小学奥数速算与巧算教案讲解学习
- 格式:doc
- 大小:38.25 KB
- 文档页数:10
(二年级)备课教员:×××第一讲速算与巧算一、教学目标: 1. 通过研究算式中的数字特点找到巧算方法。
2. 知道计算中的基本巧算方法,能熟练运用加法凑整和减法凑整的方法计算。
3. 知道加括号和去括号与运算符号之间的变化关系。
4. 知道一个数可以进行拆分后计算,锻炼学生的数学分组拆分的数学思维。
二、教学重点:灵活运用凑整的方法进行计算。
三、教学难点: 1. 在进行凑整时,要带上运算符号进行计算。
2. 括号前面是减号,括号里原来的符号要进行变号。
四、教学准备:PPT、卡片五、教学过程:第一课时(50分钟)一、导入(5分)找朋友游戏准备好卡片,卡片上写有数字,每个数字都可以与另一个数字凑成整十或整百的数(有加法凑整也有减法凑整),卡片张数依据班级人数来设定。
师:今天咱们来玩一个游戏,找朋友游戏,你们玩过没有?生:没有(有)。
师:不管有没有玩过都没有关系,因为这个游戏是老师发明出来的,你们可是第一批开始玩这个游戏的小朋友哦!(老师拿出一叠卡片)老师这里有一叠卡片,等会会发到你们的手上,每人可以拿3张。
你要能把手中的卡片和别人手中的卡片凑成整十或整百的数,浪费一张扣10分,凑成一张加10 分,最后看谁的分数多,注意,必须是和别人手中的数字卡片哦!规则有没有听清楚?生:听清楚了!师:(每人发下3张卡片,注意提醒不能交头接耳)那老师就开始计时咯!时间是1分钟。
(时间根据班级人数的多少,人多时间可延长)生:老师,我三张都凑好了!师:太棒了,这么短的时间内,你把三个好朋友都找到了呀,真厉害!(看着两个数相加不能凑成整数,减法可以凑整的两个数)这两个数你是怎么凑整的?生:我这个没有用加法,用的是减法!师:嗯,我们看,这些数字相加或相减能凑整,那你们有没有发现这些数字之间的关系呢?生:相加能够凑整的数字,它们个位上的数相加等于10,相减能够凑整的两个数的个位上的数是一样的。
师:原来你才是拥有火眼金睛的那个人,真棒!在我们计算的过程中,会有很多种巧算方法,这些方法能够大大地提高你们的计算能力,我相信,同学们经过这一堂课的学习,你们的计算能力肯定又能提高一个档次。
奥数速算与巧算教案教案标题:奥数速算与巧算教案教学目标:1. 了解奥数速算和巧算的概念和应用领域;2. 掌握奥数速算和巧算的基本技巧和方法;3. 提高学生的计算速度和思维灵活性;4. 培养学生的数学兴趣和解决问题的能力。
教学内容:1. 奥数速算的基本技巧:a. 快速乘法技巧;b. 快速除法技巧;c. 快速平方与立方技巧;d. 快速开方与开立方技巧。
2. 巧算的基本方法:a. 近似计算法;b. 等量代换法;c. 逆向思维法;d. 分解与组合法。
教学步骤:引入:1. 利用一则有趣的数学问题或情境引起学生的兴趣,如:如果你有30秒时间,你能计算出36乘以24等于多少吗?探究:2. 介绍奥数速算和巧算的概念,并与学生一起讨论其应用领域和重要性。
3. 分别介绍奥数速算和巧算的基本技巧和方法,通过示范和练习让学生理解和掌握。
实践:4. 给学生一些简单的奥数速算和巧算练习题,让他们运用所学技巧进行计算。
5. 引导学生尝试解决一些实际问题,运用巧算方法进行近似计算或思维转换。
总结:6. 回顾奥数速算和巧算的核心内容和技巧,强调其在解决数学问题和应用领域中的重要性。
巩固:7. 布置一些奥数速算和巧算的作业,以巩固学生所学知识和技巧。
评价:8. 对学生的作业进行批改和评价,给予积极的反馈和建议。
教学资源:- 奥数速算和巧算的教材和练习册;- 计算器;- 实际问题的练习题。
教学扩展:1. 鼓励学生参加奥数比赛和数学竞赛,提高他们在奥数速算和巧算方面的技巧和应用能力。
2. 组织奥数速算和巧算的比赛活动,激发学生的学习兴趣和竞争意识。
3. 引导学生研究更高级的奥数速算和巧算技巧,如快速平方根和立方根的计算方法。
4. 鼓励学生开展小组项目,探索奥数速算和巧算在实际生活中的应用,如商场打折计算、时间管理等。
注意事项:1. 根据学生的年级和能力水平,适当调整教学内容和难度。
2. 在教学过程中,注重培养学生的合作意识和解决问题的能力。
小学奥数速算与巧算教案一、教学目标1. 让学生掌握基本的奥数速算与巧算方法。
2. 培养学生的逻辑思维能力、观察力和运算能力。
