2010年1月离散数学模拟练习
- 格式:doc
- 大小:139.50 KB
- 文档页数:6
离散数学模拟试题离散数学模拟试题1一、单项选择题(本大题共8小题,每小题2分,共16分)1.p:a是2的倍数,q:a是4的倍数。
命题“除非a是2的倍数,否则a不是4的倍数。
”符号化为();A.p→q B.q→pC.p→?q D.?p→q2.设解释Ⅰ如下:个体域D={a,b},F(a,a)= F(b,b)=0,F(a,b)=F(b,a)=1,在解释Ⅰ下,下列公式中真值为1的是();A. ?x?yF(x,y)B. ?x?yF(x,y)C. ?x?yF(x,y)D.??x?yF(x,y)3.设G为n阶m条边的无向简单连通图,下列命题为假的是A.G一定有生成树B.m一定大于等于nC.G不含平行边和环D.G的最大度?(G)≤n-14.设G为完全图K5,下面命题中为假的是()A. G为欧拉图B.G为哈密尔顿图C. G为平面图D.G为正则图5.对于任意集合X,Y,Z,则A. X∩Y=X∩Z?Y=ZB. X∪Y=X∪Z?Y=ZC. X-Y=X-Z?Y=ZD. X⊕Y=X⊕Z?Y=Z6.下面等式中唯一的恒等式是A.A∪B∪C-(A∪B)=CB. A⊕A=AC. A-(B×C)=(A-B)×( A-C )D.A×(B-C)=(A×B)-(A×C)7.设R为实数集,定义*运算如下:a*b=∣a+b-ab∣, 则*运算满足A.结合律B.交换律C.有幺元D.冥等律8.在有补格L中, 求补A. 是L中的一元运算B.一定有唯一的补元C.不一定是L中的一元运算D.可能没有补元.二、填空题(本大题共8小题,每空3分,共24分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.含n个命题变项的重言式的主合取范式为.2.设个体域为整数集合Z,命题?x?y(xy=1)的真值为.3.任何一棵非平凡树至少有片树叶.4.已知n阶无向简单图G有m条边, 则G的补图G有条边.5.设R={〈{1},1〉,〈1,{1}〉, 〈2,{3}〉, 〈{3},{2}〉},则domR⊕ranR= .6.设A={1,2}, B={1,2,3},则从A到B的不同函数有个.7.如果无向连通图G有n个顶点m条边,并且m≥n,则G中必含有.8.设B为布尔代数,a,b,c∈B,则(a∧b)∧(a∨c)∨a的化简式.三、简答题(本大题共8小题,每小题5分,共40分)1.设p:2+2=4,q:3+3=7,r:4+4=8,求下列各复合命题的真值:(1)(p∧q)?r(2)(p?r)?(q?r)(3)(p∨┐q)→(q→r)(4) ┐q→(p?r)(5) (p∨q)→(┐p∧┐q∧r)2.求公式?x (┐?yF(x,y) →?zG(x,z))的前束范式.3.已知无向图G有12条边,1度顶点有2个,2度、3度、5度顶点各1个,其余顶点的度数均为4,求4度顶点的个数.4.已知连通的平面图G的阶数n=6,边数m=8,面数r=4.求G的对偶图G*的阶数n*,边数m*,面数r*.5.设A={{a,{b}},c,{c },{a,b}},B={{a,b},{b}},计算(1)A∩B(2)A⊕B(3)P(B)6.设函数f:N→N,f(n)=2n+1,这里N是自然数的集合,回答f 是否为单射的、满射的或双射的?并说明理由。
离散数学考试模拟试题及详细参考答案共四套a 离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.一、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)d eb c图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)二、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→F)→C, B→(A∧S)B→Eb)x(P(x)→Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠,关系R满足:<,>∈R,当且仅当< x1, x2>∈R1且∈R2。
一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。
2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。
3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。
4.幂集P(P(∅)) =________________。
5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。
6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。
7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。
8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。
9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。
