新人教版七年级数学下册《五章 相交线与平行线 测试》研讨课教案_6
- 格式:doc
- 大小:379.50 KB
- 文档页数:3
5.3 平行线的性质整体设计教材分析本节课的主要内容是平行线的三条性质等内容,首先在研究了平行线的判定的基础上研究平行线的性质,因为学生在研究判定时,已经了解到研究平行线就是研究两条直线被第三条直线所截形成的角之间的关系,所以学生很自然就想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系;因此,从平行线的判定关系入手引入对平行线性质的探究.对于命题的相关知识是在学生已经接触了一些命题,如:“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”“等式两边都加同一个数,结果仍是等式”“对顶角相等”等命题的基础上,初步了解命题、命题的构成、真假命题、定理等内容,使学生初步接触有关形式逻辑概念和术语.平行线的性质是教学中的重点,而平行线的判定与性质互为逆命题,条件与结论相反,因此区分判定和性质是教学中的一个难点,教学过程中可告诉学生,从角的关系得到两直线平行是判定,由已知直线平行得出角的相等或互补关系,是平行线的性质.本节课在利用两直线平行,同位角相等来推理证明其他两条性质的过程中又一次让学生感受到转化思想在解决数学问题中的应用,在教学过程中,应注意这种思想方法的渗透,有意识地让学生认识整理,使学生在今后的不断训练中掌握这种方法.课时分配2课时5.3.1 平行线的性质教学目标1.使学生理解平行线的性质和判定的区别.2.经历探索直线平行的性质的过程;掌握平行线的三条性质,并能用它们进行简单的推理和计算.3.经历观察、操作、想象、推理、交流等活动,培养推理能力和有条理的表达能力.教学重难点教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.教学难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学方法有目的、有计划地设计问题,引导学生进行观察、实验、猜测、推理等活动,从而使学生形成自己对数学知识的理解和有效的学习策略.在平行线性质2、3的探究中关注它们的证明,把证明作为探究活动的自然延续和必然发展,引导学生根据观察、实验的结果,运用归纳、类比的方法先得出猜想,然后再进行证明,这十分有利于学生对证明的全面理解,组织学生探求不同的证明方法,并进行适当的比较讨论,有助于开阔学生的视野,学会有条理地思考问题.教学过程一、复习回顾设计说明平行线的判定定理与性质定理是互逆的,对初学者来说易将它们混淆,因此,复习平行线的判定为后面性质与判定的比较作好准备,同时利用平行线的判定定理和性质定理的互逆关系自然引入新课.问题:如何用同位角、内错角、同旁内角来判定两条直线是否平行?反过来:如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这是我们这节课将要探究的问题.二、动手实践,探究新知活动1:用直尺和三角板画出两条平行线a,b,再画一条截线c与直线a,b相交,标出所形成的八个角.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想(略).4.学生验证猜测.在上图中,再任意画一条截线d,同样度量并计算各个角的度数,检验你的猜想是否还成立?如果直线a与b不平行,你的猜想还成立吗?(略)讨论结果:平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补,简称为:两直线平行,同旁内角互补.可让学生结合下图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定(1)因为a∥b, (1)因为∠1=∠2,所以∠1=∠2. 所以a∥b.(2)因为a∥b, (2)因为∠2=∠3,所以∠2=∠3. 所以a∥b.(3)因为a∥b, (3)因为∠2+∠4=180°,所以∠2+∠4=180°. 所以a∥b.问题1:平行线的性质与平行线的判定的区别是什么?讨论结果:两者的因为“部分”和所以“部分”正好相反.问题2:在上节课中,我们利用平行线的判定方法1,推出了平行线的判定方法2,类似地,你能根据平行线的性质1,推出性质2吗?讨论结果:因为a∥b,所以∠1=∠2(两直线平行,同位角相等).又∠3=∠1(对顶角相等),所以∠2=∠3.学生仿照说出如何根据性质1得到性质3的推理过程.(略)5.初步应用例1如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师可根据学生情况,启发提问:(1)梯形这一条件如何使用?(2)∠A与∠D,∠B与∠C 的位置关系如何?数量关系呢?为什么?解:因为AB∥CD,所以∠A+∠D=180°,∠B+∠C=180°.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.例2 如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.分析:本题是平行线的判定和性质的综合应用,要引导学生观察图形,考察已知角的数量关系以及所求角与已知角的关系,从而确定解题的思路.解:因为∠A=∠2=75°,所以AB∥CE.(同位角相等,两直线平行)所以∠B=∠1=53°.(两直线平行,内错角相等)教学说明在学完本节知识后,学生容易出现一个知识负迁移,认为同位角相等,内错角相等,同旁内角互补,为此在学生动手探究的过程中,不仅要关注学生对直线a与b平行时被第三条直线所截形成的同位角、内错角、同旁内角之间数量关系的探索,同时也要关注学生对直线a与b不平行时同位角、内错角、同旁内角之间关系变化的认识,从而突出同位角相等,内错角相等,同旁内角互补的前提条件.虽然现在对于推理论证的要求还不高,为了培养学生思维的严谨性和条理性,无论在性质的证明还是在例题教学中,要求学生尽可能的将推理过程书写规范.三、巩固训练,熟练技能(一)判断题1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么所有的同位角相等.( )(二)填空题3.如图(1),若AD∥BC,则∠______=∠______,∠______=∠______,∠ABC+∠______=180°;若DC∥AB,则∠______=∠______,∠______=∠______,∠ABC+∠______=180°.4.如图(2),在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是__________,因为______________________________.5.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( ).又AB∥EF,所以CD∥AB( ).(三)解答题6.如下图,已知∠1=110°,∠2=110°,∠3=70°,求∠4的度数.7.如上图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.答案:(一)1.× 2.√(二)3.1 5 8 4 BAD 2 6 3 7 BCD4.北偏东56°两直线平行,内错角相等5.内错角相等,两直线平行平行于同一条直线的两直线平行(三)6.∠4=70°(过程略).7.求证:因为DE∥CB,所以∠1=∠DCB.又因为∠1=∠2,所以∠2=∠DCB.所以CD平分∠ECB.四、课堂小结1.本节主要学习了平行线的三条性质.2.用到的主要思想方法是转化思想.3.注意的问题是平行线的判定与性质的区别.五、布置作业课本习题5.3 第4,5,6题.六、拓展延伸已知:如图,直线AB∥CD,直线EF分别交直线AB,CD于点E,F,EG平分∠AEF,FH 平分∠EFD,EG与FH平行吗?为什么?答:EG∥FH.因为AB ∥CD ,所以∠AEF =∠EFD .又因为EG 平分∠AEF ,FH 平分∠EFD ,所以∠GEF =12∠AEF ,∠EFH =12∠EFD . 所以∠GEF =∠EFH .所以EG ∥FH .评价与反思本节课研究的内容是平行线的性质,它是在学生学习了平行线的判定之后来进行学习的,因此,从复习平行线的判定入手,创设一个疑问来激发学生思考,进而引导学生进行平行线性质的探究.本节课最关注的是平行线性质的得出过程,它是通过学生自主探索、实验、验证发现的,即学生在充分活动的基础上,由学生自己发现,并用自己的语言来归纳的,这对学生增强学习兴趣和自信心都有好处.对两直线不平行时,同位角、内错角、同旁内角之间关系的探究有助于学生加深对平行线性质的理解,区分性质与判定方法,以及对三个性质之间内在联系的理解,都为学生正确应用平行线的性质打好基础.。
第五章相交线与平行线1.理解对顶角的概念,探索并掌握对顶角相等的性质;理解垂线、垂线段的概念,能用三角尺或量角器画出已知直线的垂线.2.理解点到直线的距离的意义,能度量点到直线的距离;掌握基本事实:过一点有且只有一条直线与已知直线垂直.3.了解同位角、内错角、同旁内角的概念,并学会识别;理解平行线的概念;过直线外一点有且只有一条直线与这条直线平行;掌握平行线的性质.4.掌握基本事实:两条平行线被第三条直线所截,同位角相等;了解平行线性质定理的证明.5.能用三角尺和直尺过已知直线外一点画这条直线的平行线.6.探索并证明平行线的判定定理:两条直线被第三条直线所截,如果同位角、内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角、同位角相等或同旁内角互补.7.了解命题、定理、证明的一些基本知识,能判断命题的真假,了解反例的作用,利用反例可以判断一个命题是错误的;掌握平移的概念,理解和掌握平移的性质,认识并欣赏平移在自然界和现实生活中的应用,能运用图形的平移进行图案设计.1.密切结合现实生活中的实例,创设情境,使学生经过自己的观察与思考,了解相关概念的本质,达到认识概念、会用概念识别相关问题的目的.2.通过“探究”“试做”“观察与思考”等多种形式,尽可能地让学生经历一个亲身感受、领悟发现的过程.3.充分引导学生自己动眼、动手、动脑去发现事实、感悟事实、理解事实、推出事实,同时注意培养学生的逻辑思维,要将几何问题初步展开推理.4.以基本事实为依据,通过数学说理的方法,推导出平行线的判定方法、平行线的性质以及其他一些有用的结论.1.培养学生学习图形与几何知识的兴趣,通过交流活动,初步形成积极参与数学活动,主动与他人合作交流的意识.2.让学生通过动手操作,感受知识的形成过程,树立认真的学习态度,激发学生的学习热情.3.利用小组合作学习的方法,让学生在学习中多与同学进行交流,多种感官参与学习,主动探索,发现规律,归纳概括,养成学数学、爱数学的情感.平面内两条直线的位置关系是“图形与几何”所研究的基本问题,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系.首先研究了两条直线相交的情形,探究了两条直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论.