数学必修4期末考试试题
- 格式:doc
- 大小:1.23 MB
- 文档页数:6
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
正弦函数、余弦函数的性质(1)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x2.函数f (x )=x +sin x ,x ∈R ( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .24.函数y =sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π12 5.下列四个函数中,是以π为周期的偶函数的是( )A .y =|sin x |B .y =|sin2x |C .y =|cos2x |D .y =cos3x6.如果函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( )A .3B .6C .12D .24二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω= .8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)= . 9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)= .三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.——能力提升类——12.已知函数y =2sin ⎝⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( )A .0B .-π4 C.π2 D .π13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )14.设函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为 .15.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.正弦函数、余弦函数的性质(1)(答案解析)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( D ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x解析:A 项,y =sin x 的最小正周期为2π,故A 项不符合题意;B 项,y =cos x 的最小正周期为2π,故B 项不符合题意;C 项,y =sin x2的最小正周期为T =2πω=4π,故C 项不符合题意;D 项,y =cos2x 的最小正周期为T =2πω=π,故D 项符合题意.故选D.2.函数f (x )=x +sin x ,x ∈R ( A ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数又是偶函数 D .既不是奇函数又不是偶函数解析:函数f (x )=x +sin x 的定义域为R ,f (-x )=-x +sin(-x )=-x -sin x =-f (x ),则f (x )为奇函数.故选A.3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( B )A .1B .-1C .0D .2解析:∵T =π,且为奇函数.∴f ⎝ ⎛⎭⎪⎫34π=f ⎝ ⎛⎭⎪⎫34π-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1. 4.函数y =sin ⎝⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( D )A .x =-π6 B .x =-π12 C .x =π6D .x =π12解析:令2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ).故选D. 5.下列四个函数中,是以π为周期的偶函数的是( A ) A .y =|sin x | B .y =|sin2x | C .y =|cos2x |D .y =cos3x解析:A 中的函数周期为π.B 中的函数周期为π2.C 中的函数周期为π2.D 中的函数周期为23π.故选A.6.如果函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( B )A .3B .6C .12D .24解析:函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,∴T =2×π6=π3,又2πω=π3,∴ω=6.选B.二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω=8. 解析:π4=2πω,∴ω=8.8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)=-5. 解析:由f (2 015)=2 015a +b sin2 015+1=7, 得2 015a +b sin2 015=6,∴f (-2 015)=-2 015a -b sin2 015+1=-(2 015a +b sin2 015)+1=-6+1=-5.9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=-1.解析:因为T =2,则f (x )=f (x +2).又f (-1)=f (-1+2)=f (1),且x ∈[1,3)时,f (x )=x -2,所以f (-1)=f (1)=1-2=-1.三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性. 解:由题意知函数定义域为R .f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg(sin x +1+sin 2x )=-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数. 11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 解:(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的最小正周期是2π.——能力提升类——12.已知函数y =2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( B ) A .0 B .-π4 C.π2D .π解析:y =2sin ⎝⎛⎭⎪⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z .显然当k =0时,φ=-π4满足题意.13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )解析:A 项,由f (-x )=f (x )知函数f (x )为偶函数,故A 错.B 项,由函数f (x )为偶函数,周期为2,故B 正确.C 项,由函数f (x )为偶函数,故C 错.D 项,由函数f (x )周期为2.故D 错.14.设函数f (x )=3sin ⎝⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为±45. 解析:由题意得2πω=π2, ∴ω=4,∴f (x )=3sin ⎝ ⎛⎭⎪⎫4x +π6∴f ⎝ ⎛⎭⎪⎫α4+π12=3sin ⎝ ⎛⎭⎪⎫α+π2=3cos α=95. ∴cos α=35,∴sin α=±1-⎝ ⎛⎭⎪⎫352=±45. 15.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.解:当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3.因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32 解得x +π3=-π6或π6, 即x =-π2或-π6.又因为g (x )的最小正周期为π.所以g (x )=32的解集为 ⎩⎨⎧⎭⎬⎫x|x =k π-π2或x =k π-π6,k ∈Z .。