10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。
二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。
2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。
2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。
3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。
4.证明:R是传递的⇔R*R⊆R。
5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。
离散数学练习题一、选择题1、G是一棵根树,则(A )。
A、G一定是连通的B、G一定是强连通的C、G只有一个顶点的出度为0D、G只有一个顶点的入度为12、下面哪个语句不是命题(C )。
A、中国将成功举办2008年奥运会B、一亿年前地球发生了大灾难C、我说的不是真话D、哈密顿图是连通的3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是(C )。
A、0是*的零元B、1是*的幺元C、0是*的幺元D、*没有等幂元4、设G是群,当G有(D )个元素时,不能肯定G是交换群。
A.4B.5C.6D.75、无向完全图K3的不同构的生成子图有( D )个。
A. 6B.5C. 4D. 36、在自然数N上定义的二元运算∙,满足结合律的是( C )。
A.a∙b=a-bB. a∙b=a+2bC. a∙b=max{a,b}D. a∙b=∣a-b∣7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( D )。
A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、由5个结点可构成的根树中,其叉数m最多为( D )。
A.2B.3C.5D. 49、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?(D )A、x*y=max{x,y}B、x*y=min{x,y}C、x*y=GCD(x,y),即x,y的最大公约数D、x*y=LCM(x,y),即x,y的最小公倍数10、仅有一个孤立结点的图称为( B )。
A.零图B.平凡图C.补图D.子图11. 下列各组数中,哪个可以构成无向图的度数列(B )。
A.1,1,1,2,2B.2,2,2,2,3C.1,2,2,4,6D.2,3,3,312. *是定义在Z上的二元运算,y*=∈+,,则*的幺元和零元分别是(D )。
∀,xyyxxZyx-A.不存在,0B.0,1C.1,不存在D.不存在,不存在 13. 设N N N f ,:→为自然数,且⎪⎩⎪⎨⎧=为偶数若为奇数若x xx x f 21)(则})0({)0(f f 和分别是(B )。
离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
《离散数学I》模拟试题一、单选题(每小题2分,共20分)1 以下语句是命题的是( B )。
A.y等于x。
B.每个自然数都是奇数。
C.请爱护环境。
D.你今天有空吗?2 设α是一赋值,α(p)= α(q)=1,α(r)=0,下列公式的值为真的是( B )。
A.p∧(q∨r) B.(p✂r) ↔(¬r✂q)C.(r✂q)∧(q✂p) D.(r✂q)3 以下联结词的集合( D )不是完备集。
A.{¬,∧,∨, ✂,↔} B.{¬,∧,∨} C.{¬, ✂} D.{∧,∨}4 公式A的对偶式为A*,下列结果成立的是( D )。
A.A↔A* B.¬A↔A* C.A|=|A* D.¬A|=|A*5 假设论域是正整数集合,下列自然语言的符号化表示中,( A )的值是真的。
A.∀x∃yG(x,y),其中G(x,y)表示xy=yB.∀x∀yF(x,y),其中F(x,y)表示x+y=yC.∃x∀yH(x,y),其中H(x,y)表示x+y=xD.∀x∀yM(x,y),其中M(x,y)表示xy=x6.以下式子错误的是( D )。
A.∀x¬A(x) |=| ¬∃xA(x)B.∀x(A(x)∧B(x)) |=|∀xA(x)∧∀x B(x)C.∃x(A(x)∨B(x)) |=|∃xA(x)∨∃x B(x)D.∀x(A(x)∨B(x)) |=|∀xA(x)∨∀x B(x)7. 下列式子( C )不正确。
A.{x}∈{{x}} B.{x}∈{{x},x}C.{x}⊆{{x}} D.{x}⊆{{x},x}8. 下列性质正确的是( D )。
A.如果A∈B,B∈C,则A∈C B.如果A∈B,B⊆C,则A⊆CC .如果A ⊆B ,B ∈C ,则A ∈CD .如果A ∈B ,B ⊆C ,则A ∈C9. 下列说法错误的是( A )。
A . 如果R 不是自反关系,则R 是反自反关系B . 自反关系的关系矩阵的主对角线元素皆为1C . 自反关系的关系图每个结点都有一条闭路D .包含关系⊆是自反关系10. 设ρ、μ都是集合A 到集合B 的关系,则下列等式错误的是( B )。