垂直作为两条直线相交的特殊情形,在生活中有着广泛的应用,与它有关的概念和结论也是学习“平面直角坐标系”的直接基础.本章对垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂直”“垂线段最短”等结论,并给出了点到直线的距离的概念,为学习在平面直角坐标系中确定点的坐标打下基础.其次教科书研究了两条直线被第三条直线所截的情形,给出了同位角、内错角、同旁内角的概念,为接下来的研究平行作准备.对于平面内两条直线平行的位置关系,教科书首先引入了一个基本事实(平行公理),以此为出发点探讨平行线的判定和平行线的性质.对于平行线的判定,教科书首先结合三角尺画平行线的方法给出“同位角相等,两直线平行”的结论,并由此推理出“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.平行线的性质也是由类似的方法得出.教科书接下来对命题及其组成、真假命题、定理作了简单介绍,使学生初步接触有关形式逻辑的概念和术语,并以“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”为例,介绍了什么是证明.本章最后一节安排了有关平移的内容,图形的变化是“图形与几何”领域中一块重要的内容,通过将图形的平移、旋转、折叠等活动,使图形运动起来.因此图形变化是研究几何问题、发现几何结论的有效工具.【重点】1.了解邻补角、对顶角的概念,掌握其相关性质.2.理解和掌握垂线、垂线段、垂直的概念及性质.3.理解同位角、内错角、同旁内角的概念和平行线的判定及性质定理.【难点】1.能熟练应用平行线的判定和性质定理解决问题.2.运用本章的相关知识解决简单的生活问题.相交线和平行线不仅是几何学习的基础,而且还大量地体现在现实世界中.尽管学生对本章内容并不陌生,但如何使学生把学习过程真正成为自己的数学思考过程,使数学事实的形成过程变为自己的发现过程,则是本章着重思考的问题.1.对于相交线的学习,要让学生通过实例认识相交线中的一些有关知识,让学生动手,使用量角器过一点画一条直线的垂线,并会利用身边的现有工具或材料过一点画一条直线的垂线,不要拘泥于三角尺或量角器.对于同位角、内错角、同旁内角,教材中没有给出精确的定义,因此要让学生能用一些简单的数学语言叙述图形的某些位置关系,并注意符号的使用.2.在平行线的判定及性质的教学中,应继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述直线的平行关系,并注意平行符号的使用,应注意渗透逻辑推理的思想.3.在平移的教学中要注意结合图形,让学生体会平移的思想,使学生通过观察测量,掌握平移过程中图形的变化,并能够利用平移解决简单的实际问题.5.1相交线5.1.1相交线(1课时)5.1.2垂线(2课时)4课时5.1.3同位角、内错角、同旁内角(1课时)5.2平行线及其判定2课时5.2.1平行线(1课时)5.2.2平行线的判定(1课时)5.3平行线的性质2课时5.3.1平行线的性质(1课时)5.3.2命题、定理、证明(1课时)5.4平移1课时单元概括整合1课时5.1相交线1.理解对顶角的概念,探索并掌握对顶角的性质;理解垂线、垂线段的概念,能用三角尺或量角器画已知直线的垂线.2.理解点到直线的意义,会度量点到直线的距离.3.能在复杂图形中识别同位角、内错角和同旁内角.1.通过观察和动手操作,经历和体验图形的变化过程,努力学习数学语言.2.能用一些简单的数学语言叙述图形的某些位置关系.1.在动手实践、自主探索、合作交流中获得成功的体验,建立自信心.2.让学生感受数学与生活的密切联系,增强用数学的意识.【重点】垂直的概念、同位角、内错角、同旁内角在图形中的位置.【难点】点到直线的距离,正确识别同位角、内错角、同旁内角.5.1.1相交线理解并掌握对顶角、邻补角的概念.1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.【重点】对顶角的性质.【难点】理解对顶角相等的性质的探索.【教师准备】直尺、量角器、剪刀、硬纸板.【学生准备】直尺、三角板.导入一:如图所示,要想测量两堵围墙所形成的∠AOB的度数(人不能进入围墙内,又不能站在围墙上),甲、乙两人各有如下的测量方法:甲:延长AO至C,测得∠BOC的度数,可知∠AOB的度数.乙:延长AO至C,延长BO至D,测得∠COD的度数,可知∠AOB的度数.你知道他们这样测量的道理吗?导入二:教师出示一块硬纸板和一把剪刀,表演剪纸板的过程.问题:剪刀两个把手之间的角发生了什么变化?剪刀的张口怎么变化?教师展示剪纸板的过程,学生认真观察.教师应当注意先提出问题,以免在操作过程中分散学生的注意力,使学生没有注意观察应该观察的内容.学生观察以后,回答提出的问题.教师引导:如果将剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题.[设计意图]通过动手操作,激发学生兴趣,同时使学生感受生活中的数学现象,通过教师的引导,使学生将剪刀张口的变化抽象成两条直线交角的变化,将实际问题转化为数学问题.导入三:在我们生活的世界中,蕴涵着大量的相交线和平行线,本节课要研究相交线所成的角和它的特征.教师多媒体出示相关的图片:学生欣赏图片,并从中观察相交线、平行线的实例.[设计意图]直接提出本节课的学习重点,使学生有一个明确的目标,对本节课的学习要点做到心中有数.[过渡语](针对导入二)通过刚才的观察,我们知道握紧剪刀把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开纸板.下面我们就来研究这两条直线相交所形成的角.如教材图5.1-2,教师提出问题:1.在位置关系上,∠1和∠2有什么特点?2.量一量,在数量关系上,∠1和∠2有什么特点?提示:在位置关系上,∠1和∠2有一个公共边OC,另一边互为反向延长线;在∠1和∠2的数量关系上,学生可能从大小关系上进行比较,此时注意引导学生从两个角的和的关系去探求.问题总结:有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.追问:(1)在教材图5.1-2中,有几组邻补角?(2)在教材图5.1-1中,剪刀把手之间角度变化的过程中,这种关系还存在吗?提示:(1)有四组邻补角,分别是∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4;(2)这种关系依旧存在.[知识拓展](1)邻补角指的是角的特殊位置关系,即这两个角相邻(有一条公共的边),从数量关系上说这两个角互补.(2)邻补角指的是两个角之间的互补关系.(3)邻补角一定互补,但互补的角不一定是邻补角.[过渡语]在教材图5.1-2中,∠1和∠3之间有什么关系呢?(1)在位置上,∠1和∠3有什么特点?(2)量一量,在数量关系上,∠1和∠3有什么特点?提示:(1)在位置关系上,∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线;(2)通过测量和观察,学生可以发现∠1和∠3是相等的.概念提出:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.二、对顶角的性质[过渡语]刚才通过测量和观察,我们发现了对顶角∠1和∠3是相等的.仅靠发现和观察,还不足以说明就是科学的结论,这就需要我们证明这个结论,怎样证明呢?〔解析〕在教材图5.1-2中,∠1和∠2互补,∠3和∠2互补,由“同角的补角相等”可以得出∠1=∠3.同理,我们可以得出∠2=∠4.这样我们就可以得出对顶角的性质:对顶角相等.证明:因为∠1与∠2互补,∠3与∠2互补(邻补角的定义),所以∠1=∠3(同角的补角相等).[设计意图]通过对图形中角的位置关系的探究,经历从图形到文字到符号的转化过程,使学生加深对相交概念的理解.积累一些对图形的研究经验和方法.通过对概念的归纳,培养学生的总结概括能力,加深学生对概念的理解和掌握.在探究发现的基础上,用科学的方法验证或证明自己的发现,这有利于培养学生的科学思维习惯.[知识拓展](1)对顶角是指两个角的位置关系,一个角的两边分别是另一个角的两边的反向延长线.(2)对顶角是成对的,在数量关系上有特殊的关系——相等.(3)两条直线相交所形成的四个角中,任意两个角不是对顶角就是邻补角.[过渡语]刚才通过观察讨论,同学们了解了对顶角的概念,那么对顶角具有什么性质,下面我们就来一起学习.问题思考:(1)在教材图5.1-2中有哪些角是对顶角?(2)观察、测量每组对顶角,它们之间有什么数量关系?(3)根据观察和测量,你的结论是什么?怎样去证明你的结论?[设计意图]通过学生的动手和动脑实践,不但可以提升学生的学习兴趣,还有助于培养学生动手动脑的行为习惯.通过发现问题并证明问题的活动,培养学生的科学探索精神.性质证明:〔解析〕如图所示,∠AOC和∠AOD互补,∠AOC和∠BOC互补,由“同角的补角相等”,可以得出∠AOD=∠BOC,类似地,∠AOC=∠BOD.这样,我们就得到了对顶角的性质:对顶角相等.证明:因为∠AOC和∠AOD互补,∠AOC和∠BOC互补(邻补角的定义),所以∠AOD=∠BOC(同角的补角相等).[设计意图]通过对角的度数的测量,使学生认识到邻补角与对顶角的性质,使学生从对这两类角的感性认识上升到理性认识,通过对结论得出的说理过程,使学生初步感受推理的过程.[过渡语]通过前面的研究和探讨,我们知道了邻补角互补,对顶角相等的性质.利用这些性质可以进行角的一些计算.如图所示,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.[设计意图]先让学生尝试解决,这里学生能够说出角的度数,关键是学生能否做到言之有理,即初步尝试使用推理的方法去解决问题,之后教师给出规范的答案.〔解析〕计算角的度数,首先要考虑给定的角与所要求的角的位置关系和数量关系.从位置关系看,在要求的三个角中,∠3和∠1存在着对顶角的关系,∠2,∠4和∠1存在着邻补角的关系.解:由邻补角的定义,得:∠2=180°-∠1=180°-40°=140°.由对顶角相等,得:∠3=∠1=40°,∠4=∠2=140°.(补充)如图所示,已知直线AB与CD相交于点O,OE是∠BOD的平分线,∠EOF=90°,若∠BOD=58°,求∠COF的度数.〔解析〕根据角平分线的定义求出∠DOE,再求出∠DOF,然后根据邻补角的定义列式计算即可得解.解:因为OE是∠BOD的平分线,∠BOD=58°,所以∠DOE=∠BOD=×58°=29°,因为∠EOF=90°,所以∠DOF=∠EOF-∠DOE=90°-29°=61°,所以∠COF=180°-∠DOF=180°-61°=119°.[解题策略]本题考查了角平分线的定义,互为邻补角的两个角的和等于180°,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.[设计意图]通过学生的尝试,一是让学生养成主动学习的习惯,二是让学生养成说理的习惯,做到步步有据.1.