人教版七年级数学上册有理数的乘除法专项综合练习题精选64
- 格式:doc
- 大小:139.00 KB
- 文档页数:51
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
人教版数学七年级上册1.4有理数的乘除法练习题一、选择题1.下列说法正确的是 ()A. 同号两数相乘,取原来的符号B. 一个数与相乘,积为该数的相反数−1C. 一个数与0相乘仍得这个数D. 两个数相乘,积大于任何一个乘数2.若,则下列各式正确的是 a <c <0<b ()A. B. C. D. 无法确定abc <0abc =0abc >03.绝对值小于3的所有整数的积等于( )A. B. 4C. 0D. 6−364.计算等于 1a×(−a)÷(−1a )×a()A. 1B. C. D. a 2−a 1a 25.已知12与a 的积为,则a 比4小 −48()A. 1B. 2C. 4D. 86.的倒数与4的相反数的商是 −114()A. B. 5 C. D.−515−157.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是 ()A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.下列运算中没有意义的是 ()A. B.−2006÷[(−73)×3+7][(−73)×3+7]÷(−2006)C.D.(13−12)÷[0−(−4)]×(−2)213÷(313×6−18)9.a 的倒数是,则a 是 −1.5()A. B. C.D.−3232−232310.下列结论错误的是 ()A. 若a ,b 异号,则,B. 若a ,b 同号,则,a ⋅b <0a b<0a ⋅b >0a b>0C.D.−a b=a −b =−ab−a −b=−ab二、填空题11.a 的相反数是,则a 的倒数是______.−3212.若x ,y 互为倒数,则______.(−xy )2017=13.计算的结果是______ .−163÷43×(−34)14.已知是a 整数,且,则表示a 的所有整数的积是______.−3<a <415.若a ,b ,c ,d 四个数的积为正数,则这四个数中正数有______ 个.16.在整数,,,6中任取三个数相乘,所得的积的最大值为______.−5−3−117.两个因数的积为,其中一个因数是,另一个因数是______.−1−21418.如果,那么 ______ .n <0|n|n=19.若,则的值为______.ab <0a|a|+|b|b+|ab|ab 20.若“”是一种数学运算符号,并且:!,,,,,则1!=12!=2×1=23!=3×2×1=64!=4×3×2×1…______.17!18!=三、计算题21..(−16+34−112)×(−48)22.(−56)÷(−3)×(−145)×(−2)23.运算:24÷(12−13+14−16)24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求的值.m−cd +a +bm【答案】1. B2. C3. C4. B5. D6. C7. D8. A 9. C10. D11. 2312. −113. 3 14. 015. 0或2或4 16. 90 17. 4918. −119. −120. 11821. 解:原式,=−16×(−48)+34×(−48)−112×(−48)=8−36+4.=−2422. 解:原式,=(−56)×(−13)×(−95)×(−2),=56×13×95×2.=123. 解:原式.=24÷12−8+6−424=24÷14=24×4=96a+b=0cd=1m=2−224. 解:根据题意得:,,或,m=2=2−1+0=1m=−2=−2−1+0=−3当时,原式;当时,原式.。
人教版七年级上册数学期中常考题《有理数的乘除法》专项复习一.选择题(共5小题)1.(2021春•青浦区期中)一个有理数和它的相反数之积()A.一定为正数B.一定为负数C.一定为非负数D.一定为非正数2.(2020秋•牡丹江期中)如果两个有理数的和等于零,那么这两个有理数的积是()A.负数B.正数C.非负数D.非正数3.(2021•苍南县模拟)在﹣4,﹣2,0,1,3,5这六个数中,任意三数之积的最大值是()A.15B.40C.24D.304.(2020秋•龙华区期中)两个有理数的积是负数,和是正数,那么这两个数()A.都是负数B.其中绝对值大的数是正数,另一个是负数C.互为相反数D.其中绝对值大的数是负数,另一个是正数5.(2020春•宝山区期中)计算(﹣1)÷3×(﹣)的结果是()A.﹣1B.1C.D.9二.填空题(共5小题)6.(2021春•杨浦区期中)已知有4个有理数相乘,积的符号是负号,那么这4个有理数中正数有个.7.(2021春•浦东新区期中)计算:35×(﹣)÷(﹣5)=.8.(2021春•杨浦区期中)已知|a|=4,|b|=2,那么ab=.9.(2020秋•惠来县期末)在﹣2,3,4,﹣5这四个数中,任取两个数相乘,所得的乘积最小是.10.(2021春•杨浦区期中)计算:﹣0.125÷=.三.解答题(共5小题)11.(2020秋•高邑县期中)计算:(﹣21)÷(﹣3)×.12.(2020秋•环江县期中)计算:.13.(2021春•青浦区期中)计算:.14.(2021春•杨浦区期中)÷(﹣10)×(﹣)÷(﹣)15.(2020秋•高邑县期中)计算:(﹣﹣)÷(﹣).参考答案一.选择题(共5小题)1.(2021春•青浦区期中)一个有理数和它的相反数之积()A.一定为正数B.一定为负数C.一定为非负数D.一定为非正数【考点】相反数;有理数的乘法.【分析】根据相反数的意义,有理数的乘法,可得答案.【解答】解:a=0时有理数和它的相反数之积为零,a≠0时a•(﹣a)=﹣a2,故选:D.【点评】本题考查了有理数的乘法,利用有理数的乘法是解题关键,要分类讨论,以防遗漏.2.(2020秋•牡丹江期中)如果两个有理数的和等于零,那么这两个有理数的积是()A.负数B.正数C.非负数D.非正数【考点】正数和负数;有理数;有理数的加法;有理数的乘法.【专题】实数;数感.【分析】两个有理数的和等于零,则这两个数互为相反数,再进行乘积的分析,即可判断.【解答】解:∵两个有理数的和等于零,∴这两个数互为相反数,∴这两个数的积为0或负数,即非正数.故选:D.【点评】本题主要考查有理数的加法,有理数的乘法,解答的关键是明确两个有理数的和等于零,则这两个数互为相反数,或都为0.3.(2021•苍南县模拟)在﹣4,﹣2,0,1,3,5这六个数中,任意三数之积的最大值是()A.15B.40C.24D.30【考点】有理数的乘法.【专题】实数;运算能力.【分析】取出三个数,使其积最大即可.【解答】解:(﹣4)×(﹣2)×5=40,则任意三数之积的最大值是40.故选:B.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.4.(2020秋•龙华区期中)两个有理数的积是负数,和是正数,那么这两个数()A.都是负数B.其中绝对值大的数是正数,另一个是负数C.互为相反数D.其中绝对值大的数是负数,另一个是正数【考点】正数和负数;相反数;绝对值;有理数的加法;有理数的乘法.【专题】实数;运算能力.【分析】根据有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,可确定两个数为异号,再根据绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值可得正数的绝对值比负数的绝对值大,进而可得答案.【解答】解:∵两个有理数的积是负数,∴两个数为异号,∵和是正数,∴其中绝对值大的数是正数,另一个是负数.故选:B.【点评】此题主要考查了有理数的乘法和加法,关键是掌握有理数乘法法则和加法法则.5.(2020春•宝山区期中)计算(﹣1)÷3×(﹣)的结果是()A.﹣1B.1C.D.9【考点】有理数的乘法;有理数的除法.【专题】实数;运算能力.【分析】根据有理数乘除法的计算法则进行计算即可.【解答】解:原式=1÷3×=×=,故选:C.【点评】本题考查有理数的乘除法,掌握有理数乘除法的计算方法是正确计算的前提.二.填空题(共5小题)6.(2021春•杨浦区期中)已知有4个有理数相乘,积的符号是负号,那么这4个有理数中正数有3或1个.【考点】有理数;有理数的乘法.【专题】实数;推理能力.