高一必修4水平测试数学试卷注意:本试卷满分100分,附加题20分,考试时间100分钟.答案必须写在答题卷上,在试题卷上作答无效.6.函数是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数7.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是A .平行四边形 B.矩形 C.等腰梯形 D.菱形8.有下列四种变换方式: ①向左平移4π,再将横坐标变为原来的21(纵坐标不变);②横坐标变为原来的21(纵坐标不变),再向左平移8π; ③横坐标变为原来的21(纵坐标不变),再向左平移4π;④向左平移8π,再将横坐标变为原来的21(纵坐标不变);其中能将正弦曲线x y sin =的图像变为)42sin(π+=x y 的图像的是A. ①和③B. ①和②C.②和③D.②和④ 9.函数3sin (2)26y x π=-+的单调递减区间是A. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππ B. 52,2,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ C. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ D. 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 10.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为 A.6π B.4π C.-3π D.2π二、填空题(本大题共5小题,每小题4分,共20分) 11.将0120化为弧度为__________.12.已知向量(3,1)a = ,(1,3)b = ,(,7)c k = ,若()a c -∥b ,则k = .13.已知tan a =4,tan β=3,,则tan(a+β)=_________. 14.函数22cos sin 2y x x =+的最小值是__________.15. 已知在平面直角坐标系中,A(-2,0),B(1,3),O 为原点,且OB OA OM βα+=,(其中α+β=1, α,β均为实数),若N(1,0) 的最小值是______________.三 、解答题(本大题共4小题,共40分,解答应写出必要的文字说明、证明过程或演算步骤)16. (10分)求值:(1))623tan(π-; (2)︒75sin17.(10分)已知tan 34πα⎛⎫+=⎪⎝⎭, 计算:(1) tan α (2) 2sin co s 3co s 25co s 23sin 2ααααα+-18.(10分)已知向量a , b 的夹角为60, 且||2a = , ||1b = , 若4c a b =- , 2d a b =+ ,求(1) a ·b;(2) ||c d + .19.(10分)已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值以及取得最大值、最小值时x 的值.附加题:(本大题共2小题,每小题10分,共20分. 省级示范性高中要把该题成绩记入总分,普通高中学生选做)1. (10分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,.(1)求()f x 的解析式; (2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.2. (10分)已知x k d x c b x a )(,1(),1,3(sin ),2,2(),1,sin 2(=-=-=+=→→→→∈R ,k ∈R), (1) 若[,]22x ππ∈-,且//()a b c +,求x 的值;(2) 若]32,6(ππ-∈x ,是否存在实数k ,使)(→→+d a ⊥)(→→+c b ? 若存在,求出k 的取值范围;若不存在,请说明理由。
第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
高一年级数学《必修4》试题一、选择题(每小题4分,共40分)1.与463-︒终边相同的角可以表示为(k Z)∈ ( )A .k 360463⋅︒+︒B .k 360103⋅︒+︒C .k 360257⋅︒+︒D .k 360257⋅︒-︒ 2 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是 ( )A .AB OC = B .AB ∥DE C .AD BE =D . AD FC =3.α是第四象限角,12cos 13α=,sin α=( ) A513B 513-C 512D 512-4. 2255log sinlog cos 1212π+π的值是( )A 4B 1C 4-D 1-5. 设()sin()cos()f x a x b x =π+α+π+β+4,其中a b 、、、αβ均为非零的常数,若(1988)3f =,则(2008)f 的值为( )A .1B .3C .5D .不确定6. 若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1B .2C .3D .27. 为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位8. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为( )A .)48sin(4π-π-=x yB .)48sin(4π-π=x yC .)48sin(4π+π=x yD .)48sin(4π+π-=x y9. 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x =( )A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数10.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直二、填空题(每小题4分,共16分)11.23sin 702cos 10-=-12.已知函数()2sin 5f x x π⎛⎫=ω- ⎪⎝⎭的图象与直线1y =-的交点中最近的两个交点的距离为3π,则函数()f x 的最小正周期为 。
一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。
A、-9B、-6C、9D、62.已知=(2,3), b=(-4,7),则在b上的投影为()。
A、B、C、D、3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得向量为()。
A、(2,3)B、(1,2)C、(3,4)D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。