邻补角、对顶角的概念:(1)有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(2)有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(3)邻补角、对顶角是成对出现的,在相交直线中,一个角的邻补角有两个.2.邻补角、对顶角的性质:(1)邻补角互补.但两个角的和等于180°,这两个角不一定是邻补角.(2)对顶角相等.但反过来,相等的两个角不一定是对顶角.1.如图所示,下列判断正确的是()A.图(1)中∠1和∠2是一组对顶角B.图(2)中∠1和∠2是一组对顶角C.图(3)中∠1和∠2是一组邻补角D.图(4)中∠1和∠2是一组邻补角解析:对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,邻补角的定义:有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角,根据这两个定义进行分析.故选D.2.如图所示,直线AB,CD相交于点O,∠AOC=70°,∠2=40°,则∠1的度数为()A.30°B.35°C.40°D.70°解析:因为∠AOC=70°,所以∠BOD=70°(对顶角相等),因为∠2=40°,所以∠1=70°-40°=30°.故选A.3.如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为()A.62°B.118°C.72°D.59°解析:因为直线AB和CD相交于点O,∠AOD与∠BOC的和为236°,又因为∠AOD与∠BOC是对顶角,所以∠AOC=180°-=62°.故选A.4.如图所示,直线AB与CD相交于点O,射线OE平分∠BOF.(1)∠AOD的对顶角是,∠BOC的邻补角是;(2)若∠AOD=20°,∠DOF∶∠FOB=1∶7,求∠EOC的度数.解析:(1)根据对顶角和邻补角的定义可直接得出答案;(2)根据∠AOD=20°和∠DOF∶∠FOB=1∶7,求出∠BOF等于140°,所以∠EOB等于70°,所以∠EOC等于90°.解:(1)∠BOC ∠AOC,∠BOD(2)因为OE平分∠BOF,所以∠BOE=∠EOF,因为∠DOF∶∠FOB=1∶7,∠AOD=20°,所以∠DOF=∠BOD=×(180°-20°)=20°,所以∠BOF=140°,因为∠BOE=∠BOF=×140°=70°,所以∠EOC=∠BOC+∠EOB=20°+70°=90°.5.1.1相交线1.邻补角与对顶角的概念2.对顶角的性质3.例题讲解例1例2一、教材作业【必做题】教材第3页练习.【选做题】教材第7页习题5.1第1,2题.二、课后作业【基础巩固】1.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°2.如图所示的四个图形中,∠1与∠2是邻补角的是()3.下列说法正确的是()A.若两个角相等,则这两个角是对顶角B.若两个角是对顶角,则这两个角相等C.若两个角不是对顶角,则这两个角不相等D.所有的对顶角相等4.如图所示,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°【能力提升】5.如图所示,直线AB,CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.6.如图所示,直线AB,CD相交于点O,OE是∠COB的平分线.(1)图中有几对对顶角,请分别写出来;(2)当∠BOC=130°时,求∠DOE的度数.7.如图所示,直线AB,CD,EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.【拓展探究】8.如图所示的各图形,寻找对顶角(不含平角).(1)如图(1)所示,图中共有多少对对顶角?(2)如图(2)所示,图中共有多少对对顶角?(3)如图(3)所示,图中共有多少对对顶角?(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2016条直线相交于一点,则可形成多少对对顶角?【答案与解析】1.A(解析:因为∠α和∠β是对顶角,∠α=30°,所以根据对顶角相等可得∠β=∠α=30°.故选A.)2.D(解析:A,B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;C选项,∠1与∠2不互补,不是邻补角;D选项,互补且相邻,是邻补角.故选D.)3.B(解析:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,所以选项A,C错误;根据对顶角的性质:对顶角相等,知选项D错误.故选B.)4.C(解析:因为∠BOD=76°,所以∠AOC=∠BOD=76°(对顶角相等).又因为∠BOC和∠BOD互为邻补角,所以∠BOC=180°-76°=104°.因为射线OM平分∠AOC,所以∠MOC=38°,所以∠BOM=∠BOC+∠MOC=104°+38°=142°.故选C.)5.解:因为∠FOC=90°,∠1=40°,AB为直线,所以∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3与∠AOD互补,所以∠AOD=180°-∠3=130°,因为OE平分∠AOD,所以∠2=∠AOD=65°.6.解:(1)图中有两对对顶角,分别为∠AOC与∠BOD,∠AOD与∠BOC. (2)由OE是∠COB的平分线,得∠COE=∠BOC=65°,由邻补角的性质,得∠DOE=180°-∠COE=180°-65°=115°.7.解:(1)∠COE的邻补角为∠COF和∠EOD. (2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF. (3)因为∠BOF=90°,所以AB⊥EF,所以∠AOF=90°,又因为∠AOC=∠BOD=60°,所以∠FOC=∠AOF+∠AOC=90°+60°=150°.8.解:(1)有2对对顶角. (2)有6对对顶角. (3)有12对对顶角. (4)有n条直线时,有n·(n-1)对对顶角. (5)当n=2016时,可形成2016×2015=4062240对对顶角.相交线是第五章第一小节的内容,在第一学期学生已经学习并掌握了直线、角等概念,在此基础上继续学习两条直线相交的情况以及在这种情况下所形成的角的关系——邻补角、对顶角.平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,是初中阶段学习的重点内容之一,同时也是平面几何图形由简单到复杂的最基本图形之一——由两条直线相交构成的角.因此本课时的教学重点是对顶角的性质与应用,教学难点是对顶角性质的几何语言的表达.在教学中教师能够结合图形让学生通过观察、猜测、分类等方法找到两条直线相交所形成的角的位置关系和数量关系,很好地掌握了邻补角和对顶角的特征,另外加强对比和反例的说明,对于学生对知识的理解和掌握起到了强化、深入的作用.从教学的过程看,学生掌握知识的难度要小于对顶角性质推理的难度.在本课时的教学过程中,虽然注重强化了学生对对顶角性质推理的认识,但对个别学生的指导和关注不够,导致部分学习有困难的学生对推理说明的题目掌握不好.在解题过程中出现乱、繁等现象(个别学生甚至无法下手),课后要根据实际情况及时进行补差补缺,争取不让一个学生掉队.(1)加强练习,强化解题的步骤和说理,让学生在解题的过程中做到有理有据,真正掌握知识.在学生做题的过程中,教师要加强巡视指导,对于学生出现的共性问题,一定要加以指出.(2)教学过程中要面向全体学生,能让全体学生完成的,绝不让个别学生完成,能让学生集体讨论的问题,不能让某个掌握较快的学生包办代替,要充分发挥每个学生的主动性.练习(教材第4页)解:把该模型看成是两条相交的直线并标上角,如图所示.邻补角有:∠1与∠2.∠1与∠α,∠2与∠3,∠3与∠α.对顶角有:∠1与∠3,∠2与∠α.若∠α=35°,则∠1=∠3=180°-∠α=145°,∠2=∠α=35°.若∠α=90°,则∠1=∠3=90°,∠2=∠α=90°.若∠α=115°,则∠1=∠3=65°,∠2=∠α=115°.若∠α=m°,则∠1=∠3=180°-m°,∠2=∠α=m°.(1)邻补角是既互补又相邻的两个角,既考虑两个角的大小关系,又考虑两个角的位置关系.如果两个角互为邻补角,那么这两个角一定互补,反之,两个角互补,这两个角不一定互为邻补角.一个角的补角有很多个,但一个角的邻补角只能有两个.(2)关于对顶角的定义应注意,只有当两条直线相交时,才能产生对顶角;对顶角是成对出现的,对顶角是对特殊位置关系的两个角而言的.(3)关于对顶角的性质,要注意不要与对顶角的定义混淆.如果两个角是对顶角,那么这两个角相等,反之,如果两个角相等,那么这两个角不一定是对顶角.如图所示,直线AB,CD,EF相交于点O,指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.图中一共有几对对顶角(不含平角)?几对邻补角?〔解析〕本题考查判断一对角是不是对顶角或邻补角.找一个角的对顶角时,可分别反向延长这个角的两边,以两边的反向延长线为边的角即是原角的对顶角.找一个角的邻补角时,可先固定一边,反向延长另一边,则由固定边和延长线组成的角即是原角的邻补角.∠AOC的邻补角应有两个,因为固定OA,反向延长OC得到∠AOD,或固定OC,反向延长OA 得到∠BOC,它们都是∠AOC的邻补角.三条直线相交于一点,共有三组不同的两条直线相交,即AB与CD,AB与EF,CD与EF,每两条直线相交,都得到2对对顶角、4对邻补角,故有3×2对对顶角,3×4对邻补角.解:∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF;∠AOC的邻补角是∠AOD,∠BOC.图中共有6对对顶角、12对邻补角.[解题策略]解决这类问题要抓住对顶角、邻补角的特征,前提条件是两条直线相交,对顶角无公共边,邻补角有公共边.5.1.2垂线1.认识生活中的垂直现象,理解垂直定义,并能用符号表示.2.掌握垂线的性质,会过一点作已知直线的垂线.经历垂线的画法,垂线的性质以及点到直线的距离的探索过程,尝试从不同角度寻求垂线的画法,用不同方法得到垂线的性质.通过与生活相联系,让学生对数学产生兴趣,认识到数学的实用价值.【重点】垂线、垂线段、点到直线的距离的概念.【难点】垂线的性质和点到直线的距离.第课时1.知道垂直是相交的特殊情况,理解垂线的概念.2.会用三角尺或量角器过一点画已知直线的垂线.。