离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。
A。
p∧┐p∧qB。
┐p∨qC。
┐p∧qD。
┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。
A。
p→┐qB。
p∨┐qC。
p∧qD。
p∧┐q3.只有语句“1+1=10”是命题(A)。
A。
1+1=10B。
x+y=10___<0D。
x mod 3=24.下列等值式不正确的是(C)。
A。
┐(x)A(x)┐AB。
(x)(B→A(x))B→(x)A(x)C。
(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。
(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。
A。
(x)Q(x,z)→(x)(y)R(x,y,z))B。
Q(x,z)→(y)R(x,y,z)C。
Q(x,z)→(x)(y)R(x,y,z)D。
Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。
}∪IA则对应于R的A的划分是(D)。
A。
{{a},{b,c},{d}}B。
{{a,b},{c},{d}}C。
{{a},{b},{c},{d}}D。
{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。
A。
{Ø,{Ø}}∈BB。
{{Ø,Ø}}∈BC。
{{Ø},{{Ø}}}∈BD。
{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。
A。
(X-Y)-Z=X-(Y∩Z)B。
(X-Y)-Z=(X-Z)-YC。
(X-Y)-Z=(X-Z)-(Y-Z)D。
(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。
A。
a*b=min(a,b)B。
a*b=a+bC。
a*b=GCD(a,b) (a,b的最大公约数)D。
2010~2011学年度第 一 学期《离散数学》试卷(A 卷)适用专业年级:2009信息与计算科学 网络工程 软件工程及计算机科学与技术专业(本)考 试 形 式:( )开卷、(√)闭卷二级学院: 行政班级: 学 号: 教 学 班: 任课教师: 姓 名: 注:学生在答题前,请将以上内容完整、准确填写,填写不清者,成绩不计。
一、选择题(每小题 3分,共 15 分。
请将答案填在下面的表格内)1.设命题公式G :()p q r ⌝↔∧,则使公式G 取值为1的,,p q r 赋值分别为( )(A )0,0,0 (B )0,0,1 (C )0,1,1 (D )1,1,1 2.以下的联结词不是联结词完备集的是( ) (A )1{}S =⌝∧, (B )1{}S =⌝∨, (C )1{}S =∧∨→↔,,,(D )1{}S =↓3.下述等价式不正确的是( ) (A )()()xAx x A x ⌝∀⇔∃⌝ (B )()()xA x x A x ⌝∃⇔∀⌝(C )()()x A x B xA x B∀→⇔∃→() (D )()()x A x B xA x B∃→⇔∃→()4.设集合A={a,b },A 上的关系R={<a,a >,<b,b > },则R 是( ) (A )是等价关系但不是偏序关系 (B )是偏序关系但不是等价关系 (C ) 既是等价关系又是偏序关系 (D )既不是等价关系又不是偏序关系 5.无向图G 是欧拉图当且仅当G 是连通的且( )………………………………………线………………………………………订………………………………………装…………………………………………………(A )G 中各顶点的度数均相等 (B )G 中各顶点的度数之和为偶数(D )G 中各顶点的度数均为奇数二、填空题(每题 3分,共15分)1.“有的运动员不是大学生”符号化为 . (设P(x):x 是运动员;Q(x):x 是大学生)2. 设S ={<1,2>,<2,4>,<3,3>},R ={<1,3>,<2,4>,<4,2>}, 则S R = .3.下图所具有的关系性质有: .4.设有一棵树,它有2个2度结点,1个3度结点,3个4度结点,其余为叶 则它的树叶数为 个. 共有6个结点11条边,则它的面数为 . 三、计算题: 求公式()p q r →⌝↔的主析取范式和主合取范式(10 分)四、演绎证明: 前提:p ,,,q pr q s r p q∨→→→⌝∧⌝ 结论:s (10分)五、设A={1,2,3,4},R 是A 上的一个关系,R={<a,b>|a ,b ∈A ,(a-b)/2=k ,k ∈Z},证明R 是A 上的等价关系,并按关系R 给出A 上的划分。
离散数学模拟试题1一.单项选择题(每小题2分,共48分)。
1.设R 是集合A={1,2,3,4}上的二元关系,R={〈1,4〉,〈4,1〉〈1,3〉,〈3,1〉, 〈2,4〉,〈4,2〉},下面( )命题为真。
Ⅰ.R R是对称的 Ⅱ.R R 是自反的 Ⅲ.R R 不是传递的(A )仅Ⅰ (B )仅Ⅱ (C )仅Ⅰ和Ⅱ (D )全真2.设N 为自然数集合,+、-、×分别为普通的加法、减法和乘法。