3. 提高学生解决实际问题的能力,激发学生学习奥数的兴趣。
二、教学内容1. 奥数速算与巧算的基本概念和方法。
2. 常见的奥数题型及其解题技巧。
3. 针对不同题型的练习题目。
三、教学重点与难点1. 重点:掌握奥数速算与巧算的基本方法,提高运算速度和准确性。
2. 难点:灵活运用各种方法解决实际问题,培养学生的创新思维。
四、教学方法1. 采用讲解、示范、练习、讨论、竞赛等多种教学方法,激发学生的学习兴趣。
2. 利用多媒体教学资源,帮助学生形象直观地理解奥数速算与巧算的方法。
3. 分组合作学习,鼓励学生相互交流、讨论,共同提高。
五、教学课时1. 共计15课时,每课时40分钟。
2. 每课时包含讲解、示范、练习、总结等环节。
教案内容待补充。
六、教学过程1. 导入:通过有趣的数学故事或问题,引发学生对奥数速算与巧算的兴趣,激发学生的求知欲。
2. 讲解:讲解奥数速算与巧算的基本概念和方法,结合实例进行解释,让学生理解和掌握。
3. 示范:通过示例题目,展示解题过程,引导学生观察和思考,培养学生的逻辑思维能力。
4. 练习:布置针对性的练习题目,让学生动手实践,巩固所学方法,提高运算速度和准确性。
5. 总结:对本节课的内容进行总结,强调重点和难点,提醒学生注意事项。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题目:布置课后练习题目,评估学生对所学知识的掌握程度。
3. 竞赛:组织奥数速算与巧算竞赛,激发学生的学习兴趣,检验学生的学习成果。
八、教学资源1. 教材:选用合适的奥数速算与巧算教材,提供系统的学习内容。
2. 多媒体教学资源:制作课件、教学视频等,帮助学生形象直观地理解奥数速算与巧算的方法。
3. 练习题目:收集各类奥数速算与巧算题目,供学生练习使用。
小学奥数速算与巧算教案一、教学目标:1. 让学生掌握基本的奥数速算与巧算方法。
2. 提高学生的运算速度和准确性。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 奥数速算与巧算的基本概念和常用技巧。
2. 数字的拆分与组合,以及相关运算规律。
3. 常用的运算公式和定理,以及如何灵活运用。
4. 典型题目的分析和解答方法。
三、教学重点与难点:1. 教学重点:掌握奥数速算与巧算的基本方法和技巧。
2. 教学难点:灵活运用数字拆分与组合,解决实际问题。
四、教学方法:1. 采用讲解、示范、练习、讨论等多种教学方法,让学生在实践中掌握知识。
2. 通过例题和课后练习,巩固所学内容,提高学生的应用能力。
3. 鼓励学生相互讨论、交流,培养团队合作精神。
五、教学安排:1. 第一课时:奥数速算与巧算的基本概念和常用技巧。
2. 第二课时:数字的拆分与组合,以及相关运算规律。
3. 第三课时:常用的运算公式和定理,以及如何灵活运用。
4. 第四课时:典型题目的分析和解答方法。
六、教学评估:1. 课堂练习:每节课安排适当的练习题,以检验学生对知识的掌握程度。
2. 课后作业:布置相关的作业,要求学生在课后完成,以巩固所学知识。
3. 阶段测试:定期进行阶段测试,评估学生的学习进度和成果。
4. 学生互评:鼓励学生相互评价,发现和学习对方的优点,提高团队合作和沟通能力。
七、教学资源:1. 教材:选用合适的奥数速算与巧算教材,为学生提供系统的学习资料。
2. 教辅资料:收集相关的奥数题库、练习册等辅助资料,丰富教学内容。
3. 教学工具:利用多媒体设备、黑板等教学工具,提高教学效果。
4. 网络资源:利用互联网资源,寻找相关的教学视频、文章等,为学生提供更多的学习资料。
八、教学建议:1. 注重基础:在教学中,注重培养学生的基础知识和基本技能,为学生后续学习打下坚实基础。
2. 培养兴趣:激发学生对奥数速算与巧算的兴趣,让他们在学习中感受到快乐。