新人教版七年级数学下册第5章第3.2节命题、定理教案教学目标:知识与能力理解定义、命题、真命题、假命题、定理、公理的含义,会区分命题的题设和结论.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.数学思考通过学习定义、命题、真命题、假命题、定理、公理的含义,能用它们进行简单的推理. 解决问题能够综合运用命题、真命题、假命题、定理、公理. 让学生在探索过程中,学会运用它们解决问题的策略和方法.情感态度与价值观通过师生的共同活动,促使学生在学习活动中学会与人交流,培养学生良好的情感和主动参与的意识.教学重点:定义、命题、公理、定理的概念及命题的组成.教学难点:会区分命题的题设和结论.教学过程设计活动一.创设问题情境引入在日常生活中,我们会遇到许多概念,假如不对这些概念下定义,别人就无法理解这些概念,以致无法进行正常的交流.同样,在数学学习中,要进行严格的论证,也必须首先对所涉及的概念下定义.本节我们就一起来学习——5.3.2命题、定理.(出示课题)活动二.共同探索获得新知1.体会定义.(1)大于90°小于180°的角叫做钝角.(2)含有一个未知数并且未知数的次数是1的整式方程叫做一元一次方程.同学们通过举例子,观察比较这些定义,发现定义在用词和语气上有什么特征?用词严密且严格,用肯定的语气,定义中一般要有“叫做”这个词.归纳:由于定义表达事物的根本特征,正确的定义能把被定义的事物与其他事物进行区分,因此定义必须是严密的.要用肯定的语气.避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.2.得出命题.先请大家根据所学知识,判断下列句子是否正确.(1)如果两个角是对顶角,那么这两个角相等;(2)三角形的内角和是180°;(3)同位角相等.(学生根据已有的知识很快就进行了判断.句子(1)、(2)是正确的,句子(3)是错误的.)归纳:这些句子我们都可以判断他们是对或是错.象这样判断一件事情(它是正确的或是错误的)语句,叫做命题.正确的命题称为真命题,例如(1)、(2)、错误的命题称为假命题,例如:(3).3.课堂练习.下列句子哪些是命题?是命题的判断真假.(1)你吃饭了吗? (2)两直线平行,同位角相等. (3)画一个角等于已知角.(4)两点之间,线段最短. (5)延长线段AB 到点C. (6)如果x=y ,那么x 2=y 2.(7)负数都小于0. (8)平角与周角一定不相等. (9)我是中国人.(10)2与3的和是4.4.观察发现命题结构.如果一个点在一条线段的垂直平分线上,那么这个点到这条线段的两个端点的距离相等.从命题的形式上有何发现?从构成上有何特点?都有“如果…,那么…”的形式吗?归纳:同学们观察很仔细,命题可以写成“如果…,那么…”的形式,可以看出命题是由两部分构成的,“如果”带领的是已知事项,也称为条件,我们把它叫做命题的题设,“那么”带领的是由已知事项推理得到的事项.我们称为结论,因此命题由题设和结论两部分构成.5.学有致用.例1.把命题“对顶角相等”改写成“如果……那么……”的形式,并分别指出命题的题设与结论.练习:先把下列命题写成如果……,那么……的形式,再指出命题的题设和结论(1)内错角相等,两直线平行.(2)等角的余角相等.(3)小于直角的角一定是锐角.6.明确什么是定理.在刚才的学习中,我们进行了命题真假的判断,你是根据什么来判断证实一个命题是真命题还是假命题呢?通过观察、实践、验证特例等这些方法往往并不可靠.而是挑选一些通过长期实践,大家都公认的真命题作为证实其他命题的原始依据,并把这些公认的真命题称为公理.也就是说:公理是人们在长期实践中总结出的真命题,它们是证明其他命题的原始依据.我们已经学过的公理有:两点确定一条直线;两点之间线段最短;经过直线外一点有且只有一条直线与已知直线平行;一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.此外,我们把等式、不等式的有关性质以及等量代换(即在等式或不等式中,一个量用它的等量替代)都作为证明其他命题的依据.请同学们观察这几个公理,它们分别是用来证明什么的?象这些命题一样,它是从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.定理是真命题,它是证明其他命题正确的依据.活动三.课堂小结本节课我们学了哪些知识?悟到了什么?学生分别回答,教师进行反馈纠正,并出示知识网络,阐述命题与定义、公理、定理的关系.活动四.布置作业:课本第22页小练习1,2题和第24页第11题.定义 命题 公理 定理 真命题 假命题题设 结论。
新版人教版七年级下册数学精品教案若:=2:3,,则=2如图,直线AB 、CD 相交于点O则5 . 1.3 同位角、内错角、同旁内角教学建议一、知识结构二、重点难点分析本节教学的重点是同位角、内错角、同旁内角的概念.难点为在较复杂的图形中辨认同位角、内错角、同旁内角.掌握同位AOC ∠AOE ∠ 130=∠EOD BOC ∠ 30,90=∠=∠=∠AOC FOB COE =∠EOF(三)教学过程创设情境,复习导入回答下列问题:1.如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?2.如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?3.如图,三条直线AB、CD、EF交于一点O,则图中有几对对顶角,有几对邻补角?4.如图,三条直线AB、CD、EF两两相交,则图中有几对对项角,有几对邻补角?5.三条直线相交除上述两种情况外,还有其他相交的情形吗?学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线CD,使CD与EF相交于某一点(如图),直线AB、CD都与EF相交或者说两条直线AB、CD被第三条直线EF 所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系.【板书】 2.3同位角、内错角、同旁内角【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况.认识事物间是发展变化的辩证关系.尝试指导,学习新知1.学生自己尝试学习,阅读课本第67页例题前的内容.2.设计以下问题,帮助学生正确理解概念.(1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?(2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?(3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?(4)同位角和同分内角在位置上有什么相同点和不同点?内错角和同旁内角在位置上有什么相同点和不同点?(5)这三类角的共同特征是什么?3.对上述问题以小组为单位展开讨论,然后学生间互相评议.4.教师对学生讨论过程中所发表的意见进行评判,归纳总结.在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征(F、Z、U)判断问题就迎刃而解.【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性.学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力.投影显示(投影片2)例题如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?[教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练.变式训练,巩固新知投影显示(投影片3)【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是c,即a和b被c所截,如c 和a被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提.投影显示(投影片4)【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角.这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位.这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形.如第2题由已知条件结合所求部分,对各个小题分别分解图5 . 2.1 平行线[教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[教学重点与难点]1.教学重点:平行线的概念与平行公理;2.教学难点:对平行公理的理解.[教学过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a ,b 被直线c 所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是 . 2.在同一平面内,三条直线的交点个数可能是 . 3.下列说法正确的是( )A .经过一点有且只有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行4.若∠与∠是同旁内角,且∠=50°,则∠的度数是( ) A .50° B .130° C .50°或130° D .不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( ) A .1 B .2 C .3 D .4 6.如图,直线AB ,CD 被DE 所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角.如果∠5=∠1,那么∠1 ∠3. 七、小结让学生独立总结本节内容,叙述本节的概念和结论. αβαβ八、课后作业1.教材P19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)5 . 2.2直线平行的条件(一)[教学目标]3.借助用直尺和三角板画平行线的过程,,得出直线平行的条件.4.会用直线平行的条件来判定直线平行.5.激发学生学习数学的兴趣.[教学重点与难点]重点: 理解直线平行的条件.难点: 直线平行的条件的应用[教学设计]提问复习题:1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.下面说法中正确的是 ( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种(2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线必垂直(4) 在同一平面内,不相交的两条直线一定不垂直3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.导言:上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,如果∠4+∠2=180°, a∥ b吗?三种方法可以简单地说成:例题已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.解:因为∠1=∠2,所以 AB ∥CD.又因为∠3+∠1=180°,所以 AB ∥ EF.从而 CD ∥EF (为什么?).课堂练习:1.下列判断正确的是 ( ).A.因为∠1和∠2是同旁内角,所以∠1+∠2=180°B.