A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。
A、B、C、D、6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。
A、B、C、D、7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。
A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b|(3)| +b|2=( +b)2(4)(b) -(a)b与不一定垂直。
其中真命题的个数是()。
A、1B、2C、3D、49.在ΔABC中,A=60°,b=1,,则等于()。
A、B、C、D、10.设、b不共线,则关于x的方程x2+b x+ =0的解的情况是()。
A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题:(本大题共4小题,每小题4分,满分16分.).2,则 =_________ 11.在等腰直角三角形ABC中,斜边AC=212.已知ABCDEF为正六边形,且AC=a,AD=b,则用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。
正切函数的性质与图象——基础巩固类——一、选择题1.函数y =tan xa 的最小正周期是( ) A .a π B .|a |π C.πaD.π|a |2.下列说法正确的是( )A .正切函数在整个定义域内是增函数B .正切函数在整个定义域内是减函数C .函数y =3tan x 2的图象关于y 轴对称D .若x 是第一象限角,则y =tan x 是增函数3.函数y =tan ⎝⎛⎭⎪⎫π2-x ⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π4,π4且x ≠0的值域为( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .(-∞,1]D .[-1,+∞) .4.函数y =tan ⎝ ⎛⎭⎪⎫x +π5的一个对称中心是( )A .(0,0)B.⎝ ⎛⎭⎪⎫π5,0 C.⎝ ⎛⎭⎪⎫4π5,0 D .(π,0)5.下列各式中正确的是( ) A .tan735°>tan800° B .tan1<tan2 C .tan 5π7<tan 4π7D .tan 9π8<tan π76.函数y =tan ⎝⎛⎭⎪⎫12x -π3在一个周期内的图象是( )二、填空题7.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )= 8.满足tan ⎝ ⎛⎭⎪⎫x +π3≥-3的x 的集合是9.方程x -tan x =0的实根有 个. 三、解答题10.作出函数y =tan|x |的图象,根据图象判断其周期性,并求出单调区间.11.已知x ∈⎣⎢⎡⎦⎥⎤-π3,π4,f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出f (x )取最大值和最小值时相应的x 值.——能力提升类——12.函数y =tan(sin x )的值域是( )A.⎣⎢⎡⎦⎥⎤-π4,π4 B.⎣⎢⎡⎦⎥⎤-22,22C .[-tan1,tan1]D .[-1,1]13.下列关于函数y =tan ⎝⎛⎭⎪⎫x +π3的说法正确的是( )A .在区间⎝ ⎛⎭⎪⎫-π6,5π6上单调递增B .最小正周期是πC .图象关于点⎝ ⎛⎭⎪⎫π4,0成中心对称D .图象关于直线x =π6对称14.关于x 的函数f (x )=tan(x +φ)有以下几种说法:①对任意的φ,f (x )都是非奇非偶函数;②f (x )的图象关于⎝ ⎛⎭⎪⎫π2-φ,0对称;③f (x )的图象关于(π-φ,0)对称;④f (x )是以π为最小正周期的周期函数.其中不正确的说法的序号是 .15.已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中θ∈⎝⎛⎭⎪⎫-π2,π2.(1)当θ=-π6时,求函数的最大值和最小值;(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数.正切函数的性质与图象(答案解析)——基础巩固类——一、选择题1.函数y =tan xa 的最小正周期是( B ) A .a π B .|a |π C.πaD.π|a |解析:∵y =A tan(ωx +φ)的最小正周期T =π|ω|, ∴T =π|1a |=|a |π.2.下列说法正确的是( C ) A .正切函数在整个定义域内是增函数 B .正切函数在整个定义域内是减函数 C .函数y =3tan x 2的图象关于y 轴对称 D .若x 是第一象限角,则y =tan x 是增函数3.函数y =tan ⎝ ⎛⎭⎪⎫π2-x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π4,π4且x ≠0的值域为( B ) A .[-1,1]B .(-∞,-1]∪[1,+∞)C .(-∞,1]D .[-1,+∞)解析:∵-π4≤x ≤π4且x ≠0, ∴π4≤π2-x ≤3π4且π2-x ≠π2, ∴值域为(-∞,-1]∪[1,+∞).4.函数y =tan ⎝⎛⎭⎪⎫x +π5的一个对称中心是( C )A .(0,0)B.⎝ ⎛⎭⎪⎫π5,0 C.⎝⎛⎭⎪⎫4π5,0 D .(π,0)解析:令x +π5=k π2(k ∈Z ), 得x =k π2-π5,k ∈Z ,∴函数y =tan ⎝ ⎛⎭⎪⎫x +π5的对称中心是⎝ ⎛⎭⎪⎫k π2-π5,0(k ∈Z ). 令k =2,可得函数的一个对称中心为⎝⎛⎭⎪⎫4π5,0.5.下列各式中正确的是( D ) A .tan735°>tan800° B .tan1<tan2 C .tan 5π7<tan 4π7D .tan 9π8<tan π7解析:tan 9π8=tan ⎝ ⎛⎭⎪⎫π8+π=tan π8<tan π7,故选D.6.函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( A )解析:由正切函数的定义域得x 2-π3≠π2+k π,k ∈Z ,所以x ≠5π3+2k π,k∈Z ,取k =0和-1,得x ≠5π3且x ≠-π3,选A.二、填空题7.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=0.解析:f (-b )=tan(-b )+sin(-b )+1=-tan b -sin b +1,f (b )=tan b +sin b +1,∴f (-b )+f (b )=2,∴f (-b )=0.8.满足tan ⎝ ⎛⎭⎪⎫x +π3≥-3的x 的集合是{x |k π-2π3≤x <k π+π6,k ∈Z }.解析:把x +π3看作一个整体,利用正切函数图象可得 k π-π3≤x +π3<k π+π2(k ∈Z ), ∴k π-2π3≤x <k π+π6,k ∈Z .故满足tan ⎝⎛⎭⎪⎫x +π3≥-3的x 的集合是{x |k π-2π3≤x <k π+π6,k ∈Z }. 9.方程x -tan x =0的实根有无数个.解析:利用数形结合的思想,由于y =x 与y =tan x 的图象有无数多个交点,因此方程x -tan x =0有无数个解.三、解答题10.作出函数y =tan|x |的图象,根据图象判断其周期性,并求出单调区间.解:y =tan|x |=⎩⎪⎨⎪⎧tan x ,x ≥0,-tan x ,x <0,根据y =tan x 的图象,可作出y =tan|x |的图象(如图所示).