (C )6 (D )74、曲面22214x y z ++=在点(1,2,3)处的切平面方程为( ) (A )23140x y z +++= (B )23140x y z ++-= (C )2370x y z +++=(D )2370x y z ++-=5、设()y x f ,为连续函数,则二次积分⎰⎰11),(ydx y x f dy 交换积分次序后为( )。
(A) dy y x f dx x⎰⎰112),( (B) ⎰⎰11),(dy y x f dx (C) dy y x f dx x ⎰⎰201),( (D) ⎰⎰110),(ydy y x f dx6、Lxds =⎰( )其中L 为抛物线2y x =上01x ≤≤的弧段。
(A)()155112- (B) 551- (C)112 (D)()15518- 7、设∑为球面2222R z y x =++,则曲面积分=++⎰⎰∑dS z y x )(222( )。
(A)4R π (B)42R π (C)44R π (D)46R π 8、下列级数中,条件收敛的是( )。
(A )()-+-=∞∑124131n n n n (B )()-⎛⎝ ⎫⎭⎪-=∞∑12311n nn(C )()--=∞∑11121n n n (D )()--=∞∑11211n n n n 9、幂级数20n n n e x ∞=∑的收敛半径=R ( )。
高等数学(A)1习题1-11.求下列函数的自然定义域:(3)y =1-1-x 2x⎧1-x 2≥0⎧-1≤x ≤1解:由⎨,所以函数的定义域为:[-1,0)⋃(0,1]⇒⎨⎩x ≠0⎩x ≠0(7)y =arcsin(x -3)解:由-1≤x -3≤1⇒2≤x ≤4,所以函数的定义域为:[2,4]1(8)y =3-x +arctanx⎧3-x ≥0⎧x ≤3解:由⎨x ≠0⇒⎨x ≠0,所以函数的定义域为:(-∞,0)⋃(0,3]⎩⎩9.求下列函数的反函数:(1)y =3x +1解:由y 3=x +1⇒x =y 3-1,所以反函数为:y =x 3-11-xy =(2)1+x解:由y (1+x )=1-x ⇒x =1-x 1-yy =1+x1+y ,所以反函数为:习题1-21.下列各题中,哪些数列收敛?哪些数列发散?1(2){(-1)n }n 收敛.且极限为0.⎧n -1⎫(4)⎨⎬n +1⎩⎭收敛,且极限为12n -1(6){3n }2n -12n 1n收敛.且因为:3n =(3)-(3),知极限为0.习题1-3x |x |当x →0时的左、右极限,并说明它们在x →0时的极限4.求f (x )=,φ(x )=x x 是否存在.解:x →0lim -f (x )=lim -x →0x →0x x=lim -1=1,lim +f (x )=lim +=lim +1=1x →0x →0x x →0x x →0∴lim f (x )=1|x |-x |x |x=lim -lim(-1)=-1,lim φ(x )=lim =lim =lim +1=1x →0x →0x x →0x x →0-x →0+x →0+x x →0+x x →0∴lim φ(x )不存在.lim -φ(x )=lim -x →0习题1-44.求下列极限并说明理由.(1)lim x →∞2x +1x2x +1112x +1=2+,而lim =0,由定理1可知:lim =2.解:x x →∞x →∞x x x 1-x 2(2)lim x →∞1-x1-x 2(1-x )(1+x )1-x 2=1+x ,而lim x =0,由定理1可知:lim =1解:1-x =x →0x →01-x1-x 习题1-51.计算下列极限.x 2-32(2)x lim →3x +1解:lim x →x -3x →30===023x +1lim(x 2+1)4x →32lim(x 2-3)x 2-2x +1(3)lim x →1x 2-1x 2-2x +1(x -1)2x -1lim =lim =lim =0解:x →1x 2-1x →1(x +1)(x -1)x →1x +14x 3-2x 2+x (4)lim x →03x 2+2x 解:lim 4x -2x +x 4x -2x +1=lim =x →0x →03x 2+2x 3x +2322lim(4x 2-2x +1)x →0lim(3x +2)x →0=1=02x 2-1(7)lim x →∞2x 2-x -11)2x -11x →∞x lim =lim ==解:x →∞2x 2-x -1x →∞111122--2lim(2--2)x x x →∞x x 21-1x 2lim(1-x 2-6x +8(9)lim x →4x 2-5x +4x 2-6x +8(x -4)(x -2)(x -2)2lim =lim =lim 解:x →4x 2-5x +4x →4(x -4)(x -1)x →4(x -1)=3习题1-61.计算下列极限:1-cos2x lim (5)x →0x sin x 1-cos2x 2sin 2x sin xlim =lim =2lim =2⋅1=2解:x →0x sin x x →0x sin x x →0x 2.