四年级速算与巧算教案【篇一:四年级奥数速算与巧算(1)】第1讲速算与巧算(一)【例1】计算9+99+999+9999+99999思路点拨:凑整(答案:111105)【例2】计算199999+19999+1999+199+19思路点拨:凑整(答案:222215)【例3】计算(1+3+5+...+1989)-(2+4+6+ (1988)思路点拨:配对、打包(答案:995)【例4】计算389+387+383+385+384+386+388思路点拨:基准数(答案:2702)思路点拨:基准数(答案:4941)思路点拨:观察数的特征(答案:9900)思路点拨:等积变形(答案:33330000)思路点拨:多9数的特征(答案:1000000)思路点拨:多9数的特征(答案:)巩固练习1:(答案:999980)2.计算799999+79999+7999+799+79(答案:888875)3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)(答案:994)4.计算1-2+3-4+5-6+…+1991-1992+1993(答案:997)5.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推。
从1点到12点这12个小时内时钟共敲了多少下?(答案:78)6.求出从1→25的全体自然数之和。
(答案:325)7.计算1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101(答案:900)8.计算92+94+89+93+95+88+94+96+87(答案:828)(答案:200000)(答案:3829)(答案:78052921947)12.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?(答案:11111111108888888889)13.已知被乘数是888…8,乘数是999…9,它们的积是多少?(答案:888…87111…12)【篇二:奥数-速算与巧算专题—四年级】到知典,进重点常州中小学课外辅导权威品牌常州知典教育一对一教案学生:年级:学科:数学授课时间:月日授课老师:赵鹏飞- 1 -常州知典教育怀德校区教研组- 2 -- 3 -常州知典教育怀德校区教研组- 4 -- 5 -常州知典教育怀德校区教研组【篇三:四年级奥数巧算乘除法】教学主题:巧算乘除法教学重难点:重点:乘法运算律,特殊的由原有规律推出的定律难点:把乘除运算律延用到乘除法混合运算中,尤其在含有括号或多项的题目中。
一、导入速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
这一周我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。
二、同步题型分析题型1:两数相加,和凑整;同尾两数直接相减,差凑整例1:计算9+99+999+9999分析与解答:这四个加数分别接近10、100、1000、10000。
在计算这类题目时,常使用减整法,例如将99转化为100-1。
这是小学数学计算中常用的一种技巧。
9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106例2:计算489+487+483+485+484+486+488分析与解答:认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。
489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=3402想一想:如果选480为基准数,可以怎样计算?例3:计算453+598+147-198【分析】观察数字的特点,不难发现453与147两数相加可以等到整百数,598与198两数的尾数相同,相减的差也是整百数,这样计算起来比较简便。
453+598+147-198=(453+147)+(598-198)=600+400=1000题型2:带符号搬家,减法性质的应用例1:计算下面各题。
174-(41+74)527-114+14 145+387-187答案:59 427 34531.34-(7.34+2.25) -7.75 63×15÷7 ×60答案:14 、81002.巧算下列各题:(1)72+(14+28)(2)145+387-187(3)132-(27+32)(4)527-114+14114, 345,73,427799+405 (15+14)+(185+186) 217+263+18376+(282+424+218) 579-221-31-8 157-(57+25)1204;400;663;1000;319;75专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