因为∠1和∠2是内错角,所以∠1=∠2C.因为∠1和∠2是同位角,所以∠1=∠2D.因为∠1和∠2是补角,所以∠1+∠2=180°2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗?为什么?(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗?为什么?(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?为什么?3.4.如图所示:(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.第4题图第5题图5.如图,(1)如果∠1=________,那么DE∥ AC;(2) 如果∠1=________,那么EF∥ BC;(3)如果∠FED+ ∠________=180°,那么AC∥ED;(4) 如果∠2+ ∠________=180°,那么AB∥DF.6.7.课后作业:习题5.2 第1,2,4题.补充练习:已知:如图,AB ∥CD,EF分别交 AB、CD于 E、F,EG平分∠ AEF ,FH平分∠ EFD EG与 FH平行吗?为什么?5 . 2.2 直线平行的条件 (第2课时)一.教学目标(1)使学生进一步理解并掌握判定两条直线平行的方法;(2)了解简单的逻辑推理过程.二.教学重点与难点重点:判定两条直线平行方法的应用;难点:简单的逻辑推理过程.三.教学过程复习提问:1.判定两条直线平行的方法有哪些?2.如图(1)(1) 如果∠1=∠4,根据_________________,可得AB ∥CD ; (2) 如果∠1=∠2,根据_________________,可得AB ∥CD ; (3) 如果∠1+∠3=1800,根据______________,可得AB ∥CD .3.如图(2)(1) 如果∠1=∠D ,那么______∥________; (2) 如果∠1=∠B ,那么______∥________; (3) 如果∠A+∠B=1800,那么______∥________; (4) 如果∠A+∠D=1800,那么______∥________;新课:例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?答:这两条直线平行. 如图所示理由如下: ∵b ⊥a ,c ⊥a∴∠1=∠2=900(垂直定义)A D如图(2) A B CDEF12 3 4 如图(1)ab c┐1 ┐2∴b ∥c (同位角相等,两直线平行)思考:这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800. (1) 求∠2的度数;(2)FC 与AD 平行吗?为什么?巩固练习1. 教科书19页练习2.如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC 与DE 平行吗?AB 与CD 平行吗?3. 如图所示,已知∠D=∠A ,∠B=∠FCB ,试问ED 与CF 平行吗?AB C D E1 2E D C FA B4.如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线.作业:教科书19页习题5.2第7、8题5. 3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定. 关键:能结合图形用符号语言表示平行线的三条性质. 教学过程 一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗? 二、新授1.实验观察,发现平行线第一个性质 请学生画出下图进行实验观察.12 3 45m nlab设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.三、例题例2如图所示,AB ∥CD ,AC ∥BD .找出图中相等的角与互补的角.此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC +∠ACD =180°,∠ABD +∠CDB =180°,∠CAB +∠DBA =180°,∠ACD +∠BDC =180°.相等的角还有:∠ACD =∠ABD ,∠BAC =∠BDC .(同角的补角相等) 例3如图所示.已知:AD ∥BC ,∠AEF =∠B ,求证:AD ∥EF .分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证. 证明:因为 AD ∥BC ,(已知)所以 ∠A +∠B =180°.(两直线平行,同旁内角互补)因为 ∠AEF =∠B ,(已知)所以 ∠A +∠AEF =180°,(等量代换)所以 AD ∥EF .(同旁内角互补,两条直线平行) 四、练习:1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°. 证明:因为 AB ∥CD , 所以 ∠BAC +∠ACD =180°,87654132FED CBA A BCD又因为 AE 平分∠BAC ,CE 平分∠ACD , 所以,,故.即 ∠1+∠2=90°. (理由略)2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系. 作业:1.如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,为什么?3.如图,已知AD ∥BC ,可以得到哪些角的和为180°?已知AB ∥CD ,可以得到哪些角相等?并简述理由.112BAC ∠=∠122ACD ∠=∠001112()1809022BAC ACD ∠+∠=∠+∠=⨯=5 . 3平行线性质(二)[教学目标]6.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力7.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论8.能够综合运用平行线性质和判定解题[教学重点与难点]重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线性质和判定灵活运用[教学设计]一.复习引入1.平行线的判定方法有哪些?2.平行线的性质有哪些? 3.完成下面填空已知:BE 是AB 的延长线,AD//BC ,AB//CD ,若 则4.那么a ,c 的位置关系如何? 二.新课1.例1,已知a//c,直线b 与c 垂直吗?为什么? 例2如图是一块梯形铁片的残余部分,量得,梯形另外两个角分别是多少度?2.实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张个格子的方格纸。
最新人教版七年级数学初一下册第五章相交线与平行线单元教案设计第五章相交线与平行线5.1相交线教学任务分析教学目标知识技能数学思考1.了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角.2.知道“对顶角相等”.3.了解“对顶角相等”的说理过程.1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念.2.通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.1.通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.解决问题情感态度重点难点对顶角的概念,“对顶角相等”的性质.“对顶角相等”的探究过程.教学流程安排活动流程图活动内容和目的活动1找出图形中的相交线活动2认识邻补角和对顶角活动3探究对顶角相等活动4巩固练习活动5课堂小结布置作业教具教师用三角板活动1观察图片,找出相交线,引入课题.活动2通过探究相交线中相交线角与角的位置关系,得出邻补角和对顶角的概念.并能找出图中的对顶角、邻补角.活动3通过探究发现“对顶角相等”的结论,进而通过说理证实这一结论,初步发展简单说理.活动4通过解决具体问题加深对对顶角、邻补角的理解.活动5通过学生习题,总结回顾本节知识点,以便培养学生的概括表达能力,并巩固知识、灵活应用.课前准备学具量角器,三角板补充材料教学过程设计问题与情境师生行为设计意图让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线、平行线的几何图形.使新知识建立在对周围环境的直接感知的基础上.让学生增强对生活中的相交线、平行线的认识.建立直观的,形象化的数学模型.活动1问题找出图中的相交线、平行线.教师出示一组图片.学生观察图片,找相交线、平行线,引出本节课题.在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.活动2问题(1)看见一把张开的剪刀,你能联想出什么样的几何图形?(2)观察这些角有什么位置关系.教师出示剪刀图片,提出问题.学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.教师提出问题.学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述.(2)学生能否从角的位置关系上对角进行分类.(3)学生是否能够正确区分邻补角、对顶角.(4)学生参与数学学习活动的主动性,敢于发表个人观点.通过生活中的情景抽象出几何图形,发现对顶角、邻补角,培养空间观念,发展几何直觉.通过对图形中角与角位置关系的研究分析,学生描述邻补角、对顶角概念,从角的位置关系上来研究这些角的相互关系.让学生经历从图形到文字到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些图形研究的经验和方法.活动3问题(1)对顶角有什么大小关系呢?课件运用:此时可以在学生思考的基础上利用课件“对顶角”进行动画演示.(2)你能举出生活中应用对顶角相等的例子吗?教师提出问题.学生以组为单位,在观察的基础上研究解决问题的方法,鼓励学生从经验(用量角器,邻补角和为180度)出发,试从不同角度寻求解决问题的方法,得出对顶角相等的结论,口述过程,教师给予明晰,并板书说理过程.教师提出问题.学生回答.在本次活动中,教师应关注:(1)学生能否借助邻补角互补推导出对顶角相等的性质.(2)学生能否进行简单说理.(3)学生是否能运用对顶角相等准确地找到生活中的实际例子.活动2已从位置上对角进行了研究,现在从角的大小对对顶角进行研究,培养说理习惯.学生在探索的过程中会遇到困难,出现问题,通过合作学习加以解决.通过举出生活中应用对顶角相等的例子,使学生进一步理解对顶角的性质,体会对顶角在生活中的应用.活动4问题教师出示问题.(1)直线a、b相交,学生独立思考、独立解题.∠1=40°,求∠2、∠3、∠4教师具体指导并根据学生情况板书规的度数.范的简单说理过程.本次活动中,教师应关注:(1)学生对对顶角相等的掌握情况.(2)学生进行简单说理的准确性、规范性.(3)学生能否在独立思考的基础上,积极参与数学问题的讨论.(4)是否能用几何符号语言来表达自己的解题过程.(2)∠1等于90°时,∠2、∠3、∠4等于多少度?(3)如图是一个对顶角量角教师提出问题,并用课件“对顶角量角器.你能说明它度量角度的原器”演示度量过程.理吗?学生在观察的基础上进行讨论,最后学生独立解释其度量的原理.在本次活动中,教师应关注:(1)学生能否根据课件演示进行独立思考.(2)学生在思考后能否形成自己的看法并表达出来.通过具体问题,再次强化对顶角的概念及性质,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力.问题(2)教师可根据学生的情况添加,为下一节学习两直线垂直作铺垫.。
