第五章整数规划
- 格式:ppt
- 大小:427.50 KB
- 文档页数:53
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96m ax ,0,8.421===z x x 。
用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z ;而A 的任意可行解的目标函数值是*z的一个下界z ,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82,①② ③ ④ ⑤=0z 356(见下图)。
第五章 整数规划整数规划(integer programming )亦称整数线性规划,它实质上是在线性规划的基础上,给一些或全部决策变量附加取整约束得到的。
在许多情况下,我们都可以把规划问题的决策变量看成是连续的变量;但在某些情况下,规划问题的决策变量 却被要求一定是整数。
例如,完成某项工作所需要的人数或设备台数,进入市场销售的商品件数,以及某一机械设备维修的次数等。
为了满足整数解的要求,最容易想到的办法就是把求得的非整数解进行四舍五入处理来得到整数解,但这往往是行不通的。
舍入处理会出现两方面的问题:一是化整后的解根本不是可行解;二是化整后的解虽是可行解,但并非是最优解。
因此,有必要另行研究整数规划的求解问题。
在线性规划的基础上,要求所有变量都取整的规划问题称为纯整数规划问题(pure integer programming );如果仅仅是要求一部分变量取整,则称为混合整数规划问题(mixed integer programming )。
根据整数规划的定义,可将整数规划的数学模型表示为:0,;{min ≥==X b AX CX w 且(部分)为整数}。
显而易见,整数规划的可行域是其相应线性规划可行域的子集。
§1分枝定界法分枝定界法(branch and bound method )是求解整数规划常用的一种方法,它具有灵活且便于用计算机求解等优点。
它的一般思想是利用连续的(线性规划)模型来求解非连续的(整数规划)问题。
假定k x 是一个有取整约束的变量,而其最优连续值*k x 是非整数;那么在][*k x (表示*k x 的取整值)和1][*+k x 之间不可能包括任何可行整数解。
因此,k x 的可行整数值必然满足][*k k x x ≤或1][*+≥k k x x 之一。
把这两个条件分别加到原线性规划的解空间上,产生两个互斥的线性规划子问题。
实际上这一过程利用了整数约束条件,在“分割”时删除了不包含可行整数点的部分连续空间(1][][**+<<k k k x x x )。
第五章整数规划§1整数规划的数学模型及特点要求一部分或全部决策变量必须取整数值得规划问题称为整数规划。
其模型为:Max(或min)z=s.t若要求决策变量只能取值0或1的整数规划称为0-1型整数线性规划。
§5 指派问题一.指派问题的标准形式及数学模型在现实生活中,有各种性质的指派问题。
例如,有若干项工作需要分配给若干人(或部门)来完成;有若干项合同需要选择若干个投标者来承包;有若干班级需要安排在各教室上课等等。
诸如此类的问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。
由于指派问题的多样性,有必要定义指派问题的标准形式。
指派问题的标准形式(以人和事为例)是:有n个人和n件事,已知第i个人作第j件事的费用为,要求确定人和事之间的一一对应的指派方案,是完成这n件事的总费用最少。
为了建立标准指派问题的数学模型,引入个0-1变量:这样,问题的数学模型可写成(5.1)s.t (5.3)其中,(5.1)表示每件事必优且只有一个人去做,(5.2)表示每个人必做且只做一件事。
注:○1指派问题是产量()、销量()相等,且==1,i,j=1,2,…n的运输问题。
○2有时也称为第i个人完成第j件工作所需的资源数,称之为效率系数(或价值系数)。
并称矩阵C= =(5.5)为效率矩阵(或价值系数矩阵)。
并称决策变量排成的n×n矩阵X== (5.6)为决策变量矩阵。
(5.6)的特征是它有n个1,其它都是0。
这n个1位于不同行、不同列。
每一种情况为指派问题的一个可行解。
共n!个解。
其总的费用 z =C⊙X这里的⊙表示两矩阵对应元素的积,然后相加。
问题是:把这n个1放到X的个位置的什么地方可使耗费的总资源最少?(解最优)例1已知效率矩阵C=则X(1)=,X(2)=都是指派问题的最优解例12/P-149:某商业公司计划开办五家新商店。
为了尽早建成营业,商业公司决定由5家建筑公司分别承建。