速算与巧算教案教案主题:速算与巧算教案目标:1. 了解速算与巧算的基本概念;2. 提高学生的速算能力;3. 培养学生的思维逻辑和计算技巧。
教学内容:1. 速算的基本原理和技巧;2. 巧算的基本原理和技巧;3. 实际生活中的速算与巧算应用。
教学准备:1. 教材:速算与巧算教材;2. 工具:黑板、彩色粉笔、计算器。
教学过程:Step 1:导入(5分钟)教师通过问题引入速算与巧算的概念,例如:1000 - 999 = ?Step 2:讲解速算的基本原理和技巧(10分钟)教师介绍速算的基本概念和原理,例如:借位、进位、消去法等。
教师通过简单的例子,向学生演示速算技巧的应用。
Step 3:讲解巧算的基本原理和技巧(10分钟)教师介绍巧算的基本概念和原理,例如:留一法、凑整法、倍数法等。
教师通过简单的例子,向学生演示巧算技巧的应用。
Step 4:练习与巩固(20分钟)教师出示一些速算和巧算的题目,让学生尝试解答。
教师鼓励学生积极参与,提高他们的速算和巧算能力。
Step 5:拓展与应用(10分钟)教师让学生思考速算与巧算在实际生活中的应用,例如:购物结账、计算时间等。
教师鼓励学生分享自己在实际生活中使用速算和巧算的经验。
Step 6:总结与反思(5分钟)教师与学生一起总结速算与巧算的基本原理和技巧,回顾今天的学习内容。
教师鼓励学生分享自己的学习心得和体会。
教学评价:教师可以观察学生在练习与拓展时的表现,评价学生在速算和巧算方面的能力提高情况。
可以根据学生的实际水平,设计适当的练习题目,提供反馈和指导。
=4000+125=4125;(4) 39×75=(40-1)×75=40×75-1×75=3000-75=2925。
4.个位是5的两个相同的两位数相乘的速算法个位是5的两个相同的两位数相乘,积的末尾两位是25,25前面的数是这个两位数的首位数与首位数加1之积。
例如:四、能力提升下面,我们介绍一类特殊情况的乘法的速算方法。
请看下面的算式:66×46,73×88,19×44。
这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。
这类算式有非常简便的速算方法。
例3, 88×64=?[小精灵儿童网站]分析与解:由乘法分配律和结合律,得到88×64=(80+8)×(60+4)=(80+8)×60+(80+8)×4=80×60+8×60+80×4+8×4=80×60+80×6+80×4+8×4=80×(60+6+4)+8×4=80×(60+10)+8×4=8×(6+1)×100+8×4。
于是,我们得到下面的速算式:由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。
例4,77×91=?解:由例3的解法得到由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07。
用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。
五、易错点总结小结:计算整数乘法时,应该注意以下几点:1、掌握好乘法运算定律,是解题的关键。
小学奥林匹克数学第一集:第一讲:速算与巧算一、例题讲解十个数字,几种计算符号,构造了千变万化的数学计算,计算要做到又快又正确。
关键在于掌握运算技巧,“硬算”加“巧算”。
“巧算”是对算式整体以及其中的每个数进行观察,剖析算式的特点和各数之间的可能存在的联系。
恰当地利用运算定律,改组运算顺序,使计算简便易行。
要达到“速”与“巧”主要掌握以下几点计算技巧:1.凑成容易算的数,在心算中培养凑整、搭配、替代的思维习惯。
如凑成整十、整百、整千……又如若干比较接近的数相加时,可选择一个基数作为计算基础。
在此数上加上或减去这个基数的相差数。
2.利用运算定律简化运算。
3.根据某些算式的定律,学会创造条件,进行分组,分类地计算,使计算简便。
4.适当配对,能使计算简便。
例1:610+270+190分析:题中610+190=800,凑成整百数,所以先把“+190”搬家,搬到“+270”的前面,然后再把610+190的和算出来。
解:610+270+190=(610+190)+270=800+270=1070(说明:加法的结合律和交换律是计算中常用的方法。
)例2:320-60+180分析:题中320+180的和是整百数,可以先把“+180”搬到“-60”的前面,再算出320与180的和。
解:320-60+180=(320+180)-60=500-60=440例3:6998+995+97+59分析:题中6998、995、97和59接近整千、整百、整十的数。
可以先把这些加数分别看作:7000-2、1000-5、100-3、60-1,然后再算出(7000+1000+100+60)-(2+5+3+1)的结果。
解:6998+995+97+59=7000-2+1000-5+100-3+60-1=(7000+1000+100+60)-(2+5+3+1)=8160-11=8149例4:计算18+21+23+20+15+19分析:先确定一个数作为基准,并将其他数与这个数作比较。
第1讲速算与巧算(一)一、凑十法:同学位已经知道,下面的五组成对的数相加之和都等于10:巧用这些结果,可以使计算又快又准。
【例1】计算1+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:6+4=10 lO+5=1515+6=21 2l+7=2828+8=36 36+9=45这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
二、凑整法同学位还知道,有些数相加之和是整十、整百的数,如:1+19=20 11+19=302+18=20 12+28=403+17=20 13+37=504+16=20 14+46=605+15=20 15+55=706+14=20 16+64=807+13=20 17+73=908+12=20 18+82=1009+11=20又如:15+85=100 14+86=10025+75=100 24+76=10035+65=100 34+66=10045+55=100 44+56=100等等巧用这些结果,可以使那些较大的数相加又快又准。
像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
【例2】计算1+3+5+7+9+11+13+15+17+19解:这是求l到19共10个单数之和,用凑整法做:1+3+5+7+9+11+13+15+17+19=100【例3】计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:2+4+6+8+10+12+14+16+18+20=100[例4]计算2+13+25+44+18+37+56+75解:用凑整法:2+13+25+44+18+37+56+75=270三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
(四年级)备课教员:第一讲速算与巧算一、教学目标: 1.通过观察、比较,领会速算与巧算的基本规律。
2.通过对数字的对比、增减等方式,体会数与数之间的联系,抽象思维能力得到提升。
3.通过即时的方法演练,领会复杂问题简单化的能力,掌握特殊数字之间的联系,增强应用数学的意识。
4.通过活动,学生的口头表达能力、初步的观察推理能力、探究问题的能力、发散思维和逻辑思维能力得到提升。
二、教学重点: 1.学会运用多种方式将复杂的算式简单化。
2.引导学生比较数字与数字之间的相互联系。
三、教学难点: 1.探索发现找出特殊的数字,从而将式子进行简单化。
2.寻找准基数。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:芭啦啦综合教育学校开展了向贫困地区的小学生捐书的活动。
我们一起来看看各年级捐书情况吧!【课件演示一、二年级捐书361本,三、四年级捐书275本,五年级捐书725本,六年级捐书639本。
】师:在大家刚了解了各年级捐书的基本情况的时候,卡尔就马上大声答道:“一年级到六年级一共捐书2000本书!”这时,全场顿时鸦雀无声。
同学们,你知道卡尔是怎么如此快速的计算出这个数字的吗?生:不知道。
师:那你们想掌握这个方法吗?生:想。
师:那好,今天我们就来学一学“速算与巧算”这一课,让我们也变的跟卡尔一样拥有一个智慧的大脑吧!【板书课题:速算与巧算】二、探索发现授课(40分)(一)例题一:(13分)计算:(1)1208+1361+3792+1639 (2)7480-1760-2240 (3)7043+2604-1043 (4)5420-1297+1580师:同学们,我们先看一下第一小题,认真观察这个算式,说一说你发现了什么有趣的或者是特别的东西。
生1:它们全都是加法。
生2:有的数字加起来可以变成1000。
师:嗯,说得很好,那你能说说是哪些数字加起来可以得到1000吗?生2:361加639等于1000。
(四年级)备课教员:×××第4讲:整数的速算与巧算一、教学目标: 1. 通过观察、比较,领会速算与巧算的基本规律。
2. 通过对数字的对比、拆分等方式,体会数与数之间的联系,发展抽象思维能力。
3.通过即时的方法演练,领会复杂问题简单化的能力,掌握5×2=10, 25×4=100, 125×8=1000等这些特殊数字之间的联系,增强应用数学的意识。
4. 通过活动,培养口头表达能力、初步的观察推理能力和探究问题的能力。
进一步培养发散思维和逻辑思维能力。
二、教学重点: 1. 学会运用多种方式将复杂的算式简单化。
2. 引导学生比较数字之间的相互联系。
3. 学会将乘数拆分成两个数相乘的积,从而进行速算。
三、教学难点: 1. 探索发现找出特殊的数字,从而将式子进行简单化。
2. 学会将乘数拆分成两个数相乘的积,从而进行速算。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)同学们,昨天米德和卡尔进行“计算王”比赛,米德只用了5分钟就将试题写完了,而卡尔却才算了一半的试题,卡尔不服气地将米德的试卷抢过,看了之后捧腹大笑:“哈哈……米德,你写这么快有什么用?都是错的!哈哈……”博士走过来,看了看米德的试卷说:“卡尔,你啊最近肯定没好好学习,米德全做对了!”“博士怎么可能,你看这里有些数题目中根本就没有,怎么可能是对的呢?”PPT出示下图(部分试题)师:同学们,你们知道这是为什么吗?生:……师:这就是我们今天要学习的知识。
【板书课题:整数的速算与巧算】二、探索发现授课(40分)(一)例题1:(13分)计算下面各题。
(1)11×5×2 (2)25×7×4 (3)25×8×4×125 师:同学们,刚才也讲了我们今天要学的是速算与巧算,那你们观察这三个算式,你们能从中发现什么有趣的现象吗?生:这三个算式都是乘法算式。
=40×75-1×75
=3000-75=2925。
4.个位是5的两个相同的两位数相乘的速算法
个位是5的两个相同的两位数相乘,积的末尾两位是25,25前面的数是这个两位数的首位数与首位数加1之积。
例如:
四、能力提升
下面,我们介绍一类特殊情况的乘法的速算方法。
请看下面的算式:
66×46,73×88,19×44。
这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。
这类算式有非常简便的速算方法。
例3, 88×64=?[小精灵儿童网站]
分析与解:由乘法分配律和结合律,得到
88×64
=(80+8)×(60+4)
=(80+8)×60+(80+8)×4
=80×60+8×60+80×4+8×4
=80×60+80×6+80×4+8×4
=80×(60+6+4)+8×4
=80×(60+10)+8×4
=8×(6+1)×100+8×4。
于是,我们得到下面的速算式:
由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。
例4,77×91=?
解:由例3的解法得到
练习题:用速算法计算下列各题:
1.(1) 68×101;(2) 74×201;
(3)762×999;(4) 34×98。
2.(1)536×5;(2)437×5;
(3)130×25;(4)68×75;
(5)555×375;(6)888×875。
3,372;(2)532;(3)912;(4)682:(5)1082;(6)3972。
4,(1)77×28;(2)66×55;
(3)33×19;(4)82×44;
(5)37×33;(6)46×99。