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线Array教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.Array 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
课题:两平行线间的折线问题——过拐点作平行线 教学目标:1、进一步掌握和理解平行线的性质与判定。
2、应用性质和判定,通过拐点作辅助线解决两平行线间的折线这类问题。
教学重点:平行线的性质和判定的综合应用教学难点:解决两平行线间的折线问题——过拐点做平行线 课时:1教学过程设计:一、温故知新:结合下图,用符号语言表达平行线的判定定理、性质定理及平行公理的推论 平行线的性质定理: 平行线的判定定理:(1)b a // (已知) (1)21∠=∠ (已知)21∠=∠∴( ) b a //∴( ) (2)b a // (已知) (2)32∠=∠ (已知)32∠=∠∴( ) b a //∴( ) (3)b a // (已知) (3)︒=∠+∠18042 (已知) ︒=∠+∠∴18042( ) b a //∴( )平行公理推论:c a b a //,// (已知)c b //∴( )二、例题精讲:例:(课本P23第7(2)题)如图,已知AB//CD//EF,那么 =( ) A.180° B.270° C.360° D.540°解析:三、小试牛刀:教材变式1:细观察,找规律 下列各图中的 与 平行.图 中的 ______ 度,图 中的 ______ 度,图 中的 ______ 度,图 中的 ______ 度, ,第 个图中的 ______ 度 第n 个图中的 ______ 请你证明图 的结论.方法指导:过拐点作平行线教材变式2:如图,AB//DE,︒=∠=∠30,110CDE ABC ,求BCD ∠的度数。
教材变式3:如图,已知︒︒︒=∠=∠=∠=∠10,50,30C E F B ,试说明AB//CD.教材变式4:问题情境:如图 , , , ,求 的度数. 小明的思路是:过P 作 ,通过平行线性质来求 . 按小明的思路,易求得 的度数为______ 度;问题迁移:如图 , ,点P 在射线OM 上运动,记 , ,当点P 在B 、D 两点之间运动时,问 与 、 之间有何数量关系?请说明理由;在 的条件下,如果点P 在B 、D 两点外侧运动时 点P 与点O 、B 、D 三点不重合 ,请直接写出 与 、 之间的数量关系.四、复习与小结:解决两平行线间的折现问题,当出现拐点时,就过拐点作平行线,有几个拐点,就作几条平行线,再应用性质和判定解决问题。
第五章 相交线与平行线5.1.1相交线一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章 相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a 、b ,用钉子将它们钉在一起,并且能随意张开. 生:画出图形,并用几何语言描述所画的图形. 师:思考所画的图形中有几个小于平角的角? 生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?教 学 过 程 设 计12 121 2O121 2121 2生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边.....邻补角:有公共顶点且有一公共边......“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.A BECD O1 221ABFCD OEa b1 42 324、如图,三条直线AB 、CD 、EF 相交于点O , ∠AOE 的对顶角是 , ∠EOD 的邻补角是 .【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型) 生:相等. 师:为什么? 生:(讨论交流)生1:∵∠1= 180°-∠2,∠3=180°-∠2(邻补角定义), ∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义), ∴∠l =∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质. 【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a 、b 相交,∠l =40°,求∠2、∠3、∠4的度数.2. 变式1:把∠l =40°变为∠l =90°,求∠2、∠3、∠4的度数.变式2:把∠l =40°变为∠l =n°,求∠2、∠3、∠4的度数.变式3:把∠l =40°改为∠2是∠l 的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB 、CD 相交于O 点,OE 平分∠AOD , 若∠1=20°,那么∠2=______.A BFCD O E变式5:如图,直线AB 、CD 相交于O 点,∠AOE =90°,若 ∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB 的度数,但人不能进入围墙,如何测量? 5. 如图,三条直线AB 、CD 、EF 相交于点O ,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑? 生:……七:布置作业,分层发散1.课本:P 7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n 条直线呢?【教学反思】:5.1.2垂线(第1课时)教学过程设计2.当∠AOC=90°,口答∠2.垂直定义的应用:∵∠AO C=90°(已知)2.在直线AB上任取一点O,过点O作射线OC、OD 使OC⊥OD,当∠AOC=30A. 60°B.120°C. 605.1.2垂线(第2课时)教学过程设计3.课本第9页第13题。
5.2.1平行线课时目标1.掌握平行线的概念、符号表示.2.会用三角尺和直尺过已知直线外一点画这条直线的平行线.3.掌握平行公理以及平行公理的推论,会用符号语言表示平行公理推论.4.经历观察、操作、归纳等活动,进一步发展空间观念、用几何语言准确表达的能力,培养学生准确作图的能力.5.培养学生的合作意识、提高学生们的归纳总结能力,体会数学与实际生活的联系.学习重点平行线的概念、画法以及平行公理及其推论.学习难点平行线的画法以及用数学语言来描述平行线的推论.课时活动设计情境引入在同一平面内,两条直线有怎样的位置关系呢?解:在同一平面内,两条直线的位置关系有相交和不相交两种.你能举出一些生活中两直线不相交的例子吗?设计意图:通过现实生活背景,让学生初步感受相交与不相交直线的特殊位置关系,为新课的学习埋下伏笔.回顾旧知1.同一平面内,两条直线有什么位置关系?2.两条直线相交时的一种特殊情形叫什么?我们怎么用数学语言描述这种位置关系?设计意图:通过已经学习过的知识回顾,可以激发学生们的学习兴趣,将学生的注意力转移到课堂上来.探究新知探究1:思考如图,分别将木条a,b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线,转动a,在这个过程中,直线a与b之间的位置关系有几种可能性?什么叫做平行线呢?解:在同一平面内,不相交的两条直线叫做平行线.平行线的表示方法.解:a∥b(读作a平行于b).请举出实际生活中我们可以将它们看成是两条平行线的例子.探究2:问题1:再一次转动手中的木条,观察并思考在转动木条a的过程中,有几个位置能使直线a与b平行?组内交流看法.问题2:用直尺和三角尺动手画一画平行线.如下图.已知:直线a,点B,点C.过点B画直线a的平行线,能画几条?过点C画直线a的平行线,它与过点B的平行线平行吗?通过动手操作、观察、画图,你能得出什么结论?(1)归纳平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)比较平行公理和垂线性质的区别和联系.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果b∥a,c∥a,那么b∥c.设计意图:1.深入理解平行线的概念,培养学生的抽象概括能力.2.学生经历动手操作、观察、思考,总结出画平行线的方法.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣.归纳总结1.在同一平面内,不相交的两条直线叫做平行线.平行线的概念包含三层含义:①“在同一平面内”,是前提条件;②“不相交”,就是没有交点;③平行线指的是“两条直线”,而不是两条射线或线段.2.过已知直线外一点画直线的平行线的步骤:①“一重合”:三角尺的一边与已知直线重合;②“二靠紧”:把直尺靠紧三角尺的另一边;③“三移动”:沿直尺移动三角尺,使三角尺与直线重合的边过已知点;④“四画线”:沿三角尺过已知点的边画直线.3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.几何语言:如果b∥a,c∥a,那么b∥c.设计意图:培养学生的语言表达能力,并将文字语言转化为符号语言.典例精讲例如图,CD∥AB,CE∥AB,试说明C,D,E三点共线.解:因为CD∥AB,CE∥AB,所以CD∥CE∥AB.因为CD和CE在同一条直线上(平行公理).所以C,D,E三点共线.设计意图:通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.巩固训练1.在同一平面内,两条直线的位置关系是(B)A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交2.经过一点A画已知直线a的平行线,能画(D)A.0条B.1条C.2条D.0条或1条3.如图所示,AD∥BC,E为AB的中点,(1)过点E作EF∥BC,交CD于点F;(2)EF和AD平行吗?请说明理由;(3)用测量法比较DF和CF的大小.解:(1)如图.(2)平行.因为AD∥BC,EF∥BC,所以EF∥AD(平行公理的推论).(3)DF=CF.