计算下列极限.-x )(1)lim(1x →0-1lim(1-x )=lim[(1+(-x ))]=e 解:x →0x →01x1-x -11x+2x )(2)lim(1x →02lim(1+2x )=lim[(1+2x )]=e 解:x →0x →01x12x 21x习题1-75.利用等价无穷小的性质,求下列极限:tan3xlim (1)x →02x tan3x ~3x ,∴lim 解:当x →0时,(3)lim x →0tan3x 3x 33=lim =lim =x →0x →02x x →022x 2tan x -sin xsin 3x 1x ⋅x 2tan x -sin x tan x (1-cos x )2=lim 1=1lim =lim =lim 333x →0x →0x →0x →02sin xsin x x 2解:1(x →0,tan x ~x ,1-cos x ~x 2,sin 3x ~x 3)2习题1-83.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,那么补充或改变函数的定义使它连续:x 2-1(1)y =x 2-3x +2,x =1,x =2解:在x =1点,lim y =lim x →1(x -1)(x +1)(x +1)=lim =-2x →1(x -1)(x -2)x →1(x -2)故x =1点为第一类中的可去间断点.如果补充f (1)=-2,则f (x )在x =2点连续。
高等数学a大一教材答案一、导数与应用1. 函数与导数1.1 函数的概念与性质1.2 导数的定义与存在条件1.3 导数的性质与计算方法2. 常见函数的导数2.1 幂函数的导数2.2 指数函数的导数2.3 对数函数的导数2.4 三角函数的导数2.5 反三角函数的导数3. 高阶导数与隐函数求导3.1 高阶导数的定义与计算方法3.2 隐函数的定义与求导方法3.3 高阶导数的应用4. 函数的极值与最值4.1 极值的概念与判定条件4.2 最值的概念与求解方法4.3 最值问题的应用二、积分与应用1. 不定积分1.1 基本积分表与积分公式1.2 特殊函数的积分1.3 常用积分计算方法2. 定积分2.1 定积分的概念与性质2.2 牛顿-莱布尼茨公式2.3 定积分的计算与应用3. 定积分的应用3.1 曲线长度与曲面面积3.2 物理问题中的定积分3.3 统计学中的定积分4. 微分方程4.1 常微分方程的基本概念4.2 一阶微分方程的解法4.3 高阶微分方程的解法三、级数与幂级数1. 数列与级数1.1 数列的概念与性质1.2 级数的概念与性质1.3 收敛与发散的判定方法2. 常见级数2.1 等比级数2.2 幂级数2.3 收敛级数的性质与计算方法3. 幂级数的收敛半径与收敛区间3.1 幂级数的收敛半径的定义与计算方法3.2 幂级数的收敛区间的判定方法3.3 幂级数的性质与运算法则4. 函数展开成幂级数4.1 函数在收敛区间内的展开4.2 常见函数的幂级数展开4.3 幂级数的应用总结:本答案提供了高等数学A大一教材中导数与应用、积分与应用、级数与幂级数等部分的相关答案。
通过学习这些内容,可以深入理解数学中的重要概念与方法,并能够运用于实际问题的解决中。
希望本答案对您的学习有所帮助。
高等数学a2教材答案第一章:极限与连续1. 极限的概念与性质2. 极限的运算法则3. 无穷小量与无穷大量4. 极限存在准则5. 无穷小量比较6. 连续函数的概念与性质第二章:导数与微分1. 导数的定义与性质2. 基本求导公式3. 高阶导数与莱布尼兹公式4. 隐函数与参数方程的导数5. 高阶导数的计算方法6. 微分的定义与计算7. 微分中值定理与泰勒公式第三章:一元函数积分学1. 不定积分的基本性质2. 基本积分表与常用积分公式3. 定积分的概念与性质4. 牛顿—莱布尼兹公式5. 定积分的计算方法6. 反常积分的概念与性质7. 反常积分的审敛法与计算方法第四章:向量代数与空间解析几何1. 向量的概念与性质2. 向量的线性运算与数量积3. 向量的标准正交基与坐标表示4. 空间曲线与曲面方程5. 空间直线与平面方程6. 空间几何体积与曲面积分第五章:多元函数微分学1. 多元函数的极限与连续2. 多元函数的偏导数3. 隐函数与参数方程的偏导数4. 多元函数的全微分与导数5. 多元函数的泰勒公式6. 多元函数的极值与条件极值7. 重积分的概念与性质第六章:多元函数积分学1. 二重积分的计算方法2. 二重积分的换元法与极坐标法3. 三重积分的计算方法4. 三重积分的换序法与柱面坐标法5. 曲线积分的概念与性质6. 曲线积分的计算方法7. 曲面积分的概念与性质8. 曲面积分的计算方法第七章:常微分方程与级数1. 一阶常微分方程的解法2. 高阶常微分方程的解法3. 常微分方程的数值解法4. 幂级数与展开式5. 幂级数解常微分方程6. 傅里叶级数与函数展开以上为《高等数学A2》教材的章节及内容概述,希望对您的学习有所帮助。
请根据教材中的具体问题进行答案撰写与解答。
高等数学A(一)复习题答案一、 求极限 1.9139333113112222=-=-=+-=+-→→→→x x x x x x x x ex x x xx sin sin lim cos cos lim sin sin lim sin )sin (lim cos ππππ2.2211122020=⋅⋅=-+-→→x x x x x xe x e x x x x lim )cos ()ln()(lim3.ab a x x b x b x b x b x b x a a a x ln ln lim log )(log )(log lim 202012112-=--++=--++→→ 4.2122111111002000=---=-+-=-+-=-+-=-+→→→→→x e x x e x x e x e x e e x x x x x x x x x x x x sin lim cos lim sin lim sin )(sin lim )sin (lim5.2331312022022-=--=--→→a x e x x e axx ax x ππsin lim sinlim6.)(lim 022≠⎥⎦⎤⎢⎣⎡-+∞→a a x a x xx原式=e e a x ax xa x ax ax a x x ==⎥⎥⎦⎤⎢⎢⎣⎡-++-++-∞→1222221)(lim7.3211311213121312112323332232=++=++=++=+++∞→+∞→+∞→+∞→)()(lim )()(lim lim )ln()ln(limx x x x x xx xxx xx x x x ee e e e e e e e e e8.)sin ln(cos lim )sin (cos lim x x x x x x x ex x x +→→=+2211212210020=+=+++-=+→→→)sin (cos cos lim )sin (cos cos sin sin lim )sin ln(cos limx x x x x x x x x x x x x x x x x x x 21e =∴原式9.⎥⎦⎤⎢⎣⎡-+-+=-++=--+++→→→)(tan )()ln(lim )(tan )ln(lim tan )ln(lim x x x x x x x x x x x x x x x x x x x 1312133132111321220322033220 153233*********2210=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+=→)ln (cos )(sin )ln(lim e x x x x x x x x 10.设: =--+→13221x ax x x lim ,求: ,a解:103203221==-+⇒=-+→a a ax x x )(lim53211321321121=+=--+=--+=→→→)(lim ))((lim lim x x x x x x x x x x二、求函数间断点,并指出所属类型:1. xe y -+=11111=x 是间断点 ∞=-→-xx e 111lim 0111=-→+xx e lim 01=∴-→y x lim 10111=+=+→y x lim x ∴是第一类间断点。
2019—2020(1)高数A1(B 卷)(正考)参考答案与评分细则 2019.12.28 出题组考试时间:2020年01月07日上午9:00~11:00一、填空题(每题3分,共15分):1、31.2、dx x x x )()(222ϕϕ'. 3、12. 4、C x F +−)23(31. 5、2π.二、单项选择题(每题3分,共15分):1、)(D2、)(D3、)(C4、)(A5、)(B三、计算题(每小题6分,共12分):解1:原式3020sin lim 22sin limx xx x x x x x x −=⋅−=→→ …2′203cos 1lim2x xx −=→ …4′22032lim2x x x →= …5′ 31= …6′解2:原式⋅−−→⎪⎭⎫⎝⎛−+=xx x x x x 13310131lim …3′xxx x x x x −−→→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛−+=13lim3100131lim …5′ 3e = …6′四、计算题(每小题6分,共18分):解1:)11(2022'+++='⎰dt t x y x …1′)()(112)(22222'+++'=x x x x …3′42121x x xx +++=…4′dx y dy '= …5′dx x x x x ⎪⎪⎭⎫ ⎝⎛+++=42121 …6′ 解2:y y y e x y x '⋅='−+−2)1(4 …3′yx y x e y e x y −−++='∴24, 02≠+−yx e y …4′ 5)1(='=∴y k 切 …5′切线:)1(351−=−x y …6′解3:)1()(22'+'=t t e te dx dy …1′ttt ete e 22222+= …3′ 21+=t …4′ )1()21(222'+'+=∴te t dx y d …5′ t e 221= …6′五、计算题(每小题6分,共18分):解1: ()⎰⎰=4ln ln 43xd x dx x x …2′⎰−=)(ln 44ln 44x d x x x …4′⎰−=dx x x x 34414ln …5′C x x x +−=164ln 44 …6′解2:原积分dx x ⎰−=2|sin |2ππ …2′dx x dx x ⎰⎰+−=−204sin 2sin 2ππ …3′[][]2004cos 2cos 2ππx x −=− …5′122−= …6′解3:令12+=x t ,则2)1(2−=t x …1′且40:→x 时,有31:→t …2′故原积分⎪⎪⎭⎫⎝⎛−+=⎰2111231t d t …3′ dt t dt t t ⎰⎰⎪⎭⎫⎝⎛+−=+=31311111 …4′ 31)]1ln([+−=t t …5′ 2ln 2−= …6′六、(本题8分):解:函数y 的定义域为R x ∈ …1′ 令0)23()(2=+−='xe x x xf …2′ 解得驻点11=x ,22=x …4′ 列表讨论如下:综述:函数)(x f 在区间]1(,−∞,)2[∞+,上单调增加,在区间]21[,上单调减少,极大值为 e f 3)1(=,极小值为2)3(e f = …8′七、(本题8分):解:面积: ⎰−=40)21(dx x x A …2′ 42234132⎥⎦⎤⎢⎣⎡−=x x …3′34=. …4′ 体积 ⎰⎥⎦⎤⎢⎣⎡−=4022)21()(dx x x V π…6′ 403212121⎥⎦⎤⎢⎣⎡−=x x π …7′38π=…8′八、(本题6分):证:设3131)(x xx f +−+=,0≥x …1′当0>x 时,0)1(1131)(32>⎪⎪⎭⎫ ⎝⎛+−='x x f …3′ 说明当0>x 时,)(x f 单调递增 …4′ 即当0>x 时,0)0()(=>f x f …5′也就是0131)(3>+−+=x x x f 故当0>x 时,3131x x+>+ …6′。
部分习题答案目录
习题9-1A (1)
3 (1)
习题9-1B (1)
3 (1)
习题9-1A (2)
2(题目不同,过程类似) (2)
4 (2)
习题9-2B (3)
1 (3)
习题9-3A (3)
1 (3)
习题9-3B (4)
1(题目不同,过程类似) (4)
习题9-4A (4)
1 (4)
4 (5)
P253 习题9-5A (5)
3 (5)
P259 习题9-6 (7)
1. (7)
3. (7)
P264 习题9-7A (7)
1 (7)
P279 习题10-2A (8)
3 (8)
P293 习题10-4A (9)
1 (9)
2 (11)
3 (12)
习题11-1 A (12)
1 (12)
习题11-B (14)
1 (14)
习题11-2A (15)
1 (15)
2 (16)
习题11-B (16)
2 (16)
习题11-3 A (17)
1 (17)
4 (18)
习题11-4A (19)
1 (19)
习题11-4 B (21)
1 (21)
习题11-5A (23)
1 (23)
习题11-6A (27)
1 (27)
习题11-7A (28)
1 (28)
习题9-1A 3
(1)
(2)
习题9-1B 3
习题9-1A
2(题目不同,过程类似)
4
(1)
(2)
习题9-2B 1
(1)
习题9-3A 1
(1)
(2)(3)
习题9-3B
1(题目不同,过程类似)(1)
(2)
习题9-4A
1
(1)
(2)
(3)
4
P253 习题9-5A 3
(1)
(2)
P259 习题9-6 1.
3.
P264 习题9-7A 1
(1)
P279 习题10-2A 3
(1)
(2)
(1)(2)P293 习题10-4A
1
(1)
(2)
(3)
(4)
(5)
2 (1)
(2)(3)
3
(1)
(2)
习题11-1 A 1
(1)
(2)
(3)(4)(5)
(6)
习题11-B 1
(2)
习题11-2A 1
(1)
2
习题11-B
2
(1)
(2)
(3)(题目不一样,本答案不是最终答案,过程类似)
(4)
(5)无题目(6)
习题11-3 A
1
(1)
(2)
4
(1)(题目和本体不一样,过程类似)
(2)
(3)
习题11-4A 1
(1)
(2)
(3)(题目不同,过程类似)
习题11-4 B
1
(1)(题目不同,过程类似)
(2)(题目不同,过程类似)
(3)(题目不同,过程类似)
(4)(题目不同,过程类似)
(5)
(6)
习题11-5A 1
(1)
(2)
(3)(4)
习题11-6A 1
(1)
(2)
(3)
(4)(题目不同。
过程类似)
习题11-7A
1
(1)
(2)
29。