〈N ,*〉在下面四种情况下不构成代数系统的为( )。
(A )x*y=x+y -2×x ×y (B)x*y=x+y (C)x*y=x ×y (D)x*y=│x │+│y │ 3.设图G 的顶点为五边形P 的顶点,其边为P 的边加上另一条连接P 的两个不相邻顶点的边。
下列命题中,( )命题是真命题。
Ⅰ.G 中存在欧拉回路 Ⅱ.G 中存在哈密尔顿回路(A )均不是 (B )只有Ⅰ (C )只有Ⅱ (D )Ⅰ和Ⅱ 4.设T 为n (n ≥3)阶无向树,T 有( )条割边。
(A )n 条 (B )n-2条 (C )n-1条 (D )没有 5.设A={1,2,3,4,5,6},R 是集合A 上的整除关系,下面命题中,( )是假的。
(A )4,5,6全是A 的极大元 (B )A 没有最大元 (C )6是A 的上界 (D )1是A 的最大下界 6.设A={1,2,3,4,5},则A 有( )个子集。
(A )16 (B )32 (C )64 (D )128 7.设连通图G 有8个顶点和12条边,则任意一棵G 的生成树的总边数为( )。
(A )12 (B )9 (C )8 (D )7 8.设无向图G=〈V ,E 〉,其中V={54321,,,,v v v v v },E={),(),,(),,(),,(),,(4332214441v v v v v v v v v v }下列命题为真的是( )。
离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。
答案:如果x不能被2整除,则x不是偶数。
2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。
答案:6个顶点。
3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。
答案:2^4=16个元素。
4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。
答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。
5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。
答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。
离散数学经典测试题及答案第一题: 命题逻辑与真值表根据下列命题符号表示的逻辑表达式,填写真值表。
1. \(p \land q\)2. \((\lnot p \lor q) \land (p \implies q)\)答案1. \(p \land q\)2. \((\lnot p \lor q) \land (p \implies q)\)第二题: 数学归纳法证明使用数学归纳法证明下列等式对于所有\(n \geq 1\)成立。
\(\sum_{i=1}^{n}(2i-1) = n^2\)证明1. 基础步骤:当\(n=1\)时,左边等式为\(1\), 右边等式为\(1^2 = 1\), 成立。
2. 归纳假设:假设当\(n=k\)时等式成立,即\(\sum_{i=1}^{k}(2i-1) = k^2\)。
3. 归纳步骤:考虑\(n=k+1\)的情况,- 左边等式为\(\sum_{i=1}^{k+1}(2i-1) = \sum_{i=1}^{k}(2i-1) + (2(k+1)-1)\)- 右边等式为\((k+1)^2 = k^2 + 2k + 1\)现在我们可以利用归纳假设,将左边等式展开:\(\sum_{i=1}^{k}(2i-1) + (2(k+1)-1) = k^2 + 2k + 1\)然后,化简左边的部分可以得到:\(k^2 + (2k - 1) + (2(k+1) - 1) = k^2 + 2k + 1\)这个等式成立,证明完毕。
第三题: 集合论给定两个集合A和B,证明下列恒等式成立:\(A \cup (B - A) = A \cup B\)证明我们可以使用集合论的定义来证明这个恒等式。
1. 证明\(A \cup (B - A) \subseteq A \cup B\)- 对于任意\(x \in A \cup (B - A)\),有两种情况:- 如果\(x \in A\),则\(x \in A \cup B\),因为\(A \subseteq A \cupB\)。
离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。
离散数学模拟试题1一、选择题(每小题只有一个正确答案,每题2分,共30分)1、令A(x):x是实数,B(x):x是有理数,则命题:并非所有有理数都是实数。
符号化为:()A、x┐(A(x)∧B(x))B、┐x(B(x)→A(x))C、┐x(A(x)∧B(x))D、┐x(B(x)∧┐A(x))2、设A={{1,2,3},{4,5},{6,7,8}},则下列选项正确的是()A、1∈A,B、φ∈AC、{1,2,3} A,D、{{4,5}} A3、设A、B为集合,A-B=φ,则有()A、B=φB、B≠φC、A BD、B A4、一个连通有向图,如果它的每个结点的出度均等于入度,那么它有一条()。
A、基本回路B、欧拉回路C、欧拉通路D、简单回路5、一棵树有2个结点度数为2,2个结点度数为3,3个结点度数为4,则它的树叶数为()A、8B、9C、10D、126、G是连通平面图,有5个顶点、6个面,则G的边数为()A、6B、5C、11D、97、设A={1,2,3},B={1,2,3,4,5},C={2,3},则(A∪B)+C=()A、{1,2}B、{2,3}C、{1,4,5}D、{1,2,3}8、下列命题中为假的是()A、{a,{b}}{{a,{b}}}B、φP(∪{φ,{φ}})C、{a}XaXD、X∪Y=YX=φ9、设解释T为:个体域为D={—2,3,6},谓词A(x):x 6,B(x):x>5,则根据解释,公式x(A(x)∨B(x))的真值为()A、0B、1C、没有确定真值10、一个教室公用一个电源,如果想接34盏灯,则至少需要4个插线孔的接线板()个。
A、10B、11C、12D、3411、下列说法错误的是()A、n个结点m条边的有向树和无向树均满足:m=n-1.B、树都是二部图。
C、有向树都是单侧连通的D、有桥的图不是欧拉图12、设A={a,b,c},R是A上的关系,R={,,},那么R是()A、自反的B、反自反的C、对称的D、反对称的E、传递的13、设图G是有5个顶点的连通图,总度数为18,则从G中删去()边后使之变成树。
离散数学考试(试题及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3 个条件,有几种派法?如何派?(1)若A去,则C和D中要去1 个人;(2)B 和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D 去工作。
则根据题意应有:A C D,(B ∧C),C D必须同时成立。
因此(A C D)∧(B∧C)∧(C D)(A∨(C∧D)∨(C∧D))∧(B∨C)∧(C∨D)(A∨(C∧D)∨(C∧D))∧((B∧C)∨(B∧D)∨C∨(C∧D))(A∧B∧C)∨(A∧B∧D)∨(A∧C)∨(A∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)F∨F∨(A∧C)∨F∨F∨(C∧D∧B)∨F∨F∨(C∧D∧B)∨F∨(C∧D)∨F (A∧C)∨(B∧C∧D)∨(C∧D∧B)∨(C∧D)(A∧C)∨(B∧C∧D)∨(C∧D)T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S (x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:x(S (x)∧W(x)),x Y (x)x(S (x)∧Y (x))下面给出证明:(1)x Y (x) P(2)Y (c) T(1),ES(3)x(S (x)∧W(x)) P(4)S ( c)∧W(c) T(3),US(5)S ( c) T(4),I(6)S ( c)∧Y (c) T(2)(5),I(7)x(S (x)∧Y (x)) T(6) ,EG三、(10分)设A、B和C 是三个集合,则A B(B A)。
1x (x ∈A ∧x B )∧x (x B ∨x ∈A )x (x ∈A ∧x B )∨x (x ∈A ∨x B )(x (x ∈A ∧x B )∧x (x ∈A ∨x B ))(x (x ∈A ∧x B )∧x (x ∈B →x ∈A ))(B A )。
离散数学第五版--模拟试题--及答案《离散数学》模拟试题3⼀、填空题(每⼩题2分,共20分)1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。
2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___,A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。
3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___,ρ(A)-ρ(B)=_____ _ _。
4. 已知命题公式RQPG→∧=)(,则G的析取范式为。
5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。
”符号化,其真值为。
⼆、单项选择题(选择⼀个正确答案的代号填⼊括号中,每⼩题4分,共16分。
)1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为().A.{1}B. {1, 3}C. {3,4}D. {1,2}2. 下列式⼦中正确的有()。
A. φ=0B. φ∈{φ}C. φ∈{a,b}D. φ∈φ3. 设集合X={x, y},则ρ(X)=()。
A. {{x},{y}}B. {φ,{x},{y}}C. {φ,{x},{y},{x, y}}D. {{x},{y},{x, y}}4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)},则R不具备().三、计算题(共50分)1. (6分)设全集E=N,有下列⼦集:A={1,2,8,10},B={n|n2<50 ,n∈N},C={n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D))(3)B-(A∩C) (4)(~A∩B) ∪D2. (6分)设集合A={a, b, c},A上⼆元关系R1,R2,R3分别为:R1=A×A,R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别⽤定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。
宁波大红鹰学院2009-2010学年第一学期2008级计算机科学本科《离散数学》模拟练习1. 重要说明(1) 分值大致分布:逻辑30分,集合论30分,图论30分,代数及递推10分(2) 题型:填空20分十小题,选择30分十五小题,解答45分九小题,证明5分一小题 (3) 主要内容:逻辑(第一章)命题定义;复合命题符号化;命题公式的类型;24等值式;主析取范式和主合取范式;推理定律解答题:利用等值演算求公式类型或求主析取范式;构造推理的证明 (第二章)量词的符号化;代替规则与换名规则;一阶逻辑等值式集合论(第三章)幂集,对称差,集合恒等式,不多于三个集合的包含排斥原理 解答题:集合的基本运算,集合恒等式的证明(第四章)笛卡尔积,二元关系,整除关系,关系矩阵;幂运算,关系的性质,闭包;等价关系,偏序关系,整除关系的哈斯图,最元,极元;双射 解答题:用矩阵的算法求关系的复合运算与闭包运算抽象代数(第五六章)单位元,零元,逆元;同态、同构;群的定义,交换群,循环群 解答题:判断某一代数系统是否为群图论(第七章)度数,握手定理,简单图,完全图,补图;有向图的连通性,割集;有向图的关联邻接可达矩阵,最短路和关键路径 解答题:邻接矩阵的幂运算及其元素的含义(第八章)二分图欧拉图汉密尔顿图的定义;平面图及欧拉公式。
本章无解答题 (第九章)无向树的定义及最小生成树,哈弗曼算法,前缀码,根树及其遍历 解答题:哈弗曼算法求最优树及其应用 组合分析初步(第十章)递推方程的求解下列题供复习参考使用,比考试题量更大 一.填空题(每题2分)1.含3个命题变项的命题公式的主合取范式为76430M M M M M ∧∧∧∧, 则它的主析取范式为 。
()2.〈4Z ,⊕〉模4加群, 则3是 阶元,3⊕3= ,3的逆元是 。
3.设A={a,b,c,d},R={<a,a>,<b,b>,<b,a>,<a,c>,<c,a>,<c,d>}则t(R)= _______________________________________________________; s(R)= _______________________________________________________。
4.某市举行中学数学、物理、化学三科竞赛,结果是数学和物理均优者11人,物理和化学均优者10人,数学和化学均优者9人,至少有两科优秀者共22人,则三科均优者有_____________人。
5.根据右图所示哈斯图,写出该偏序关系R 的集合表达式,R =____________________________________________________子集{2,3,4,5}的上界是__________。
6.设S 是非空有限集,代数系统(P(S),∪,∩)中,P(S)______________,P(S)对∩运算的么元是___________。
7.无向图G 中有6条边,3度与5度顶点各1度顶点,则图G 中共有_________个顶点。
8. 无向图G 如右图所示,则图G 的 割点为_______________;割边为______________。
9.已知n 阶无向简单图G 有m 条边,则G 的补图有 条边。
10.一个有向图是强连通的充分必要条件是 。
11.已知n 阶无向图G 中有m 条边,各顶点的度数均为3。
又已知2n-3=m , 则m= .12.在下图中从A 点开始,用普里姆算法构造最小生成树,树权为A BC D2413.谓词公式∀x(P(x,y)∧ ∃tQ(t,z)→R(x,y,t))中量词∃的辖域是 ___________________。
14.设F(x):x 是人,G (x ):x 思考,H(x,y):x 与y 一样高,L (x ):x 喜欢吃粗粮。
在一阶逻辑中,命题“所有人都思考”的符号化形式为_______ ___。
命题“不是所有的人都爱吃任何粗粮”的符号化形式为_______ ___。
命题“人都不一样高”的符号化形式为_______ ___。
15.q p q p →⌝∧∨)(从公式分类角度来看,它为__________式。
16.设R={<2,2>,<1,2>,<2,3>},则R 的对称闭包是 。
17.设A,B 是集合,=⋃=⋂==B A p B A n B m A 那么,,,, 18.整数加群<Z,+>是循环群,其生成元是 和 。
2b e19.一棵二叉树先序遍历得ABDECF ,中序遍历得DBEACF,则后序遍历的结果是________________。
20.完全二部图s r K ,有 个顶点 条边。
二.选择题(每题2分)1.判断下列语句哪一个是命题:( )。
A .请把门关上!B .你喜欢鲁迅的作品吗?C .我在说谎D .雪是黑色的。
2.命题公式P →(Q →P)为( )。
A .重言式B .可满足式C .矛盾式D .等价式 3.若个体域为整数域,下列公式中( )为假。
A .∀x ∃y(x+y=0) B .∃y ∃x(x+y=0) C .∀x ∀y(x+y=0) D .┐∃y ∀x(x+y=0) 4.设A ,B ,C 为任意三个集合,下列命题正确的是( )。
A .若A ∪B=A ∪C ,则B=C B .若A ∩B=A ∩C ,则B=C C .若~A ∪B=E ,则A ⊆B D .若A -B=∅,则A=B 5.判断下列集合中对所给的二元运算不封闭的是( )。
A .整数集合Z 上的普通加法运算; B .非零整数集合上的普通除法运算;C .设A={a1,a2,…,an},n ≥2,∀a,b ∈A ,a*b=b ;D .设A ={2n │n ∈Z},集合A 上的普通加法和乘法运算。
6.设G 是有n 个顶点,m 条边的无向简单图,并且m=n-1,则下列( )是正确的。
A .G 一定是树B .G 不一定是树C .G 一定不是树D .以上说法都不对 7.从集合分类的角度看,命题公式可分为( )A.永真式、矛盾式B. 永真式、可满足式、矛盾式C. 可满足式、矛盾式D. 永真式、可满足式 8.设B 不含有x ,))((B x A x →∃等值于 ( )A.B x xA →∀)(B.))((B x A x ∨∃C.B x xA →∃)(D.))((B x A x ∧∃ 9.设S,T,M 是集合,下列结论正确的是( )A .如果S ∪T=S ∪M ,则T=MB .如果S-T=Φ,则S=TC .S S S =⊕D .)(~T S T S =- 10.设R 是集合A 上的偏序关系,则R 不一定是( )A.自反的B. 对称的C. 反对称的D. 传递的11.设R 为实数集,定义R 上4个二元运算,不满足结合律的是( )。
A. f 1(x,y)= x+y B. f 2(x,y)=x-y C. f 3(x,y)=xy D. f 4(x,y)=max{x,y} 12.设A={1,2},则群>⋂<),(A P 的单位元和零元是( )A. Φ与AB. A 与ΦC. {1}与ΦD. {1}与A 13.下列编码是前缀码的是( ).A.{1,11,101}B.{1,001,0011}C. {1,01,001,000}D.{0,00,000} 14.下图中既是欧拉图又是哈密顿图的是( )A . 9KB .10KC .3,2KD .3,3K 15.下图所示的二叉树后序遍历的结果是( )A .abcdeB .edcbaC .bdecaD .badce三.求主析取范式、主合取范式、成真和成假赋值(7分) (Q →P )∧(Q ∧⌝P )四.设集合A={1,2,3},R1,R2,R3均为A 上二元关系,试分别画出下列每个关系的关系图并判断各个关系的性质。
(共9分)R1={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,3>}R2={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>} R3={<1,3>}五.设E={1,2,3,4,5},A={1,4},B={1,2,5},C={2,4},试求下列集合:(1)A ⋂~B ;(2)~A ⋃~C ;(3)A ⊕B 。
六.设A={a ,b ,c},R 为A 上的关系,且给定R={<a ,b >,<b ,c >,<c ,a >},用矩阵方法求r (R ),s (R ),t (R )。
七.实数集合R 上定义运算:x*y=xy-2x-2y+6。
完成下列小题:(1)验证*运算是否满足交换律和结合律; (2)求*运算的么元和零元; (3)对任何实数x 求其逆元。
八.完成下列小题。
给出下图所示二叉树的前序、中序、后序遍历序列。
九.已知命题公式)()(p q q p ∨⌝→→⌝,(1) 构造真值表。
(2) 求主析取范式(要求通过等值演算推出)。
十.R 1={<1,2>,<1,3>,<2,3>}, R 2={<2,2>,<2,3>,<3,4>},求:(1)21R R - (2)11-R (3) 求12R R十一 .设<A,R>为一个偏序集,其中,A={1,2,3,4,6,9,12,24},R 是A 上的整除关系。
(1)画R 出的哈斯图; (2)求A 的极大元和极小元; (3)求B={4,6}的上确界和下确界。
十二 画一棵带权为1,1,1,3,3,5,8的最优二叉树T ,并计算它的权W (T )。
十三.画一棵带权为2,2,2,3,3,4,5,8的最优二叉树T ,并计算它的权W (T )。
十四.求公式r q p ↔→)(的主合取范式(化成M 1∧M 2∧M 3的形式)。
十五、证明题1.前提: )(),(s r q r q p →→→→ 结论: s q p →∧)(2.前提: r p q s q p ⌝∨→→,),(结论: s r →3. 证明: )()()(C A B A C B A ⋂⋃-=--代表任意集合。
其中C B A ,,证明:)~(~)(C B A C B A =--)()~()(~C A B A C B A == )()(C A B A -=。