设计意图:这个环节是巩固本节课知识点,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦.课堂小结1.今天我们学习的内容是什么?2.我们学到了哪些呢?设计意图:通过小结,使学生梳理本节课所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第12页练习,第15,16页习题5.2第3,8,9题.2.七彩作业.5.2.1平行线1.平行线:在同一平面内,两条直线不相交,我们说这两条直线互相平行.记作a∥b.2.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.3.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果a∥b,c∥b,那么a∥c.教学反思5.2.2平行线的判定课时目标1.理解两条直线平行的条件,掌握平行线的三种判定方法,会用符号语言简单的说理.2.经历探索两条平行线平行的过程,理解两条直线平行的条件.3.体会几何图形与数字结合起来的特点,利用数形结合思想来解决相关问题.学习重点掌握平行线的三种判定方法,会运用判定方法来判断两条直线是否平行.学习难点在学习直线位置关系的判定过程中,感受逻辑推理,逐步学习证明的方法.课时活动设计情境引入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘c垂直,那么木条a 与墙壁边缘c的夹角为多少度时,才能使木条a与木条b平行?解:木条a与墙壁边缘c的夹角为90°时,才能使木条a与木条b平行.设计意图:通过现实生活背景,让学生初步感受如何判断两条直线平行,为引出新课的学习埋下伏笔.回顾旧知1.两条直线被第三条直线所截,我们说形成了什么?解:三线八角.2.形成了哪几种位置关系的角呢?解:同位角、内错角、同旁内角.3.同位角、内错角、同旁内角的概念是什么?解:同位角在截线的同一侧,在被截线的同一方.内错角在截线的两侧,在两条被截线之间.同旁内角在截线的同一侧,在两条被截线之间.设计意图:通过对学习过的知识回顾,可以激发学生们的学习兴趣,将学生的注意力转移到课堂上来.探究新知探究1:你还记得如何用直尺和三角尺画平行线吗?教师提问,邀请一名学生回答问题,回答结束,其他学生补充,最后教师讲解并播放课件.在画图过程中,三角尺起着什么样的作用?解:使∠1=∠2.教师将制作好的课件进行放映,学生通过观察,很容易得到∠1=∠2,接下来给出平行线的判定方法1的文字语言和符号语言.文字语言:平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.符号语言:∵∠1=∠2(已知),∴AB∥CD(同位角相等,两直线平行).注意:此处符号“∵”表示因为,符号“∴”表示“所以”.想一想:如图,你能说出木工用图中的角尺画平行线的道理吗?教师展示课件,并说明角尺用途,让学生解释其中的道理.解:同位角相等,两直线平行.探究2:能否利用内错角、同旁内角来判定两条直线平行呢?1.如图,如果∠2=∠3,能得出a∥b吗?分析:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.2.如图,如果∠2+∠4=180°,能得出a∥b吗?分析:∵∠2+∠4=180°(已知),∠1+∠4=180°(邻补角的定义),∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师对学生板书不规范的步骤,进行纠正并讲解,最后总结判定方法.设计意图:学生经历观察、思考,总结出平行线判定的方法1,2和3.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣.并进一步体会如何将文字语言转化为符号语言.归纳总结两条直线平行的判定方法:1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.教师对三种方法进行总结归纳,并课件演示.设计意图:使学生深刻理解判定定理的内容,并对本节知识进行梳理.典例精讲例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?解:这两条直线平行.方法1:∵b⊥a,∴∠1=90°.同理,得∠2=90°.∴∠1=∠2.∵∠1和∠2是同位角,∴b∥c(同位角相等,两直线平行).方法2:如图,∵b⊥a,∴∠1=90°.又∵c⊥a,∴∠3=90°.∴∠1+∠3=180°.∴b∥c(同旁内角互补,两直线平行).在学生独立写完说理过程后,教师板书解题方法1,强调说理过程的规范性.设计意图:通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.巩固训练1.如图,BE是AB的延长线.(1)由∠CBE=∠A可以判定哪两条直线平行?根据是什么?(2)由∠CBE=∠C可以判定哪两条直线平行?根据是什么?解:(1)AD∥BC.根据“同位角相等,两直线平行”;(2)AE∥CD.根据“内错角相等,两直线平行”.2.如图,点E在AC的延长线上,下列条件中能判断BD∥AE的是(D)A.∠1=∠2B.∠2=∠3C.∠A=∠DCED.∠3=∠43.如图,下列说法错误的是(C)A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c4.如图,四条直线组成该图形,其中∠1=∠2=∠3,请判断一下有哪两条直线平行,请说明理由.解:l1∥l2,理由是∠1=∠2,即同位角相等,两条直线平行;a∥b,理由是∠2=∠3,即同位角相等,两条直线平等.教师给出练习,先观察学生情况给予相应的指导,再给出答案,最后根据学生完成情况适当分析讲解.设计意图:这个环节是巩固本节课知识点,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦.课堂小结1.今天我们学习的内容是什么?2.我们学到了哪些呢?设计意图:通过小结,使学生梳理本节课所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.课堂8分钟.1.教材第14,15页练习第2,3题,第15,16,17页习题5.2第1,2,4,5,12题.2.七彩作业.5.2.2平行线的判定平行线的判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.教学反思。
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案一. 教学内容:相交线与平行线二. 主要概念:1. 邻补角有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。
2. 对顶角一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角。
3. 垂线两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
4. 垂线段过直线外一点,作已知直线的垂线,这点和垂足之间的线段。
5. 点到直线的距离直线外一点到这条直线的垂线段的长度。
6. 平行线在同一平面内,不相交的两条直线叫做平行线。
7. 命题判断一件事情的语句叫做命题。
8. 平移把一个图形整体沿着某一方向平行移动,这种移动叫做平移变换,简称平移。
三. 主要性质:1. 对顶角的性质对顶角相等。
2. 邻补角的性质互为邻补角的两个角和为180°。
3. 垂线的基本性质(1)经过一点有且只有一条直线垂直于已知直线;(2)垂线段最短。
4. 平行线的判定与性质【典型例题】一. 选择题1. 如图,下列条件中,能判断直线∥的是()A. =B. =C. =D. +=2. 如图,直线a、b都与直线c相交,给出下列条件:(1)=;(2)=;(3)+=;(4)+=,其中能判断a∥b的是()A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)3. 如图,AB∥EF∥DC,EG∥DB;则图中与相等的角(除外)共有()A. 6个B. 5个C. 4个D. 3个4. 如图,若AB∥CD,则()A. =+B. =-C. ++ =D. -+=5. 如图,AB∥EF∥DC,EH⊥CD于H,BAC+ACE+CEH=()A. 180°B. 270°C. 360°D. 450°6. 已知两个角的两边分别垂直,其中一个角比另一个角的3倍少8,那么这个角的度数是()A. 47°或4°B. 133°或4°C. 47°或133°D. 以上都不对7. 下列条件中,能得到互相垂直的是()(1)对顶角的平分线(2)邻补角的平分线(3)内错角的平分线(4)同旁内角的平分线(5)同位角的平分线A. 0个B. 1个C. 2个D. 3个8. 如图,AB∥EF,C=90,则1、2和3的关系是()A. =1+ 3B. +1+ 3 =C. +1- 3 =90D. +3- 1 =909. 若直线a、b分别与直线c、d相交,且+=,-=,=115,那么=()A. 55°B. 65°C. 75°D. 85°10. 如图,已知a∥b,且AB⊥a,ABC=130,则1=()A. 30°B. 40°C. 50°D. 60°11. 下列命题不正确的是()A. 两条不相交的直线是平行线B. 在同一平面内不平行的两条直线必相交C. 在同一平面内不相交的两条直线必平行D. 在同一平面内两条直线的位置关系只有两种:相交、平行12. 一条道路经过两次转弯后,与原来的方向平行,若第一次拐弯为150°,那么第二次转弯度数应为()A. 150°B. 30°C. 150°或30°D. 以上都不对答案:1—5 CDBAB 6—10 ABCBB 11—12 AC二. 解答题:1. 如图所示,图中有几对同旁内角?分析:我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角。
《第五章相交线与平行线复习课》
肖堰中学方环环
复习目标
1.知道对顶角、邻补角、垂线的概念和性质.
2.知道平行线的概念、性质,会判断两条直线是否平行,能综合运用平行线的性质和判定解决问题.
3.知道平移的概念、性质,在对平移的探索和应用过程中体会数学的美,增强审美意识.
4.知道什么是命题,会证明一个命题是真命题,会用举反例的方法说明一个命题是假命题.
●重点:相交线的性质和应用,平行线的性质和判定的综合应用,平移的性质
和应用.
预习导学
✧问题导入请回顾一下,这一章我们都学习了哪些知识?
⏹体系建构
补全本章知识网络图.
⏹核心梳理
1.对顶角.
2.两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相,其中一条叫做另一条直线的,它们的交点叫做.
3.垂线的两条性质:(1)在同一平面内,过一点条直线与已知直线垂直;(2)连接直线外一点与直线上各点的所有线段中,.
4.平行公理:经过直线外一点,有且只有条直线与这条直线平行.
5.平行线的判定和性质:
6. 语句叫做命题,命题分为和.有些命题的正确性是经过推理证实的,这样的真命题叫做.