由图可知,函数y =tan|x |不是周期函数,它的单调减区间为⎝⎛⎦⎥⎤-π2,0,⎝ ⎛⎭⎪⎫k π-3π2,k π-π2,k =0,-1,-2,…;单调增区间为⎣⎢⎡⎭⎪⎫0,π2,⎝ ⎛⎭⎪⎫k π+π2,k π+3π2,k =0,1,2,….11.已知x ∈⎣⎢⎡⎦⎥⎤-π3,π4,f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出f (x )取最大值和最小值时相应的x 值.解:f (x )=tan 2x +2tan x +2=(tan x +1)2+1,因为x ∈⎣⎢⎡⎦⎥⎤-π3,π4,所以tan x ∈[-3,1].所以当tan x =-1,即x =-π4时, f (x )有最小值,f (x )min =1; 当tan x =1,即x =π4时, f (x )有最大值,f (x )max =5.——能力提升类——12.函数y =tan(sin x )的值域是( C )A.⎣⎢⎡⎦⎥⎤-π4,π4 B.⎣⎢⎡⎦⎥⎤-22,22C .[-tan1,tan1]D .[-1,1]解析:∵-1≤sin x ≤1,而-π2<-1≤sin x ≤1<π2, ∴tan(-1)≤tan(sin x )≤tan1, 即函数值域为[-tan1,tan1].13.下列关于函数y =tan ⎝ ⎛⎭⎪⎫x +π3的说法正确的是( B )A .在区间⎝ ⎛⎭⎪⎫-π6,5π6上单调递增B .最小正周期是πC .图象关于点⎝⎛⎭⎪⎫π4,0成中心对称D .图象关于直线x =π6对称解析:令k π-π2<x +π3<k π+π2,k ∈Z ,解得k π-5π6<x <k π+π6,k ∈Z ,显然(-π6,5π6)不满足上述关系式,故A 错误;易知该函数的最小正周期为π,故B正确;令x +π3=k π2(k ∈Z ),解得x =k π2-π3,k ∈Z ,则函数图象关于点⎝⎛⎭⎪⎫k π2-π3,0(k ∈Z )成中心对称,故C 错误;正切曲线没有对称轴,因此函数y =tan ⎝ ⎛⎭⎪⎫x +π3的图象也没有对称轴,故D 错误.故选B.14.关于x 的函数f (x )=tan(x +φ)有以下几种说法:①对任意的φ,f (x )都是非奇非偶函数;②f (x )的图象关于⎝ ⎛⎭⎪⎫π2-φ,0对称;③f (x )的图象关于(π-φ,0)对称;④f (x )是以π为最小正周期的周期函数.其中不正确的说法的序号是①.解析:①若取φ=k π(k ∈Z ),则f (x )=tan x ,此时,f (x )为奇函数,所以①错;观察正切函数y =tan x 的图象,可知y =tan x 关于⎝ ⎛⎭⎪⎫k π2,0(k ∈Z )对称,令x+φ=k π2得x =k π2-φ,分别令k =1,2知②③正确,④显然正确.15.已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当θ=-π6时,求函数的最大值和最小值;(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数. 解:(1)当θ=-π6时,f (x )=x 2-233x -1=(x -33)2-43.∵x ∈[-1,3],∴当x =33时,f (x )取得最小值-43,当x =-1时,f (x )取得最大值233.(2)f (x )=(x +tan θ)2-1-tan 2θ是关于x 的二次函数,它的图象的对称轴为x =-tan θ.∵y =f (x )在区间[-1,3]上是单调函数,∴-tan θ≤-1或-tan θ≥3,即tan θ≥1或tan θ≤- 3.又θ∈⎝ ⎛⎭⎪⎫-π2,π2,∴θ的取值范围是⎝ ⎛⎦⎥⎤-π2,-π3∪⎣⎢⎡⎭⎪⎫π4,π2.。
目录:数学4(必修)数学4(必修)第一章:三角函数(上、下)[基础训练A组] 数学4(必修)第一章:三角函数(上、下)[综合训练B组] 数学4(必修)第一章:三角函数(上、下)[提高训练C组] 数学4(必修)第二章:平面向量 [基础训练A组]数学4(必修)第二章:平面向量 [综合训练B组]数学4(必修)第二章:平面向量 [提高训练C组]数学4(必修)第三章:三角恒等变换 [基础训练A组]数学4(必修)第三章:三角恒等变换 [综合训练B组]数学4(必修)第三章:三角恒等变换 [提高训练C组]高一数学必修4知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()siny xωϕ=A++B,当1x x=时,取得最小值为miny;当2x x=时,取得最大值为maxy,则()max min12y yA=-,()max min12y yB=+,()21122x x x xT=-<.15、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭函数性质()2x k k ππ=+∈Z 对称轴()x k k π=∈Z无对称轴16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基baCBAa b C C -=A -AB =B底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则12cos a b a bx θ⋅==+24、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=. ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-.26、()sin cos αααϕA +B =+,其中tan ϕB =A. (数学4必修)第一章 三角函数(上)[基础训练A 组]一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinππ.其中符号为负的有( ) A .① B .② C .③ D .④ 3.02120sin 等于( )A .23±B .23C .23- D .214.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( )A .43-B .34- C .43 D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 6.4tan 3cos 2sin 的值( )A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。
人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在0°~360°的范围内,与-510°终边相同的角是()A。
330° B。
210° C。
150° D。
30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。
-6/3 B。
-1/2 C。
16/2 D。
33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。
2 B。
2sin1 C。
2sin1 D。
sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。
x = π/4 B。
x = π/2 C。
x = -π/4 D。
x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。
sin2+cos2 B。
cos2-sin2 C。
sin2-cos2 D。
±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。
(kπ-π/2.kπ+π/2),k∈Z B。
(kπ。
(k+1)π),k∈ZC。
(kπ-4π/4.kπ+4π/4),k∈Z D。
(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。
1/3 B。
-1/3 C。
1/2 D。
-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。
3/4 B。
2 C。
1/3 D。
4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。
必修4数学试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \(y = x^2\)B. \(y = x^3\)C. \(y = \sin x\)D. \(y = \cos x\)答案:C2. 已知函数\(f(x) = 2x + 1\),则\(f(-1)\)的值为?A. 1B. -1C. 3D. -3答案:B3. 计算\(\int_{0}^{1} x^2 dx\)的值是多少?A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. \(\frac{3}{2}\)答案:A4. 以下哪个数列是等差数列?A. \(1, 2, 4, 8\)B. \(1, 3, 5, 7\)C. \(2, 4, 6, 8\)D. \(3, 6, 9, 12\)答案:B5. 已知\(a\)和\(b\)是方程\(x^2 - 5x + 6 = 0\)的两个根,则\(a + b\)的值为?A. 2B. 3C. 4D. 5答案:B二、填空题(每题4分,共20分)1. 已知\(\cos \theta = \frac{3}{5}\),则\(\sin \theta\)的值为\(\_\_\_\_\)。
答案:\(\frac{4}{5}\)2. 函数\(y = x^2 - 6x + 5\)的顶点坐标为\(\_\_\_\_\)。
答案:\((3, -4)\)3. 等比数列\(1, 2, 4, \ldots\)的第5项为\(\_\_\_\_\)。
答案:164. 已知\(\tan \alpha = 2\),则\(\sin \alpha\)的值为\(\_\_\_\_\)。
答案:\(\frac{2\sqrt{5}}{5}\)5. 函数\(y = \log_2 x\)的定义域为\(\_\_\_\_\)。
答案:\((0, +\infty)\)三、解答题(共60分)1. 解方程\(x^2 - 5x + 6 = 0\)。
安徽省安庆一中2008—2009学年度第一学期期末考试高一数学试题(必修4)\一、 选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合要求的,把正确答案的代号填在括号内.)1.若点P 在34π的终边上,且|OP|=2,则点P 的坐标( )A .)3,1(B .)1,3(-C .)3,1(--D .)3,1(-2.已知AB =(5,-3),C (-1,3),CD =2AB,则点D 的坐标为(A )(11,9) (B )(4,0) (C )(9,3) (D )(9,-3)3.设向量)21,(cos α=→a 的模为22,则c os2α=( ) A.41- B.21- C.21D.234.已知)]1(3cos[3)]1(3sin[)(+π-+π=x x x f ,则 f (1)+f (2)+……+f (2005)+f(2006)=( )A.32B.3C.1D.05.在sin sin cos cos ,ABC A B A B ∆⋅<⋅中,则这个三角形的形状是 (A )锐角三角形 (B )钝角三角形(C )直角三角形 (D )等腰三角形 6.把函数y =c os x 的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),然后把图象向左平移4π个单位,则所得图形对应的函数解析式为( ) A.)421cos(π+=x y B. )42cos(π+=x yC. )821cos(π+=x yD. )22cos(π+=x y7.已知P(4,-9),Q(-2,3),y 轴与线段PQ 的交点为M ,则M 分−→−PQ 所成的比为( ) A .31 B.21 C.2 D.38.己知12,e e 是夹角为60的两个单位向量,则122a e e =+ 与1232b e e =-+ 的夹角的余弦值是(A )12 (B )12- (C )2 (D )2-9.若→→b a ,均为非零向量,则“→→⊥b a ”是“||||→→→→-=+b a b a ”的( )A .充要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.若函数f (x )=si nax +c os ax (a >0)的最小正周期为1,则它的图像的一个对称中心为( )A .)0,8(π- B.(0,0) C.(0,81-) D.)0,81( 11.设向量)20cos ,20(sin ),25sin ,25(cos o o o o b a ==→→,若→→→+=b t a c (t ∈R),则||→c 的最小值为( )A .2 B.1 C.22 D.21 12.已知函数f (x )=f (π-x ),且当)2,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b安庆一中2007——2008学年度第一学期期末考试高一数学试题(必修4模块检测)一 .选择题:本大题共11小题,每小题3分,共33分,在每小题给出的四个选项中,只有一项是符合题目要求的。
高一上期数学(必修1+必修4)期末复习培优专题卷附详解高一上学期数学(必修1+必修4)期末复培优专题卷一.选择题1.已知定义域为实数集的函数f(x)的图像经过点(1,1),且对任意实数x1<x2,都有f(x1)≤f(x2),则不等式的解集为()。
A。
(-∞,1)∪(1,+∞) B。
(-∞,+∞)C。
(1,+∞) D。
(-∞,1)2.对任意x∈[0,2π],任意y∈(-∞,+∞),不等式-2cosx≥asinx-x恒成立,则实数a的取值范围是()。
A。
[-3,3] B。
[-2,3] C。
[-2,2] D。
[-3,2]3.定义在实数集上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()。
A。
(-∞,-1/2) B。
(-∞,0)C。
(-1,+∞) D。
(0,+∞)4.定义在实数集上的函数y=f(x)为减函数,且函数y=f (x-1)的图像关于点(1,0)对称,若f(x-2x)+f(2b-b)≤0,且-2≤x≤2,则x-b的取值范围是()。
A。
[-2,0] B。
[-2,2] C。
[0,2] D。
[0,4]5.设函数f(x)=x^2-2x+1,当x∈[-1,1]时,恒有f(x+a)<f(x),则实数a的取值范围是()。
A。
(-∞,-1) B。
(-1,+∞)C。
(-∞,1) D。
(-∞,-2)6.定义域为实数集的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=x^2-x,若当x∈[-4,-2)时,不等式f(x)≥-t+2恒成立,则实数t的取值范围是()。
A。
[2,3] B。
[1,3] C。
[1,4] D。
[2,4]7.已知函数f(x)的定义域为D,若对于∀a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f (x)为“三角形函数”.给出下列四个函数:①f(x)=lg(x+1)(x>0);②f(x)=4-cosx;③f(x)=|sinx|;④f(x)=|x|+1.其中为“三角形函数”的个数是()。
2017-高中数学必修4期末考试2017年高一数学必修4模块期末考试一、选择题1.若向量OO=(-5,4),OO=(7,9),则与向量OO同向的单位向量坐标是()A.(−13,−13)B.(13,13)C.(−13,13)D.(13,−13)2.下列各式中值等于125的是()A。
5^3 B。
25^2/5 C。
3^5 D。
125^1/33.已知O(O)=OOOO+3OOOO(O∈O),函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A。
2 B。
3 C。
4 D。
64.在四边形ABCD中,则四边形ABCD OO=O+2O,OO=−4O−O,OO=−5O−3O,的形状是()A。
长方形 B。
平行四边形 C。
菱形 D。
梯形5.如图所示,在△ABC中,AD=DB,F在线段CD上,设OO=O,OO=O,则O+O的最小值为()A。
6+2√2 B。
9/4 C。
9 D。
6+4√26.在△ABC中,OO=O,OO=O.若点D满足OO=(O+3O)/3=2OOOO,则O的坐标为()A。
(2b/3.c/3) B。
(b/3.2c/3) C。
(2c/3.b/3) D。
(c/3.2b/3)7.在△ABC中,tanAsin2B=tanBsin2A,则△ABC一定是()三角形.A。
锐角 B。
直角 C。
等腰 D。
等腰或直角8.将函数f(x)=cos2ωx的图象向右平移4π个单位,得到函数y=g(x)的图象,若y=g(x)在[−4,6]上为减函数,则正实数ω的最大值为()A。
2 B。
1 C。
2/π D。
39.cos555°的值为()A。
6+2√13/2 B。
2-6√13/2 C。
6-2√13/2 D。
-6+2√13/210.满足条件a=4,b=5,A=45°的△ABC的个数是()A。
1 B。
2 C。
无数个 D。
不存在11.已知角α是第四象限角,角α的终边经过点P(4,y),且sinα=5/13,则tanα的值是()A。
弧度制——基础巩固类——一、选择题1.3π4对应的角度为( ) A .75° B .125° C .135°D .155°2.-120°化为弧度为( ) A .-5π6 B .-π2 C .-2π3D .-3π4 3.下列角中与-5π4终边相同的是( ) A .-π4 B.3π4 C.π4D.5π44.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是{α|α=π2+k π,k ∈Z } C .终边在坐标轴上角的集合是{α|α=k ·π2,k ∈Z } D .终边在直线y =x 上角的集合是{α|α=π4+2k π,k ∈Z }5.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中角所表示的范围(阴影部分)是( )6.已知某中学上午第一节课的上课时间是8点,那么,当第一节课铃声响起时,时钟的时针、分针把整个时钟圆弧分成的劣弧所对的圆心角是( )A.π2B.3π2 C.2π3 D.4π3二、填空题7.用弧度制表示终边落在x 轴上方的角的集合为8.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车用30 km 每小时的速度通过,10 s 间转过 弧度.9.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=三、解答题10.(1)把下列各角化为2k π+α(0≤α<2π,k ∈Z )的形式:16π3,-315°,-11π7.(2)在0°~720°范围内,找出与25π终边相同的角.11.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .——能力提升类——12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B等于( )A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}13.在直径为10 cm 的轮子上有一条长为6 cm 的弦,P 为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5 s 后P 转过的弧长为 .14.工艺扇面是中国书画一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的圆心角为120°,外圆半径为50 cm ,内圆半径为20 cm.则制作这样一面扇面需要的布料为 (仅考虑正面)(用数字作答,π取3.14).15.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.弧度制(答案解析)——基础巩固类——一、选择题1.3π4对应的角度为( C ) A .75° B .125° C .135°D .155°解析:由于1 rad =⎝ ⎛⎭⎪⎫180π°,所以3π4=3π4×⎝ ⎛⎭⎪⎫180π°=135°,故选C.2.-120°化为弧度为( C ) A .-5π6 B .-π2 C .-2π3D .-3π4解析:由于1°=π180rad ,所以-120°=-120×π180=-2π3,故选C. 3.下列角中与-5π4终边相同的是( B ) A .-π4 B.3π4 C.π4D.5π4解析:因-5π4+2π=3π4.故选B. 4.下列表示中不正确的是( D )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是{α|α=π2+k π,k ∈Z } C .终边在坐标轴上角的集合是{α|α=k ·π2,k ∈Z } D .终边在直线y =x 上角的集合是{α|α=π4+2k π,k ∈Z }解析:终边在直线y =x 上角的集合应是{α|α=π4+k π,k ∈Z },D 不正确,其他选项均正确.5.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中角所表示的范围(阴影部分)是( C)解析:k 为偶数时,集合对应的区域为第一象限内直线y =x 左上部分(包含边界),k 为奇数时集合对应的区域为第三象限内直线y =x 的右下部分(包含边界).故选C.6.已知某中学上午第一节课的上课时间是8点,那么,当第一节课铃声响起时,时钟的时针、分针把整个时钟圆弧分成的劣弧所对的圆心角是( C )A.π2 B.3π2 C.2π3D.4π3解析:8点时,时钟的时针正好指向8,分针正好指向12,由于时钟的每两个数字之间的圆心角是30°,即π6,故此时时针、分针把整个时钟圆弧分成的劣弧所对的圆心角是π6×4=2π3.故选C.二、填空题7.用弧度制表示终边落在x 轴上方的角的集合为{α|2k π<α<2k π+π,k ∈Z }.解析:若角α的终边落在x 轴上方,则2k π<α<2k π+π(k ∈Z ).8.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车用30 km 每小时的速度通过,10 s 间转过124弧度.解析:10 s 间列车转过的弧长为103 600×30=112(km),转过的角α=1122=124(弧度).9.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=-113π,-53π,π3,73π.解析:与α终边相同的角的集合为⎩⎨⎧⎭⎬⎫αα=2k π+π3,k ∈Z .因为α∈(-4π,4π),所以-4π<2k π+π3<4π, 化简得-136<k <116.因为k ∈Z ,所以k =-2,-1,0,1, 所以α=-113π,-53π,π3,73π. 三、解答题10.(1)把下列各角化为2k π+α(0≤α<2π,k ∈Z )的形式:16π3,-315°,-11π7.(2)在0°~720°范围内,找出与25π终边相同的角. 解:(1)16π3=4π+4π3;-315°=-360°+45°=-2π+π4; -11π7=-2π+3π7.(2)∵2π5=2π5×⎝ ⎛⎭⎪⎫180π°=72°,∴终边与2π5相同的角为θ=72°+k ·360°(k ∈Z ). 当k =0时,θ=72°;当k =1时,θ=432°.∴在0°~720°范围内,与2π5终边相同的角为72°,432°. 11.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .解:如图.(1)由⊙O 的半径r =10=AB ,知△AOB 是等边三角形,所以α=∠AOB =60°=π3. (2)由(1)可知α=π3,r =10, 所以弧长l =α·r =π3×10=10π3,所以S 扇形=12lr =12×10π3×10=50π3=253, 而S △AOB =12·AB ·1032=12×10×1032=5032,所以S =S 扇形-S △AOB =50⎝ ⎛⎭⎪⎫π3-32.——能力提升类——12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( D )A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}解析:集合A 限制了角α终边只能落在x 轴上方或x 轴上.而A 集合中满足B 集合范围的只有k =0或k =-1的一部分,即只有D 选项满足.故选D.13.在直径为10 cm 的轮子上有一条长为6 cm 的弦,P 为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5 s 后P 转过的弧长为100_cm.解析:P 到圆心O 的距离OP =52-32=4(cm),又P 点转过的角的弧度数α=5×5=25(rad),∴弧长为α·OP =25×4=100(cm).14.工艺扇面是中国书画一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的圆心角为120°,外圆半径为50 cm ,内圆半径为20 cm.则制作这样一面扇面需要的布料为 2 198 cm 2(仅考虑正面)(用数字作答,π取3.14).解析:因为120°=2π3,S 1=12×2π3×502,S 2=12×2π3×202,扇面面积S =S 1-S 2=12×2π3×502-12×2π3×202=π3×(502-202)=700π≈700×3.14=2 198(cm 2).15.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.解:设P ,Q 第一次相遇时所用的时间是t ,则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π.解得t =4. 所以第一次相遇时所用的时间是4秒.第一次相遇时点P 已经运动到角π3·4=4π3的终边与圆交点的位置,点Q 已经运动到角-2π3的终边与圆交点的位置,所以点P 走过的弧长为4π3×4=16π3,点Q 走过的弧长为⎪⎪⎪⎪⎪⎪-2π3×4=2π3×4=8π3.。
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
1.下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是 ( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→D .|→a +→b +→c |=213.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 .14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。
20 年月日A4打印/ 可编辑高中数学必修一必修四综合检测题一高中数学必修一必修四综合检测题(一)一、选择题1.若向量,,满足条件,则=()A.6 B.5 C.4 D.32.如果,那么等于()A.B.C.[ D.3.已知向量()A.B.C.D.4.若一圆弧长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数为()A.B.C.D.2 5.若,则的值为()A.B.C.D.6.函数在一个周期内的图象如下,此函数的解析式为()A.B.C.D.7.已知函数,若函数有3个零点,则实数m的取值范围().A.(0, ) B.C.D.(0,1)8.为三角形的一个内角,若,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形9.设是定义在上的奇函数,且,,则()A.0 B.0.5 C.2 D.10.已知函数满足:对任意实数,当时,总有,那么实数的取值范围是( )A.B.C.D.二、填空题11.已知,则= .12.方程在上有两个不等的实根,则实数的取值范围是13.设,则14.若,则的取值范围是15.关于x的方程有实根,且一个大于2,一个小于2,则m取值范围为_ __ __.三、解答题16.已知集合,,。
(1)求;(2)求;(3)若,求的取值范围17.已知向量与的夹角为30°,且||=,||=1,(1)求|-2|的值(2)设向量=+2,=-2,求向量在方向上的投影18.已知向量a =⎝⎛⎭⎪⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈,设函数=a ·b .(1)求的最小正周期;(2)求在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.19.设是定义在R 上的奇函数,且对任意a 、b,当时,都有.(1)若,试比较与的大小关系; (2)若对任意恒成立,求实数k 的取值范围.20. 在每年的“春运”期间,某火车站经统计每天的候车人数(万人)与时间(小时),近似满足函数关系式,,并且一天中候车人数最少是夜晚2点钟,最多是在下午14点钟。
数学必修4综合测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1。
下列命题中正确的是( C )A .第一象限角必是锐角 B.终边相同的角相等C.相等的角终边必相同 D 。
不相等的角其终边必不相同 2.将分针拨慢5分钟,则分钟转过的弧度数是ﻩ( C )A .3πﻩ B.-3π C .6πD。
-6π 3.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( B ) A 。
1或-1 B.52或52- C .1或52- D .—1或52 4、若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( B )A 。
35(,)(,)244ππππ B .5(,)(,)424ππππC 。
353(,)(,)2442ππππ D.33(,)(,)244ππππ5. 若|2|=a ,2||=b 且(b a -)⊥a ,则a 与b 的夹角是 ( )(A)6π (B)4π (C)3π(D)π125 6.已知函数B x A y ++=)sin(ϕϖ的一部分图象如右图所示,如果2||,0,0πϕϖ<>>A ,则( )ﻫ A.4=A ﻩB 。
1=ϖ C.6πϕ=ﻩD 。
4=B7. 设集合{}x y y x A 2sin 2|)(==,,集合{}x y y x B ==|)(,,则( ) A.B A 中有3个元素 B .B A 中有1个元素 C.B A 中有2个元素 D。
B A R = 8.已知==-∈x x x 2tan ,54cos ),0,2(则π( )A。
247B.247-ﻩC .724ﻩD.724-9. 同时具有以下性质:“①最小正周期实π;②图象关于直线x =错误!对称;③在[-错误!]上是增函数”的一个函数是 ( )A . y=sin (错误!)ﻩB. y=c os (2x +错误!) ﻩC . y =si n(2x —错误!)ﻩ D. y =co s(2x-\f (π,6))10. 设i =(1,0),j =(0,1),a =2i +3j ,b =k i—4j ,若a ⊥b ,则实数k 的值为( ) A 。
-6 B .-3 C .3 D .6 11. 函数)34cos(3)34sin(3x x y -+-=ππ的最小正周期为 ( )A .32πB 。
3πC.8D.412. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B 。
2524-C .257 D.-257二、填空题(本大题共4小题,每小题4分,共16分)13. 已知3322cos2sin=+θθ,那么θsin 的值为 ,θ2cos 的值为 14. 已知|a|=3,|b |=5, 且向量a 在向量b 方向上的投影为125,则a·b = .15。
已知向量OP X 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么XB XA ⋅的最小值是___________________ 16。
给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21;②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位;④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。
请写出用上述变换将函数y = sinx 的图像变换到函数y = sin (2x +3π)的图像的一个变换______________。
(按变换顺序写上序号即可)三、解答题(本大题共6小题,共74分,解答应有证明或演算步骤)17、已知cos(α-2β)=19-,sin (2αβ-)=23,且α∈(2π,π),β∈(0,2π),求c os 2αβ+的值.18。
(本小题满分12分)已知434π<α<π,40π<β<,53)4cos(-=+απ,135)43sin(=β+π,求()βα+sin 的值.19. (本题满分12分)已知向量)23sin 23(cosx x ,=a ,)2sin 2(cos xx -=,b ,)13(-=,c ,其中R ∈x . (Ⅰ)当b a ⊥时,求x 值的集合; (Ⅱ)求||c a -的最大值.20、已知函数.,12sin sin 2)(2R x x x x f ∈-+=(1)求)(x f 的最小正周期及)(x f 取得最大值时x 的集合; (2)在平面直角坐标系中画出函数)(x f 在],0[π上的图象.21、(本题满分12分)设、是两个不共线的非零向量(R t ∈)ﻩ(1)记),(31,,b a OC b t OB a OA +===那么当实数t 为何值时,A 、B 、C 三点共线? (2)若 1201||||夹角为与且==,那么实数x为何值时||x -的值最小?22、(本题满分14分)某沿海城市附近海面有一台风,据观测,台风中心位于城市正南方向200km的海面P处,并正以20km/h 的速度向北偏西θ方向移动(其中19cos 20θ=),台风当前影响半径为10km,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风影响?影响时间多长?数学必修4综合测试题参考答案1. C2. D3.B 4、B 5、B6、C 7、A8、D 9、C . 10、D11、A12、D 13、31,9714、12 15.-8 16. ④②或②⑥ 17、已知cos (α-2β)=19-,sin(2αβ-)=23,且α∈(2π,π),β∈(0,2π),求cos 2αβ+的值。
18。
解:∵434π<α<π ∴π<α+π<π42 又53)4cos(-=α+π ∴54)4sin(=α+π∵40π<β< ∴π<β+π<π4343 又135)43sin(=β+π∴1312)43cos(-=β+π∴sin( + ) = si n[ + ( + )] = )]43()4sin[(β+π+α+π-)]43sin()4cos()43cos()4[sin(β+πα+π+β+πα+π-=6563]13553)1312(54[=⨯--⨯-= 19解:(Ⅰ)由b a ⊥,得0=⋅b a ,即02sin 23sin 2cos 23cos =-xx x x .…………4分则02cos =x ,得)(4π2πZ ∈+=k k x .…………………………………5分∴ ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,4π2π|为所求。
…………………………………6分 (Ⅱ)+-=-22)323(cos||x c a =+2)123(sin x )3π23sin(45-+x ,……………10分 所以||c a -有最大值为3.……………………………………………………12分 20解:(I)x x x x x x x f 2cos 2sin )sin 21(2sin 12sin sin 2)(22-=--=-+= =)42sin(2π-x ………………………………………………5分所以)(x f 的最小正周期是π……………………………………………………6分∈x ﻩR,所以当∈+=+=-k k x k x (83,2242πππππ即Z)时,)(x f 的最大值为2。
ﻩ即)(x f 取得最大值时x 的集合为∈+=k k x x ,83|{ππZ }……………………8分 (II )图象如下图所示:(阅卷时注意以下3点)ﻩ1.最小值2)83(=πf ,最小值2)87(-=πf .………………10分 2.增区间];,87[],83,0[πππ减区间]87,83[ππ (12)分3.图象上的特殊点:(0,-1),(1,4π),(1,2π),)1,(),1,43(--ππ………14分 [注:图象上的特殊点错两个扣1分,最多扣2分]21、解:(1)A 、B 、C三点共线知存在实数)1(,λλλ-+=使即b t a b a )1()(31λλ-+=+,…………………………………………………4分ﻩ则21,31==t 实数λ………………………………………………………………6分(2),21120cos ||||-=⋅=⋅ﻩ,12||22222++=⋅⋅-⋅+=-∴x x x x x ……………………………9分 ﻩ当23||,21取最小值时b x a x --=…………………………………………12分 22、解:如右图,设该市为A ,经过t 小时后台风开始影响该城市,则t 小时后台风经过的路程PC=(20t )km ,台风半径为CD=(10+10t )km ,需满足条件:C D≥AC2222222()2||||||2||||cos AC PC PA PC PA PA PC AC PC PA PA PC θ=-=+-=+-22219200(20)22002040000400760020t tt =+-=+-∴222400004007600(1010)t t CD t +-≤=+ 整理得23007800399000t t -+≤ 即2261330t t -+≤ 解得719t ≤≤∴7小时后台风开始影响该市,持续时间达12小时。