【分析】根据多个数字相乘积为负数,得到负因式个数为奇数个,即可确定出结果.【解答】解:∵4个有理数相乘,积的符号是负号,∴这4个有理数中,负数有1个或3个.∴正数的个数为3个或1个.故答案为:3或1个.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.7.(2021春•浦东新区期中)计算:35×(﹣)÷(﹣5)=.【考点】有理数的乘法;有理数的除法.【专题】计算题;实数;数感;运算能力.【分析】此题为有理数乘除混合运算,先根据负数的个数确定最终结果为正数,运算过程中可以把负号去掉,同时把除法转化为乘法,然后进行计算即可得到答案.【解答】解:35×(﹣)÷(﹣5)=35××=,故答案为:.【点评】本题考查了有理数的乘除混合运算,确定最终结果的符号以及将除法转化为乘法是解决问题的关键.8.(2021春•杨浦区期中)已知|a|=4,|b|=2,那么ab=8或﹣8.【考点】绝对值;有理数的乘法.【专题】实数;运算能力.【分析】根据绝对值的定义,可求解a,b,再代入根据相关运算法则计算即可求解.【解答】解:∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=4,b=2时,ab=4×2=8;当a=4,b=﹣2时,ab=4×(﹣2)=﹣8.当a=﹣4,b=2时,ab=(﹣4)×2=﹣8.当a=﹣4,b=﹣2时,ab=(﹣4)×(﹣2)=8.∴ab的值为8或﹣8.故答案为:8或﹣8.【点评】本题主要考查有理数的乘法,绝对值,根据绝对值确定a,b的值是解题的关键.9.(2020秋•惠来县期末)在﹣2,3,4,﹣5这四个数中,任取两个数相乘,所得的乘积最小是﹣20.【考点】有理数的乘法.【专题】实数;运算能力.【分析】取出两数,使其乘积最小即可.【解答】解:取出两数为4和﹣5,所得积最小的是﹣20,故答案为:﹣20.【点评】此题考查了有理数的乘法,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.10.(2021春•杨浦区期中)计算:﹣0.125÷=﹣.【考点】有理数的除法.【专题】实数;运算能力.【分析】将有理数的除法转化为有理数的乘法进行计算即可.【解答】解:原式=﹣×=﹣,故答案为:﹣.【点评】考查了有理数的除法的知识,解题的关键是能够将0.125转化为分数,难度不大.三.解答题(共5小题)11.(2020秋•高邑县期中)计算:(﹣21)÷(﹣3)×.【考点】有理数的乘法;有理数的除法.【专题】实数;运算能力.【分析】利用有理数的除法的法则以及有理数的乘法的法则对式子进行运算即可.【解答】解:==.【点评】本题主要考查有理数的除法,有理数的乘法,解答的关键是对相应的法则的掌握与应用.12.(2020秋•环江县期中)计算:.【考点】有理数的乘法;有理数的除法.【专题】实数;运算能力.【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:原式==﹣6.【点评】此题主要考查了有理数的乘除运算,正确掌握相关运算法则是解题关键.13.(2021春•青浦区期中)计算:.【考点】有理数的乘法;有理数的除法.【专题】实数;运算能力.【分析】原式从左到右依次计算即可求出值.【解答】解:原式=﹣÷(﹣)×=﹣×(﹣)×=.【点评】此题考查了有理数的除法,以及有理数的乘法,熟练掌握运算法则是解本题的关键.14.(2021春•杨浦区期中)÷(﹣10)×(﹣)÷(﹣)【考点】有理数的乘法;有理数的除法.【专题】常规题型;计算题.【分析】根据有理数的运算法则即可求出答案.【解答】解:原式=×××=﹣【点评】本题考查有理数的运算法则,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.15.(2020秋•高邑县期中)计算:(﹣﹣)÷(﹣).【考点】有理数的减法;有理数的除法.【专题】实数;运算能力.【分析】根据有理数的加减运算法则、乘除运算法则即可求出答案.【解答】解:原式=(﹣﹣)×(﹣18)=×(﹣18)﹣×(﹣18)﹣×(﹣18)==﹣1.【点评】本题考查有理数的除法,解题的关键是熟练运用有理数的除法运算,本题属于基础题型.。
有理数的乘除法练习题课堂学习检测一、选择题1.下列计算正确的是( ).(A)911)311()311(=-⨯-(B)1172)218(=⨯- (C)766)71()7(-=+⨯-(D)1)31(3-=-⨯2.两个有理数之积是0,那么这两个有理数( ).(A)至少有一个是0 (B)都是0(C)互为倒数 (D)互为相反数3.,04.018)05.041110(54-+-=+-⨯-这个运算应用了( ).(A)加法结合律(B)乘法结合律 (C)乘法交换律 (D)分配律4.比较a 与3a 的大小,正确的是( ).(A)3a >a (B)3a =a(C)3a <a(D)上述情况都可能二、填空题5.式子)66()981()8.3(5.7)6(31-⨯-⨯+⨯⨯-⨯的符号为______.6.若a =4,b =0,c =-3,d =-5,则c -ad =______,(a -b )(c -d )=______. 三、计算题7.直接将答案写在横线上:(1)=-⨯)54(43______;(2)=-⨯-)4()85(______;(3)=⨯-38)1923(______; (4)=+⨯+)2.1()411(______.8.)720()103()32(-⨯-⨯- 9.)2.0()732()312(-⨯+⨯-10.)721()1179154238312(-⨯+- 11.)194(6)194(13)194(7-⨯--⨯+-⨯-综合、运用、诊断一、填空题12.若a <0,b <0,c >0,则(-a )·b ·(-c )______0. 13.若a +b <0,且ab >0,则a______0,b______0. 二、选择题14.已知(-ab )·(-ab )·(-ab )>0,则( ).(A)ab <0(B)ab >0(C)a >0,b <0 (D)a <0,b <015.|x -1|+|y +2|+|z -3|=0,则(x -1)(y -2)(z +3)的值为( ).(A)48 (B)-48 (C)0 (D)xyz三、计算题 16.)36()12765321(-⨯-+-17.)95.1(9)772.3()9(228.3⨯--⨯-+-⨯18.)83()154()52()433()322()211(-⨯-⨯+⨯+⨯-⨯-四、解答题 19.巧算下列各题:(1))200411)(120031()151)(411)(131)(211(--⋯----(2)666663333222299999⨯-⨯拓展、探宄、思考20.先观察下图,再解答下题:小李在街上碰到为救助失学儿童募捐的学生,于是将身上一半的钱捐了出来;接着他又碰到第二个募捐的学生,便又捐出了剩下钱的一半;跟着第三个,第四个,他每次都捐出了剩下钱的一半,身上还剩下一元.请你算一算,最初小李身上有多少元钱?21.用计算器计算下列各式,将结果写在横线上:999×21=______; 999×22=______; 999×23=______; 999×24=______. (1)你发现了什么规律?(2)不用计算器,你能直接写出999×29的结果吗?有理数的除法练习题学习要求理解除法与乘法的逆运算关系,会进行有理数除法运算;巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算.课堂学习检测一、填空题1.若两数之积为1,则这两数互为________;若两数之商为1,则这两数________;若两数之积为-1,则这两数互为________;若两数之商为-1,则这两数互为________. 2.零乘以________都得零,零除以________都得零.3.若ab >0,b <0,则a ________0,且ab________0;若ab <0,a >0,则b ________0,且a b ________0由此可知,ab 与ab的符号________. 一、选择题4.下列计算正确的是( ).(A)20)151(5-=-÷- (B)2)81()8(2-=-⨯-÷-(C)40)152()2(38-=-÷-⨯- (D)25)8()116387(-=-÷++-5.已知a 的倒数是它本身,则a 一定是( ).(A)0(B)1(C)-1(D)±16.一个数与-4的乘积等于531,这个数是( ).(A)52(B)52-(C)25 (D)25-7.填空:(1))21()12(-÷-=_______;(2))2533(2.5-÷=_______; (3)()=-÷⨯-÷-551)51(5 _______;(4))45(545445-⨯÷⨯-=_______;三、计算题 8.)3231(32⨯-÷ 9.)2131(15--÷-10.)434()322(+-÷--综合、运用、诊断一、选择题11.若xy >0,则(x +y )xy 一定( ).(A)小于0(B)等于0(C)大于0(D)不等于012.如果x <y <0,则化简xyxy x x ||||+的结果为( ). (A)0 (B)-2 (C)2 (D)3二、计算题13.)511()73(25.0--⨯-÷-14.)241()245836121(-÷+-+-15.)911(98999-÷16.)]53()32(1[)]53(32[-⨯-+÷-+-三、解答题17.当a =-2,b =0,c =-5时,求下列式子的值:(1)a +bc ;(2)(a -b )(a +c ).18.在10.5与它的倒数之间有a 个整数,在10.5与它的相反数之间有b 个整数,求(a +b )÷(a -b )+2的值.拓展、探究、思考19.式子||||||ab abb b a a ++的所有可能的值有( ). (A)2个 (B)3个 (C)4个 (D)无数个20.如果有理数a ,b ,c ,d 都不为0,且它们的积的绝对值等于它们积的相反数,你能确定a ,b ,c ,d 中最少有几个是负数,最多有几个是负数吗?21.一口枯井深64米,井底之蛙想从井底爬上来.第一天白天,它往上爬到井深一半,晚上又滑落了白天所爬路程的一半;第二天白天,它继续往上爬到剩下路程的一半,晚上又滑落了白天所爬路程的一半;每天这样爬,它需要多少天才能爬到井口?做完题后想一想:“一尺之棰,日取其半,万世不竭”这句话的含义.。
七年级数学上册 1.4《有理数的乘除法》习题精选(新版)新人教版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.4 有理数的乘除法班级__________姓名__________一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数6.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-17.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积9.下列运算有错误的是( )A.13÷(-3)=3×(-3) B.1(5)5(2)2⎛⎫-÷-=-⨯-⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7)10.下列运算正确的是( )A.113422⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-=⎪⎝⎭; D.(-2)÷(-4)=2二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b >>,那么a b _____0.6.如果a>0,b<0,c<0,那么b ac ____0.7.-0.125的相反数的倒数是________.8.若a>0,则a a =_____;若a<0,则a a=____. 三、解答1.计算:(1) 384⎛⎫-⨯ ⎪⎝⎭; (2) 12(6)3⎛⎫-⨯- ⎪⎝⎭; (3)(-7.6)×0.5; (4) 113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.2.计算.(1) 38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭; (2) 38(4)(2)4-⨯-⨯-; (3) 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭.3.计算(1) 111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2) 111111111111223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.4.计算(1)(+48)÷(+6); (2) 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭; (3)4÷(-2); (4)0÷(-1000).5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭;(3)1213(5)6(5)33⎛⎫⎛⎫-÷-+-÷-⎪ ⎪⎝⎭⎝⎭.6.计算(1)111382⎛⎫⎛⎫-÷--÷-⎪ ⎪⎝⎭⎝⎭; (2)11181339⎛⎫-÷-÷- ⎪⎝⎭.答案一、ACBBA,DCCAB二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8; 8.1,-1三、1.(1)-6;(2)14;(3)-3.8;(4)1 8 62.(1)22;(2)2;(3)-48;3.(1)213;(2)584.(1)8;(2)23;(3)-2;(4)05.(1)-7;(2)375;(3)4 6.(1)14;(2)-240。
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
《有理数的乘除法》同步练习2一、填空题1.两个非零有理数相乘,同号得_____,异号得_____.2.零与任意负数的乘积得_____.3.计算:(1)(-4)×15×(-53)=_____(2)(-54)×21×74×(-835)=_____4.两数相除同号_____,异号_____.5.一个数的倒数是它本身,这个数是_____.6.非零有理数与其倒数的相反数的乘积为_____.7.几个不等于0的数相乘,积的符号由______的个数决定.8.自然数中,若两数之和为奇数,则这两个数_____. 9.若两个自然数之积为偶数,则这两个数_____.10.若一个数的绝对值等于3,则这个数为______.11.如果a >0,b >0,c <0,d <0,则:a ·b ·c ·d ____0ba +dc ____0ca +db ____0 (填写“>”或“<”号)12.某学习小组,共有四名同学,在一次考试中所得分数为83.5、82、81.5、73,则这四名同学的平均分为_____,最低分比平均分低了______分.二、选择题13.下列说法正确的是()A.几个有理数相乘,当因数有奇数个时,积为负B.几个有理数相乘,当正因数有奇数个时,积为负C.几个有理数相乘,当积为负数时,负因数有奇数个D.几个有理数相乘,当负因数有偶数个时,积为负14.如果两数之和等于零,且这两个数之积为负数,那么这两个数只能是()A.两个互为相反数的数B.符号不同的两个数C.不为零的两个互为相反数的数D.不是正数的两个数15.如果一个数的绝对值与这个数的商等于-1,则这个数是()A.正数B.负数C.非正D.非负16.下列说法错误的是()A.正数的倒数是正数B.负数的倒数是负数C.任何一个有理数a 的倒数等于a1D.乘积为-1的两个有理数互为负倒数17.如果abcd <0,a +b =0,cd >0,那么这四个数中负因数的个数至少有()A.4个B.3个C.2个D.1个18.如果两个有理数a 、b 互为相反数,则a 、b 一定满足的关系为()A.a ·b =1B.a ·b =-1C.a +b =0D.a -b =019.设a 、b 、c 为三个有理数,下列等式成立的是()A.a (b +c )=ab +cB.(a +b )·c =a +b ·cC.(a -b )·c =ac +bcD.(a -b )·c =ac -bc三、解答题20.计算:[432×(-145)+(-0.4)÷(-254)]×15121.某班举办数学知识比赛,共分五个小组,其中四个小组的成绩如表所示,请问(1)这四个小组的总平均分比全班的平均分高还是低?为什么?(2)据(1)你能否判断第五组的成绩比全班平均分高,还是低?小组第一组第二组第三组第四组人数15131412 小组平均分与全班平均分的差值4-3 -2122.筐中放着2002只球,甲、乙两同学轮流取球,每次只能取1只、2只或3只球,不可多取,谁能最后一次恰好取完球,谁就获胜,甲想获胜,他应该怎样去玩这场游戏?答案一、1.正负 2.0 3.(1)36 (2)14.得正得负5.±16.-17.负数8.一奇一偶 9.至少有一偶数10.±3 11.>>< 12. 80 7二、13.C 14.C 15.B 16.C 17.D 18.C 9.D三、20. 121.(1)高,因为4×15+12×1-13×3-14×2=5>0(2)据(1)可判断第五组的成绩比全班平均分低22.甲先拿两只,然后让乙拿,甲两次拿球时与乙所拿球之和为4,重复上面的过程,甲便可获胜.。
学生做题前请先回答以下问题问题1:有理数加法口诀_________________________;有理数减法法则__________________________________,用字母表示为a-b=________.问题2:请用字母表示加法的交换律和结合律.问题3:有理数的乘法法则、除法法则分别是什么?问题4:请用字母表示乘法的交换律,结合律以及乘法对加法的分配律.问题5:什么是倒数?倒数等于它本身的数是________.问题6:若,利用有理数乘法法则判断的符号.有理数加减乘除混合运算专项训练(人教版)一、单选题(共14道,每道7分)1.计算:( )A.-5B.-7C.6D.-6答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算2.计算:( )A.-14B.-2C.2D.答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算3.计算:( )A.-2B.-14C.0D.-12答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算4.计算:( )A.5B.-4C.-5D.4答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算5.计算:( )A.2B.-2C.20D.-14答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算6.计算:( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算7.计算:( )A.-2B.-6C.2D.6答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算8.计算:( )A.-11B.11C.-9D.9答案:D解题思路:故选D.试题难度:三颗星知识点:有理数加减乘除混合运算9.计算:( )A.-3B.-35C.3D.35答案:B解题思路:故选B.试题难度:三颗星知识点:有理数加减乘除混合运算10.计算:( )A.-14B.-2C.-16D.-4答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算11.计算:( )A.-7B.0C.-6D.-4答案:C解题思路:故选C.12.计算:( )A. B.C. D.9答案:C解题思路:故选C.试题难度:三颗星知识点:有理数加减乘除混合运算13.计算:( )A.-31B.-18C.-4D.-25答案:B解题思路:故选B.14.计算:( )A. B.C. D.-7答案:A解题思路:故选A.试题难度:三颗星知识点:有理数加减乘除混合运算。
有理数的乘法基础练习 1 .计算. (1)(+4)×(-5);(2)(-0.125)×(-8); 1 (3)(-2 3)×(- 3);(4)0×(-13.52); 72(5)(-3.25)×(+ 13 2 .计算:);(6)(-1)×a.4 (1)(-185.8)×(-36 5)×0×(-25); 1 (2)(-1 82 )×3(- 31)×(-1 ).33. 下列结论正确的是( )A .两数之积为正,这两数同为正;B .两数之积为负,这两数为异号C .几个数相乘,积的符号由负因数的个数决定D .三数相乘,积为负,这三个数都是负数 4.一个有理数和它的相反数的积 ( )A .符号必为正B .符号必为负C .一定不大小 0D .一定不小于 0 5.计算.2(1)(-6)×(+8);(2)(-0.36)×(- 92 ); (3)(-2 31)×(-2 ); 42(4)(-288 51 )×0;(5)2 43 ×(-1 42 )×(- 38 )×(- );71(6)(-5)×(-8)×0×(-10)×(-15);(7)(-3 311 )×(-0.12)×(-2 4)×33;31 (8)(+2 2 )×|- 31|×2 41 ×(-5 3);(9)(-3)×(-4)×(-5)+(-5)×(-7);(-0.1)×(-1)×(-100)-0. 01×(1000).有理数的除法基础练习1.填空: (1) 乘积是 1 的两个数互为 ; (2) 有理数的除法法则,除以一个数等于乘以这个数的;(3) 两数相除,同号得,异号得 ,并把绝对值 ,0 除以任何一个不等于 0 的数都得.52.-131 ,2.6,|- 7|,-(-4),-2.5 的倒数分别为.3.化简下列分数: -436-24 (1)-12; (2)-18;(3)-.4拓展提高 1.填空题: (1)-6 的倒数是 ,-6 的倒数的倒数是 _,-6 的相反数是 ,-6 的相反数的相反数是 ;(2) 当两数 时,它们的和为 0;(3) 当两数 时,它们的积为 0; (4) 当两数时,它们的积为 1.2.计算:1 (1)(+36)÷(-4); (2)(-2 31 )÷(-1 );63(3)(-90)÷15;(4)-1÷(+ ).53. 计算下列各题:(1)(-1 700 000)÷(-16)÷(-25)÷ 25;(2)(+125)÷(-3)+(-62)÷3+(+187)÷3.4. 用简便方法计算:1 (1)(-81)÷2 4 9- ÷(-16);4 1(2)1÷{(-1 11)×(-1 5 3 )-(-3.9)÷[1- 64+(-0.7)]}.5. 化简下列分数:-2 3-a (1);(2) -6--9 ;(3); (4)-.-3-b“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
1.4有理数乘除法1.乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .2.乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a (bc ).3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a (b+c )=ab+ac .4.有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0;5.倒数的定义:乘积为1的两个数互为倒数.6.除以一个数等于乘以这个数的倒数.7.两数相除,同号得正,异号得负,并把绝对值相除一、单选题1.下列四组数:①1和-1;①-1和-1;①23-和112;①23-和112-.互为倒数的是( ) A.①①B.①①C.①①D.①① 2.12的倒数的绝对值是( ) A.12 B.-12 C.2 D.-23.下列计算正确的是( )A .(-7)×(-6)=-42B .(-3)×(+5)=15C .(-2)×0=0D .−712×4=(−7+12)×4=−26 1(0)a b a b b÷=⨯≠其中4.下面的说法正确的是()A.0的倒数是0 B.0的倒数是1 C.0没有倒数D.以上说法都不对5.0.24×116×(−514)的结果是()A.1B.−25C.−110D.0.16.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,以此类推,则a2 019的值为()A.-1 007B.-1 008C.-1 009D.-2 0167.计算12﹣7×(﹣4)+8÷(﹣2)的结果是()A.36B.﹣20C.6D.﹣248.对有理数a,b,规定运算如下:a①b=a+ab,则-2①3的值为()A.-10B.-8C.-6D.-49.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A.20 B.﹣20 C.10 D.810.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷32=36×23﹣12×23=16丁:(﹣3)2÷13×3=9÷1=9A.甲B.乙C.丙D.丁二、填空题11.实数6-的倒数是_____12.若a与b互为相反数,c与d互为倒数,则2019a+2018b+bcd=_________.13.计算下列各题:(1)−2+4=___________;(2)(−3)2×59=___________;(3)−4÷12×2=___________;(4)2a−5a=___________;14.计算(﹣4)×11(1)42⎡⎤-+⎢⎥⎣⎦=_____.15.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点1A,第二次将点1A,向右移动4个单位长度到达点2A,第三次将点2A向左移动6个单位长度到达点3A,按照这种移动规律移动下去,第n次移动到点n A,如果点n A 与原点的距离等于19,那么n的值是________.三、解答题16.计算: (1)()21 3.25÷-; (2)121143⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 17.简便运算:(1)(-2)×(-8.5)×(-5); (2)17211127853⎡⎤⎛⎫⎛⎫⎛⎫-⨯-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 18.数学老师布置了一道思考题“计算:(-112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(-12)=-4+10=6,所以(-112)÷(13−56)=16. (1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(-124)÷(13−16+38). 19.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每天行驶100km需用汽油6升,汽油价7.5元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?20.规定一种新的运算:a①b=a×b-a-b2+1.例如:3①(-4)=3×(-4)-3-(-4)2+1=-30.请用上述规定计算下列各式:(1)2①5;(2)(-2)①(-5)答案1.D2.C3.C4.C5.C6.C7.A8.B9.A 10.C11.1 6 -12.013.2, 5, -16, −3a 14.3.15.18或1916.(1) 原式716757 5551616⎛⎫⎛⎫=÷-=⨯-=-⎪ ⎪⎝⎭⎝⎭.(2) 原式5553343454⎛⎫⎛⎫⎛⎫=-÷-=+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.17.(1) 原式=[(-2)×(-5)]×(-8.5)=10×(-8.5)=-85.(2) 原式878787883117875735315⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-+-⨯+-⨯-=-+=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.18.解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(-124)= (13−16+38) ×(-24)=-8+4-9= -13,则(-124)÷(13−16+38)= -113.故答案为:(1)正确,理由见详解;(2)-1 13.19.解:(1)50+(﹣6+11﹣15+0﹣13+17+6)÷7=50(千米).答:这七天中平均每天行驶50千米(2)平均每天所需用汽油费用为50×(6÷100)×7.5=22.5(元),估计小明家一个月的汽油费用是22.5×30=675 (元).答:估计小明家一个月的汽油费用是675元.20.解:(1)2①5=2⨯5-2-52+1=-16,(2)(-2)①(-5)= (-2)⨯(-5)- (-2)-(-5)2+1=10+2-25+1=-12。
人教版七年级数学上册《1.4有理数的乘除法》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.计算的结果是()A.0 B.C.6 D.92.绝对值小于5的所有整数的和为()A.0 B.﹣8 C.10 D.203.不改变原式的值,将中的减法改成加法,并写成省略加号的形式的是()A.B.C.D.4.电冰箱的冷藏室温度是5℃,冷冻室温度是﹣2℃,则电冰箱冷藏室比冷冻室温度高()A.3℃B.7℃C.﹣7℃D.﹣3℃5.下列运算中正确的个数有()①(﹣5)+5=0;②﹣10+(+7)=﹣3;③0+(﹣4)=﹣4;④;⑤﹣3﹣2=﹣1A.1个B.2个C.3个D.4个6.两个有理数的和为正数,那么这两个数一定()A.都是正数B.符号相同C.有一个是D.至少有一个正数7.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a-b+c的值为()A.2 B.-2 C.2或-2 D.以上都不对8.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1二、填空题:(本题共5小题,每小题3分,共15分.)9.比-3小5的数是,.10.冷库甲的温度是-5℃,冷库乙的温度是-15℃,则温度高的是冷库.11.检修小组从A地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.求收工时在A地边千米.12.在数1,2,3,…,2022前添加“+”“-”并依次计算,所得的结果中最小的非负数是.13.已知,则.三、解答题:(本题共5题,共45分)14.计算:(1).(2).15.计算:(1)26+14+(-16).(2)4.7+(-0.8)+5.3+(-8.2).(3)(-2)+3+1+(-5)+2+(-4).(4)16.已知,且a、b异号,求的值.17.已知如下各数:4与,0,-4,25,-1,解答下列各题.(1)用“”号把这些数连接起来;(2)求这些数的绝对值的和.18.某外卖员驾驶一辆充满电的电动车在一条东西方向的商业街上取外卖,若规定向东为正,向西为负,从出发点开始所走的路程为:+4,-2,-3,+7,+1,-2(单位:千米).(1)当取得最后一份外卖时,该外卖员距离出发点多远?在出发点什么方向?(2)若该电动车充满电可行驶25千米,取完外卖后该电动自行车还可行驶多少千米?参考答案:1.C 2.A 3.C 4.B 5.C 6.D 7.A 8.A9.-8;-410.甲11.东;112.113.214.(1)解:(2)解:15.(1)原式=(26+14)-16=40- 16=24.(2)原式=4.7-0.8+5.3-8.2=(4.7+5.3)-(0.8+8.2)=10-9=1.(3)原式=[(-2)+(-5)+(-4)]+(3+1+2)=-11+6=- 5.(4)原式=-==16.解:因为所以因为a、b异号所以或当时;当时;所以的值为14或.17.(1)解:有理数的大小比较法则:正数大于0,负数小于0,正数总是大于负数,负数绝对值大的反而小;(2)解:由题意,所求的数为故这些数的绝对值的和为.18.(1)解:(千米)答:在出发点东边5千米处.(2)解:(千米)答:还可以行驶6千米。
七年级数学上册《第一章有理数乘除混合运算》练习题附答案-人教版一、选择题1.与﹣2的乘积为1的数是( )A.2B.﹣2C.12D.﹣122.下列说法错误的是( )A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的两个数的积是13.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大4.两个有理数的和为正数,积为负数,则这两个有理数是( )A.两个正数B.两个负数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.﹣4÷49×(﹣94)的值为( )A.4B.﹣4C.814D.﹣8146.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.7.计算﹣6÷12×2﹣18÷(﹣6)的结果是( )A.﹣ 21B.﹣ 3C.4D.78.计算﹣4÷49×94的结果是( )A.4B.﹣ 4C.2014 D.﹣ 20149.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b﹣a)(a+1)>0D.(b﹣1)(a﹣1)>010.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
右面两个图框是用法国“小九九”计算78和89的两个示例。
若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A.2,3B.3,3C.2,4D.3,411.给出下列说法:①1乘任何有理数都等于这个数本身;②0与任何有理数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与其本身相等的数是±1.其中正确的有( )A.1个B.2个C.3个D.4个12.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A ×B=( )A.6EB.72C.5FD.B0二、填空题13.计算:﹣2×3= .14.绝对值不大于4.5的所有整数的和为__________,积为__________;15.﹣54的绝对值是,倒数是.16.一个数与﹣34的积为12,则这个数是____________17.某学生将某数乘以﹣1.25时漏了一个负号,所得结果比正确结果小0.25则正确结果应是 .18.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.三、解答题19.计算:(114﹣56+12)×(﹣12);20.计算:15÷(﹣32+56);21.计算:|﹣2|÷(﹣12)+(﹣5)×(﹣2);22.计算:﹣112÷34×(﹣0.2)×134÷1.4×(﹣35).23.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?24.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25.用加、减、乘、除号和括号将3,6,﹣8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.26.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如14524÷=,14342÷=所以14是“差一数”; 19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.27.请观察下列算式,找出规律并填空211⨯=1﹣21, 321⨯=21﹣31, 431⨯=31﹣41,541⨯=41﹣51则: (1)第10个算式是 = . (2)第n 个算式为 = . (3)根据以上规律解答下题:211⨯+321⨯+431⨯+… +202420231⨯的值.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】C9.【答案】C.10.【答案】C11.【答案】D12.【答案】A13.【答案】﹣6.14.【答案】0,015.【答案】54﹣4516.【答案】﹣2 317.【答案】1 818.【答案】4.19.【答案】原式=114×(﹣12)+(﹣56)×(﹣12)+12×(﹣12)=﹣15+10+(﹣6)=﹣1120.【答案】原式=﹣22.5;21.【答案】原式=6;22【答案】原式=﹣3 1023.【答案】解:(1)该出租车停在出发地西面4km处;(2)该出租车一共行驶了164 km.24.【答案】解:(1)抽﹣3和﹣5,最大值为:﹣3×(﹣5)=15; (2)抽1和﹣5,最小值为:(﹣5)÷1=﹣5;25.【答案】解:答案不唯一,如(﹣8)÷(3﹣5)×6=24,6÷(3﹣5)×(﹣8)=24等. 26.【答案】解:(1)∵49594÷= 493161÷=∴49不是“差一数” ∵745144÷= 743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4 ∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399 ∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2 ∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390 ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 27.【答案】解:(1)第10个算式是11110111101-=⨯; (2)第n 个算式为()11111+-=+n n n n ; (3)原式=2024120231202312022141313121211-+-++-+-+- =202411-=20242023.。
人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(X•珠海)的倒数是()A.B.C.2 D.﹣23.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣35.(X•自贡)的倒数是()A.﹣2 B.2 C.D.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣29.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.310.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2 11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2 14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣216.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±117.(X•黔东南州)的倒数是()A.B.C.D.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2 20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.222.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.324.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.二.填空题(共1小题)27.(X•湘潭)的倒数是.人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析参考答案与试题解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(X•珠海)的倒数是()A.B.C.2 D.﹣2考点:倒数.分析:根据倒数的定义求解.解答:解:∵×2=1,∴的倒数是2.故选C.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.考点:倒数.分析:乘积是1的两数互为倒数,所以﹣5的倒数是﹣.解答:解:﹣5与﹣的乘积是1,所以﹣5的倒数是﹣.故选D.点评:本题主要考查倒数的概念:乘积是1的两数互为倒数.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣3考点:倒数.专题:存在型.分析:根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.点评:本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.5.(X•自贡)的倒数是()A.﹣2 B.2 C.D.考点:倒数.专题:常规题型.分析:根据倒数的定义求解.解答:解:﹣的倒数是﹣2.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:的倒数是﹣2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣2考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:C.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.3考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.10.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数﹣2的倒数是﹣.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣考点:倒数.分析:根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.解答:解:的倒数是5.故选A.点评:此题主要考查倒数的意义,关键是求一个数的倒数的方法.12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是﹣.故选:A.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2考点:倒数;相反数.分析:根据倒数和相反数的定义分别解答即可.解答:解:﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.故选;D.点评:此题主要考查了倒数和相反数的定义,要求熟练掌握.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是,故选D点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣2考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣2的倒数是,故选C.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±1考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:﹣1的倒数是﹣1,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.17.(X•黔东南州)的倒数是()A.B.C.D.考点:倒数.分析:根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1即可解答.解答:解:根据倒数的定义得:﹣×(﹣)=1,因此倒数是﹣.故选D.点评:本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:X的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣X×(﹣)=1,∴﹣X的倒数是﹣,故选:A.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵,∴的倒数为2,故选:D.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.22.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数3的倒数是.故选:C.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.24.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.考点:有理数的乘法;有理数大小比较;有理数的减法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.考点:有理数的乘法.分析:根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.解答:解:原式=××=,故选:D.点评:本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.考点:有理数的除法.分析:根据有理数的除法,即可解答.解答:解:(﹣18)÷6=﹣3.故选:A.点评:本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.二.填空题(共1小题)27.(X•湘潭)的倒数是 2 .考点:倒数.分析:根据倒数的定义,的倒数是2.解答:解:的倒数是2,故答案为:2.点评:此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.。
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
新】人教版七年级上册数学有理数的乘除法练习题有理数的乘除法练题课堂研究检测一、选择题1.下列计算正确的是( )。
A) (-1) × (-1) = 1B) (-8) × (1/2) = 17/3C) (-7) × (+6/77) = -6D) 3 × (-1/2) = -3/22.两个有理数之积是。
那么这两个有理数( )。
A) 至少有一个是B) 都是C) 互为倒数D) 互为相反数3.(-8/5) × (10-1+.05) = -8+1-.04,这个运算应用了( )。
A) 加法结合律B) 乘法结合律C) 乘法交换律D) 分配律4.比较a与3a的大小,正确的是( )。
A) 3a。
aB) 3a = aC) 3a < aD) 上述情况都可能二、填空题5.式子 (3/1) × (-6) × 7.5 × (+3.8) × (-981) × (-66) 的符号为______。
6.若a=4,b=,c=-3,d=-5,则c-ad=______,(a-b)(c-d)=______。
三、计算题7.直接将答案写在横线上:1) (-2/3) × (-3/4) = ______;2) (-8) × (-1/4) = ______;3) (-3)(-3/8) = ______;4) (+1) × (+1.2) = ______。
8.(-1/3) × (-2/3) × (-320/107) = ______。
9.(2-1/3) × (-1/) = ______。
10.(-7/) + (-1) = ______。
综合、运用、诊断一、填空题12.若a0,则(-a) × b × (-c) < 0.13.若a+b0,则a<0,b<0.二、选择题14.已知(-ab) × (-ab) × (-ab)。
人教版七年级数学上册第一章有理数的乘除法测试题一、填空题1.的相反数为,倒数为.考查说明:本题考查的知识点是相反数和倒数。
答案与解析:0.2,-5。
相反数就是改变符号,倒数就是相乘得1。
2. ___________。
考查说明:本题考查的知识点是乘法分配律的逆用,对很多学生来说比较难。
答案与解析:0。
由a×(b+c)=ab+ac得ab+ac= a×(b+c),所以6.868×(-5-12+17)=6.868×0=0。
3.;= ;考查说明:本题主要考查的知识点是有理数除法法则。
答案与解析:-64,-。
同号得正,异号得负,并把绝对值相除,分数就是除法,再把除法化成乘法。
4. ___________考查说明:本题考查多个有理数相乘时的符号法则。
奇数个负号因数,积取负号。
另外还考查了利用乘法的结合律进行简化计算。
答案与解析:-100。
-2.5×1.25×40×0.8=-(2.5×40)×(1.25×0.8)=-100×1=-100。
5. 已知___________考查说明:本题考查了两种非负数的性质,一种是“绝对值”,一种是“完全平方”,以及多个有理数相乘时的符号法则。
答案与解析:6。
因为0,0,0,++=0,所以=0,=0,=0,所以a-1=0,b+2=0,c-2=0,所以a=2,b=-2,c=2,所以-abc=6。
二、选择题6. 已知,且的值等于()A. 5或-5B. 1或-1C. 5或-1D. -5或-1考查说明:本题主要考查绝对值意义,乘法法则。
关键找好分组情况。
答案与解析:B。
因为,所以x=,y=2,因为x y<0,所以xy异号,所以只有两种情况:x=3,y=-2或x=-3,y=2。
7. 下列说法正确的是()A.同号两数相乘符号不变B.异号两数相乘取绝对值较大因数的符号C.两数相除,商是正,被除数的绝对值大于除数的D.两数相除,若商为正,则这两数同号考查说明:本题把有理数加、减、乘、除四种法则综合起来运用。
人教版七年级上册有理数的乘除法练习题4 一、选择题(共8小题;共40分)1. 计算的结果等于A. D.2. 计算的结果是A. D.3. 下列各式中,计算结果为负数的是A.B.C.D.4. 下列说法正确的是A. 一个数的倒数一定大于原数B. 若,则与互为倒数C. 任何数都有倒数5. 下列运算中,正确的是B.C. D.6. 计算的结果是A. B.C. D. 以上三个数以外的其它数7. 下列各式中积为正的是A. B.C. D.的倒数是A.二、填空题(共4小题;共22分)9. 在,,中选取个数相除,则商的最小值是.10. 小聪和小明计算甲、乙两个两位数的乘积,小聪看错了甲数的个位数字,计算结果为;小明看错了甲数的十位数字,计算结果为;则甲数是.11. 判断题.(()假分数的倒数都小于()真分数的倒数都大于()在整数中,倒数等于它本身的数是(()互为倒数的两个数中一定有一个大于()因为,因此,12. 从六十年代到今,上海和云南共达成经济协作项目项,实际完成了,实际完成了项.三、解答题(共4小题;共52分)13. 写出下列各数的倒数:,.14. 计算:(1);(2);(3).15. 计算:(1);(2);(3);(4).16. 若,,,,,是六个有理数,并且,,,试求的值.答案第一部分1. C2. A3. C 【解析】A,B中各有个负因数,则结果均为正;C中有个负因数,则结果为负;D中有,则结果为.4. B5. D6. B7. D8. A 【解析】的倒数是.第二部分【解析】在,,中选取个数相除,则商的最小值是10.11. ,,,,,,12.第三部分13. ,的倒数分别为,.14. (1).(2).(3).15. (1).(2).(3).(4).16. .。
一、计算。
(-6)÷(-10) 3÷(-10) 12÷(-0.8)36.2÷(-1) 80×(-0.6) 0.64×(-0.05)二、计算。
1-10÷(-—) -8÷0.4÷4 4+(-8)81 1(-—)÷(-—) -85÷17 4-(-8)2 31 5(-—)×(-—) -70×(-7) 4×(-8)8 43-—÷7 (-16)÷(-4) 4÷(-8)410-0.9÷(-—) -2×(-5) 4÷(-3)91-—÷(-9) (-30)×(-6) 4×(-3)511-0.75×(-—) -22÷(-5) 4-(-3)10三、计算。
-9×4×(-7) -3÷(-7)×(-8)9-—÷16÷(-25) -10÷(-0.1)÷(-0.1)101 1 9(-5—)×(-5—)÷(-—) -45×(-21)×0÷(-7)6 8 811—×(-12)÷(-0.1) -15÷(-1)×5×(-9)12一、计算。
(-7)×(-8) 12×(-9) 3×(-4)1.23÷(-4) -0.1÷(-4) -0.64×(-125)二、计算。
4-9÷(-—) -0.5÷20×40 1+(-9)37 1(-—)×(-—) -361÷19 1-(-9)8 21 1(-—)×(-—) -24×(-3) 1×(-9)4 71-—×4 (-49)×(-7) 1÷(-9)810-0.2×(-—) -9×(-7) -2÷(-6)191—÷(-8) (-80)×(-8) 2×(-6)390.35÷(-—) -29÷(-9) -2-(-6)5三、计算。
-9×8×(-3) -4×(-3)÷(-7)9-—×4×(-5) -0.001÷(-1)×(-0.1)101 1 1(-3—)÷(-5—)×(-—) -36÷(-14)×0×(-8)5 3 27—×(-8)÷(-0.4) -11×(-7)×8÷(-4)8一、计算。
(-6)×(-10) 20÷(-4) 26×(-8)449÷(-7) -1×(-0.001) -0.32×(-2.5)二、计算。
1-3÷(-—) -90×0.6÷30 4+(-12)61 9(-—)÷(-—) -270÷15 4-(-12)6 81 8(-—)×(-—) -80÷(-10) 4×(-12)2 71-—×9 (-45)×(-9) 4÷(-12)2100.7÷(-—) -25÷(-9) -3÷(-5)31—×(-8) (-90)×(-9) -3×(-5)711-0.55×(-—) -6×(-8) -3+(-5)10三、计算。
-6×7×(-5) -6÷(-5)×(-9)1-—÷2×(-25) -0.01×(-0.001)×(-1)51 1 7(-5—)×(-1—)÷(-—) -15×(-16)×0÷(-5)3 2 81—×(-2)÷(-0.2) -12×(-12)×2×(-8)2一、计算。
(-6)×(-3) 7÷(-3) 0.09×(-0.1)-497×(-0.6) 0.1÷(-5) -0.32×(-0.05)二、计算。
6-7÷(-—) -90×20×2 7+(-9)51 8(-—)×(-—) -192÷16 7-(-9)7 71 1(-—)÷(-—) -35×(-5) 7×(-9)8 45-—×8 (-24)×(-3) 7÷(-9)6100.6×(-—) -26×(-3) 5÷(-9)71—÷(-6) (-48)÷(-8) -5×(-9)7130.55÷(-—) -15×(-5) 5+(-9)10三、计算。
-6×8÷(-2) -6÷(-9)×(-2)1-—÷16÷(-25) -0.001×(-1)×(-0.01)251 1 8(-4—)÷(-2—)×(-—) -50÷(-14)×0×(-4)8 7 75—×(-6)÷(-0.35) -6÷(-5)×5×(-2)6一、计算。
(-9)÷(-7) 5÷(-10) 0.25×(-8)-1.98×(-0.2) -300÷(-0.9) -4×(-5)二、计算。
19×(-—) -0.2÷0.4÷0.4 4+(-15)21 1(-—)×(-—) -34÷17 4-(-15)4 21 1(-—)÷(-—) -9×(-3) 4×(-15)2 51-—÷3 (-15)×(-3) 4÷(-15) 210-0.7×(-—) -14×(-6) -2÷(-8)231—×(-10) (-18)×(-2) -2×(-8)217-0.45÷(-—) -12÷(-9) 2-(-8)5三、计算。
-8÷7×(-9) -2×(-7)×(-5)1-—×64÷(-5) -1×(-0.001)÷(-0.1)101 1 5(-3—)÷(-3—)×(-—) -43×(-22)×0×(-3)7 8 417—×(-18)×(-0.45) -12×(-11)×7×(-2)18(-6)×(-7) 18×(-1) 0.4×(-0.1)2.93×(-4) -50×(-4) -4×(-2.5)二、计算。
97×(-—) -9×80×80 3+(-5)85 1(-—)÷(-—) -98÷14 3-(-5)6 54 1(-—)÷(-—) -32×(-4) 3×(-5)5 24-—×2 (-70)×(-10) 3÷(-5) 5100.4×(-—) -16×(-7) 1÷(-3)7311-0.95÷(-—) -9×(-4) 1+(-3)5三、计算。
-5×4÷(-2) -9÷(-5)×(-3)1-—÷4×(-5) -0.1×(-100)÷(-0.001)51 1 7(-2—)÷(-3—)÷(-—) -49÷(-12)×0×(-6)7 3 819—×(-20)÷(-0.2) -8×(-8)×1×(-2)20(-1)÷(-6) 3÷(-9) 0.5×(-0.9)1.14÷(-0.1) 0.07÷(-0.1) -0.8×(-0.5)二、计算。
7-3÷(-—) -8÷10÷60 9+(-14)67 4(-—)×(-—) -28÷7 9-(-14)6 51 4(-—)÷(-—) -20×(-10) 9×(-14)3 31-—÷6 (-80)÷(-8) 9÷(-14)8100.9×(-—) -4÷(-2) -5÷(-7)115190.25×(-—) -23×(-9) -5+(-7)10三、计算。
-8×9×(-4) -8÷(-8)×(-2)1-—÷8×(-5) -0.001×(-0.001)÷(-0.1)101 1 1(-5—)×(-4—)×(-—) -24×(-26)×0×(-5)5 7 815—×(-16)×(-0.5) -16÷(-2)×1÷(-4)16(-7)×(-8) 1÷(-7) 1÷(-5)3.2×(-7) 400÷(-1) -0.02×(-25)二、计算。
1-1×(-—) -90×0.4×40 8+(-9)84 1(-—)×(-—) -154÷14 8-(-9)5 56 7(-—)×(-—) -60×(-10) 8×(-9)5 81-—×4 (-100)÷(-10) 8÷(-9) 3100.2÷(-—) -4×(-8) -5÷(-7)27619-0.55×(-—) -8÷(-6) 5+(-7)5三、计算。