7.平移的两个要素:平移的和平移的.平移的特征:(1)平移不改变图形的和;(2)对应点的连线段且.。
《第五章相交线与平行线复习》教学设计一、教学内容人教版七年级数学下册《第五章相交线与平行线》复习课。
二、学情分析学生在学完本单元知识后,对某些知识可能还存在一些不同程度的问题。
比如,基础知识似懂非懂、不能在解题中准确应用所学知识等等。
问题比较集中的可能会是垂线的存在、唯一性及平行公理的限制条件的理解、平行线的判定定理和性质定理的区分及综合应用等方面,教师应注意学生出现问题比较集中的知识点,教学中作重点突破。
三、教学目标知识与能力:了解本单元的知识点及其之间的关系;复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性质进行简单的推理或计算;能用直尺、三角板画垂线和平行线;加深理解推理证明,提高学生分析问题、解决问题的能力。
过程与方法:在参与猜想、观察、实验、综合实践等活动的过程中,形成从特殊到一般的思维方式,了解数学知识是来源于实践,应用于实践的,了解数形结合思想,数学建模思想.情感态度与价值观:认识数学严谨、抽象和应用广泛的特点,体会数学的应用价值,激发学习图形与几何的兴趣.四、教学重点:对本单元的知识结构进行梳理,使学生掌握本单元的知识体系,理解各知识点之间的关联,会利用相交线和平行线的有关知识解决问题。
五、教学难点:会灵活应用本单元知识解决综合性问题;证明题会分析、推理,会写出严谨的解答推理过程。
六、教学方法:引导启发法、讨论交流法七、教学准备:任务单、幻灯片、知识卡片八、教学过程(一)、本章知识点梳理(1、用八开纸书写本章知识思维导图,利用投影仪展示书写优秀的作品。
2、利用知识贴片将本章知识点进行系统归纳,由教师动手归纳操作,其他学生注意观察,并及时提出质疑。
)教师活动:展示优秀作品,引导学生将本章知识以思维导图的形式进行梳理。
启发、引导学生探索,自然导入新课。
学生活动:学生欣赏优秀作品,积极思考并参与知识系统归纳。
设计意图:利用投影仪展示自己的作品,调动学生的兴趣,采用知识贴片激发学生的思维,为复习旧知识及本节课的学习做铺垫。
相交线与平行线教学目标〔知识与技能〕1、了解两条直线的位置关系有相交与平行两种,理解相交线、平行线、平移的有关概念及性质,会运用这些概念和性质进行简单的推理和计算;2、会用三角板、量角器等工具熟练地画垂线、平行线及有关简单几何图形,逐步培养学生的识图和绘图能力;3、进一步熟悉和掌握几何语言,能够把学过的概念和性质,用图形或符号语言表示出来;4、逐步了解几何推理要步步有据,会准确地填写推理的根据,并会作简单的推理。
〔情感、态度与价值观〕1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主性和合作精神,激发学生乐于探索的热情。
重点难点垂线的概念与平行线的判定与性质及平移是重点;学会写推理过程和对直线平行的性质和判定的灵活运用是难点。
课时分配5.1相交线……………………………………… 2课时5.2平行线……………………………………… 3课时5.3平行线的性质……………………………… 3课时5.4平移………………………………………… 5课时本章小结………………………………………… 2课时5.1.1 相交线〔教学目标〕1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。
〔重点难点〕对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点。
〔教学过程〕 一、情景导入〔投影1〕下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。
“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。
相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。
我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。
二、邻补角和对顶角〔投影2〕下面是一把剪刀,你能联想到什么几何图形?两条直线相交,如图。
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是Array∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
七年级数学下册第5章相交线与平行线 5.2.1 平行线教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册第5章相交线与平行线5.2.1平行线教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册第5章相交线与平行线 5.2.1 平行线教案(新版)新人教版的全部内容。
5.2。
1平行线课型新授单位主备人教学目标:1。
知识与技能:了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线。
2.过程与方法:经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念。
3.情感、态度、价值观:学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性,促进学生乐于探究.重点、难点:教学重点:探索和掌握平行公理及其推论.教学难点:对平行线本质属性的理解,用几何语言描述图形的性质。
教学准备:PPT课件和微课等。
教学过程一、创设情景、引入新课1.在同一平面内,两条直线会有什么位置关系?2。
相交的两条直线有什么特殊的位置关系?3。
在平面内,两条直线除了相交外,还有别的位置关系吗?二、自主学习、合作探究1。
如果两条直线不相交,你能想象出是什么样子吗?的大小,找找它们之间有哪些关系以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
cPba4321cba21课题:5.2.2平行线的判定学习目标:1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。
2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。
学习重点:在观察实验的基础上进行公理的概括与定理的推导 学习难点:定理形成过程中的逻辑推理及其书面表达。
学具准备:三角板 学习过程: 一、探索与思考(一)平行线判定方法1:1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用? 图中,∠1和∠2什么关系?2、判定方法1: 应用格式:。
∵∠1=∠2(已知)简单说成: 。
∴AB ∥CD (同位角相等,两直线平行)1、 应用:木工师傅使用角尺画平行线,有什么道理? (一) 平行线判定方法2、3:1、 思考:教材14页(试着写出推理过程)判定方法2: 应用格式:。
∵∠2=∠3(已知)简单说成: 。
∴a ∥b (内错角相等,两直线平行)2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试着写出推理过程)判定方法3: 应用格式:。
∵∠2+∠4=180°(已知)简单说成: 。
∴a ∥b (同旁内角互补,两直线平行) (三)数学思想:教材15页探究。
三、应用(一)例 教材15页(二)练一练:教材15页练习1、2、3(三)总结直线平行的条件 (1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。
即两条直线都与第三条直线平行,这两条直线也互相平行。
方法2:如图1,若∠1=∠3,则a ∥c 。
即 。
方法3:如图1,若 。
D C BA8765cba3412方法4:如图1,若 。
方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。
即在同一平面内,垂直于同一条直线的两条直线互相平行。
四、自我检测: (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34DCBA21FE D CBA 876543219654321DCB A(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ _____,那么________, 理由是____ __________; 如果∠2+ ∠5= ______ 或者____ ___,那么a ∥b,理由是_____ _____.2.如图4,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______. 4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.六、拓展延伸1、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.ED CB A2、如图,已知DGN AEM ∠=∠,21∠=∠,试问EF是否平行GH ,并说明理由。
一复习引入:
1、如何判定两直线平行?
2.如果两直线平行,你可以得到什么性质?
3.平行线的“判定”和“性质”之间有什么关系吗?
4.填空:如图
∵∠1=∠C (已知)
∴AD∥BC
()
∴∠2=∠B
()
∠EAC+∠C=180°
()
前一步用的是平行线的_______,
后一步用的
是。
二.例题讲解
充分利用已知条件复习平行线的判定和性质,并将文字语言与几何语言结合表示简单推理。
两条平行线被第三条直线所截是平行线问题中的一个“基本图形”所有的
问题1:已知:如图,∠1=∠2=∠B , EF ∥AB 。
问:∠3和∠C 有什么数量关系?为什么? 分析已知条件和所求结论之间关系。
让学生思考:由已知∠1=∠B 和EF ∥AB 。
你能得到什么结论,这些结论和最终要证得结论间有什么关系?
转化已知条件
问题2:如图:E 在直线DF 上,B 在直线AC 上,若∠AGB=∠EHF, ∠C=∠D, 求证: DF ∥AC
H G D
F
A
C
B
E
与平行线有关的角都存
在于这个基
本图形中,找到这个基本
图形也就确
定了角。
由已知条件得出结论把所得结论整合与所求结论建立联系。
理清思路
有时题目中的条件不是直接说明结
论成立的条。
7.2.2用坐标表示平移
1.掌握用坐标表示点的平移的规律;(重点)
2.了解并掌握用坐标表示图形平移的规律与方法.(难点)
一、情境导入
如图是小丽利用平移设计的一幅作品,说一说平移的特点.你能在坐标系中快速画出这一组图案吗?
二、合作探究
探究点一:点在坐标系中的平移
平面直角坐标系中,将点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B
的坐标为()
A.(1,-8) B.(1,-2)
C.(-6,-1) D.(0,-1)
解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解.点A的坐标为(-3,-5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是-3-3=-6,纵坐标为-5+4=-1,即(-6,-1).故选C.
方法总结:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
探究点二:图形在坐标系中的平移
【类型一】根据平移求对应点的坐标
如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),
那么这个点在△A′B′C′中的对应点P′的坐标为()
A.(a+6,b-2) B.(a+6,b+2)
C.(-a+6,-b) D.(-a+6,b+2)
解析:根据已知三对对应点的坐标,得出变换规律,再让点P的坐标也做相应变化.∵A(-3,-2),B(-2,0),C(-1,-3),A′(3,0),B′(4,2),C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).故选B.
方法总结:坐标系中图形上所有点的平移变化规律是一致的,解决此类问题的关键是根据已知对应点
找到各对应点之间的平移变化规律.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
【类型二】 平移作图
如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点
为P 1(a +6,b +2).
(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标;
(2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.
解析:(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.
解:(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2);
(2)如图,连接AA 1、CC 1.S △AC 1A 1=12×7×2=7,S △AC 1C =12
×7×2=7,故S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.
方法总结:坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.求四边形的面积通常转化为求几个三角形的面积的和.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
探究点三:平面坐标系中点及图形平移的规律探究
如图,一个动点在第一象限及x 轴、y 轴上运动,在第1秒钟,它从原点运动到(1,0),然后接着按图中箭头所示方向运动,即(0,0)→(1,0)→(1,1)→(0,1)→…,且每秒移动一个单位,那么第2011秒时动点所在位置的坐标是________.
解析:方法一:动点运动的规律:
(0,0),动点运动了0秒;
(1,1),动点运动了1×2=2(秒),接着向左运动;
(2,2),动点运动了2×3=6(秒),接着向下运动;
(3,3),动点运动了3×4=12(秒),接着向左运动;
(4,4),动点运动了4×5=20(秒),接着向下运动;
…
于是会出现:(44,44),动点运动了44×45=1980(秒),接着动点向下运动,而2011-1980=31,故动点的位置为(44,44-31),即(44,13).
方法二:由题目可以知道,动点运动的速度是每秒钟运动一个单位长度,(0,0)→(1,0)→(1,1)→(0,1)用的秒数分别是1秒钟,2秒钟,3秒钟,到(0,2)用4秒,到(2,2)用6秒,到(2,0)用8秒,到(3,0)用9秒,到(3,3)用12秒,到(0,4)用16秒,依次类推,到(5,5)用30秒.由上面的结论,我们可以得到的第一象限角平分线上的点从(0,0)到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,则由(n,n)到(n+1,n+1)所用时间增加(2n+2)秒,这样可以先确定第2011秒时动点所在的正方形,然后就可以进一步推得点的坐标是(44,13).
方法三:该动点每一次从一个轴走到另一个轴所走的步数要比上一次多走一横步,多走一竖步,共多走两步.
从(0,0)点走到(0,1)点共要3步,从(0,1)点走到(2,0)点共5步……当n为偶数时,从(0,n-1)点到(n,0)点共走(2n+1)步;当n为奇数时,从(n-1,0)点到(0,n)点共走(2n+1)步,这里n=1,2,3,4,….
∵3+5+7+…+(2n+1)=n(n+2)=(n+1)2-1,∴当n=44时,n(n+2)=(n+1)2-1=452-1=2024,离2011最近,此时n为偶数,即该过程是从(0,43)到(44,0)的过程.2024-2011=13,即从(44,0)向上“退”13步即可.当到2011秒时动点所在的位置为(44,13).故答案为(44,13).
方法总结:此类归纳探索猜想型问题的解题关键是总结规律,由特殊到一般的归纳思想来确定点所在的大致位置,进而确定该点的坐标.
三、板书设计
用坐标表示平移:
横坐标右移加,左移减;纵坐标上移加,下移减.
通过本课时的学习,学生经历图形坐标变化与图形平移之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技巧,丰富对现实空间及图形的认识,建立初步的空间观念,培养形象思维能力,激发数学学习的好奇心与求知欲.教学过程中让学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣。