侧墙模板支架稳定性验算
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
模板支架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。
模板支架搭设高度为2.7米,搭设尺寸为:立杆的纵距b=1.00米,立杆的横距l=1.00米,立杆的步距h=1.20米。
图1 楼板支撑架立面简图图2 楼板支撑架荷载计算单元采用的钢管类型为48×3.5。
一、模板支撑方木的计算方木按照简支梁计算,方木的截面力学参数为本算例中,面板的截面惯性矩I和截面抵抗矩W分别为:W = 5.00×8.00×8.00/6 = 53.33cm3;I = 5.00×8.00×8.00×8.00/12 = 213.33cm4;方木楞计算简图1.荷载的计算(1)钢筋混凝土板自重(kN/m):q1 = 25.000×0.120×0.300=0.900kN/m(2)模板的自重线荷载(kN/m):q2 = 1.500×0.300=0.450kN/m(3)活荷载为施工荷载标准值与振倒混凝土时产生的荷载(kN):经计算得到,活荷载标准值P1 = (1.000+2.000)×1.000×0.300=0.900kN2.强度计算最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下:均布荷载q = 1.2×0.900+1.2×0.450=1.620kN/m集中荷载P = 1.4×0.900=1.260kN最大弯矩M = 1.260×1.00/4+1.62×1.00×1.00/8=0.518kN.m最大支座力N = 1.260/2+1.62×1.00/2=1.440kN截面应力=0.518×106/53333.3=9.70N/mm2方木的计算强度小于13.0N/mm2,满足要求!3.抗剪计算最大剪力的计算公式如下:Q = ql/2 + P/2截面抗剪强度必须满足:T = 3Q/2bh < [T]其中最大剪力Q=1.000×1.620/2+1.260/2=1.440kN截面抗剪强度计算值T=3×1440/(2×50×80)=0.540N/mm2截面抗剪强度设计值[T]=1.30N/mm2方木的抗剪强度计算满足要求!4.挠度计算最大弯矩考虑为静荷载与活荷载的计算值最不利分配的挠度和,计算公式如下:均布荷载q = 0.900+0.450=1.350kN/m集中荷载P = 0.900kN最大变形=5×1.350×1000.04/(384×9500.00×2133333.5)+900.0×1000.03/(48×9500.00×2133333.5)=1.793mm方木的最大挠度小于1000.0/250,满足要求!二、板底支撑钢管计算支撑钢管按照集中荷载作用下的三跨连续梁计算集中荷载P取纵向方木传递力,P=2.88kN支撑钢管计算简图支撑钢管弯矩图(kN.m)支撑钢管变形图(mm)支撑钢管剪力图(kN)经过连续梁的计算得到最大弯矩Mmax=0.969kN.m最大变形max=2.476mm最大支座力Qmax=10.473kN截面应力=0.97×106/5080.0=190.83N/mm2支撑钢管的计算强度小于205.0N/mm2,满足要求!支撑钢管的最大挠度小于1000.0/150与10mm,满足要求!三、扣件抗滑移的计算:纵向或横向水平杆与立杆连接时,扣件的抗滑承载力按照下式计算(规范5.2.5):R ≤ Rc其中Rc ——扣件抗滑承载力设计值,取8.0kN;R ——纵向或横向水平杆传给立杆的竖向作用力设计值;计算中R取最大支座反力,R=10.47kN单扣件抗滑承载力的设计计算不满足要求,可以考虑采用双扣件!当直角扣件的拧紧力矩达40--65N.m时,试验表明:单扣件在12kN的荷载下会滑动,其抗滑承载力可取8.0kN;双扣件在20kN的荷载下会滑动,其抗滑承载力可取12.0kN。
立杆稳定性及模板支架整体侧向力计算所处城市为湛江市,基本风压为W0=0.45kN/m2;风荷载高度变化系数为μz =1.0,风荷载体型系数为μs=0.355。
一、不组合风荷载时,立杆的稳定性计算1、立杆荷载根据《规程》,支架立杆的轴向力设计值N ut指每根立杆受到荷载单元传递来的最不利的荷载值。
其中包括上部模板传递下来的荷载及支架自重,显然,最底部立杆所受的轴压力最大。
上部模板所传竖向荷载包括以下部分:通过支撑梁的顶部扣件的滑移力(或可调托座传力)。
根据前面的计算,此值为F1 =11.13 kN ;除此之外,根据《规程》条文说明4.2.1条,支架自重可以按模板支架高度乘以0.15kN/m取值。
故支架自重部分荷载可取为F2=1.35×0.15×15.90=3.22kN;通过相邻的承受板的荷载的扣件传递的荷载,此值包括模板自重和钢筋混凝土自重:F3=1.35×(0.60/2+(1.00-0.80)/2)×0.50×(0.30+24.00×0.25)=1.701 kN;立杆受压荷载总设计值为:N =11.13+3.22+1.701=16.05 kN;2、立杆稳定性验算φ-- 轴心受压立杆的稳定系数;A -- 立杆的截面面积,按《规程》附录B采用;立杆净截面面积(cm2):A = 4.24;K H--高度调整系数,建筑物层高超过4m时,按《规程》5.3.4采用;计算长度l0按下式计算的结果取大值:l0 = h+2a=1.20+2×0.30=1.800m;l0 = kμh=1.185×1.272×1.200=1.809m;式中:h-支架立杆的步距,取1.2m;a --模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度,取0.3m;μ -- 模板支架等效计算长度系数,参照《扣件式规程》附表D-1,μ =1.272;k -- 计算长度附加系数,取值为:1.185 ;故l0取1.809m;λ = l0/i = 1808.784 / 15.9 = 114 ;查《规程》附录C得φ= 0.489;K H=1/[1+0.005×(15.90-4)] = 0.944;σ =1.05×N/(φAK H)=1.05×16.050×103/( 0.489×424.000×0.944)= 86.120N/mm2;立杆的受压强度计算值σ = 86.120 N/mm2小于立杆的抗压强度设计值f=205.000 N/mm2,满足要求。
脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。
而现行的国家标准中没有倾覆验算和稳定性验算内容。
根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。
最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。
[关键词]脚手架;倾覆;稳定性;验算结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。
《建筑结构可靠度设计统一标准》gb50068-2001第条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。
④结构或结构构件丧失稳定(如压屈等)”。
可见它们同属于承载能力极限状态,但应分别考虑。
《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。
《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。
《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。
施工现场的起重机械在起吊重物时也要做倾覆验算。
对于脚手架,由于浮搁在地基上,更应该做倾覆验算。
《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。
如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。
所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。
如果需要,还可进行正常使用极限状态计算。
1脚手架的倾覆验算通用的验算公式推导无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算:(1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。
模板支架验算内容
在进行模板支架的设计和施工时,为了保证其安全性和可靠性,需要进行一系列的验算。
以下是一些常见的验算内容:
强度验算
强度验算是保证模板支架在承载能力极限状态下不发
生破坏的重要步骤。
通过对支架的各个组成部分进行强度计算,可以确定其是否具有足够的承载能力。
刚度验算
刚度验算是保证模板支架在使用过程中不发生过大变
形的重要步骤。
通过对支架的各个组成部分进行刚度计算,可以确定其是否具有足够的刚度。
稳定性验算
稳定性验算是保证模板支架在使用过程中不发生失稳
现象的重要步骤。
通过对支架的各个组成部分进行稳定性计算,可以确定其是否具有足够的稳定性。
支撑杆件的长细比验算
支撑杆件的长细比是影响其承载能力和稳定性的重要
因素。
通过对支撑杆件进行长细比计算,可以确定其是否具有足够的承载能力和稳定性。
扣件抗滑移验算
扣件是连接支撑杆件和立杆的重要部件,其抗滑移能力
对模板支架的稳定性具有重要影响。
通过对扣件进行抗滑移验算,可以确定其是否具有足够的抗滑移能力。
支撑立杆地基承载力验算
支撑立杆地基承载力是保证模板支架在使用过程中不
发生下沉现象的重要因素。
通过对地基承载力进行验算,可以确定其是否具有足够的承载能力。
模板支架整体稳定性验算
除了对模板支架的各个组成部分进行验算外,还需要对整个支架进行稳定性验算。
通过对整个支架进行稳定性计算,可以确定其是否具有足够的整体稳定性。
xx高速公路xx连接线工程xx标段盖梁支架施工设计计算一、工程概况xx高速公路xx连接线工程主线桥墩柱结构设计为圆柱式、花瓶式。
其中花瓶墩盖梁68个,门式墩盖梁1个,采用门式满堂支架和少钢管支架两种支架形式;圆柱墩盖梁51个,采用双抱箍沉重支架现浇。
197号花瓶墩为过渡墩,墩身高8.192米;其盖梁结构尺寸:长24.5m×宽2m×高1.4~2.8m,盖梁上的背墙高70cm,宽82cm。
257号花瓶墩墩身高 11.47米,是全线花瓶墩盖梁最高的墩位,盖梁结构尺寸:长24.5m ×宽2m×高1.15~2.8m。
200号圆柱墩盖梁墩身高9.974米,墩柱直径1.5米,其盖梁尺寸为:长25.15m×宽2.2m×高1.8m。
二、计算依据(1)《公路桥涵设计通用规范》JTG D60-2004;(2)《公路桥涵钢结构及木结构设计规范》(JTJ 025—86);(3)《钢结构设计规范》GB50017-2003;(4)《公路桥涵施工技术规范》JTG/T F50-2011;(5)《路桥施工计算手册》人民交通出版社。
(6)各种材料的设计控制值采用《钢结构设计规范》GB50017-2003取值:A3钢材的允许拉、压应力[σ拉、压]=215MPa;A3钢材的允许剪切应力[τ]=125MPa;Mn16钢材的允许拉、压应力[σ拉、压]=310MPa;Mn16钢材的允许剪切应力[τ]=180MPa;变形控制按L/400进行控制。
三、盖梁支架计算3.1满堂支架计算(1)支架设计197号花瓶墩盖梁采用1019门式支架,门架立杆钢管为φ57×2.5mm,门架加强杆为φ26.8×2.2mm钢管,门架钢材均采用Q235,横向间距4×60+5×45+8×30+9×30+19+17×30+19+9×30+8×30+5×45+4×60cm,详见图3.1-1,纵向间距0.12cm,采用顶托与调节杆调节高度,顶托上放置[10型钢。
大体积混凝土模板和支架验算
大体积混凝土模板和支架的验算主要是为了保证工程的安全和质量。
为了防止大体积混凝土工程中模板和支架系统出现倒塌或倾覆现象,确保人员安全,避免重大经济损失,规定了大体积混凝土模板和支架系统在设计时需开展承载力、刚度和稳定性验算。
具体来说,承载力的计算集中荷载p = 1.4×0.600=0.840 kN;最大弯距M = Pl/4 + ql2/8 = 0.840×1.000 /4 + 1.284×1.0002/8 = 0.371 kN.m。
此外,一般在大体积混凝土施工中,模板主要采用钢模、木模或胶合板,支架主要采用钢支撑体系。
在进行验算的同时,还需要根据大体积混凝土采用的养护方法进行保温构造设计。
例如,采用钢模时对保温不利,应根据保温养护的需要再增加保温措施。
这样既可以保证混凝土的养护质量,也可以防止由于温度变化引起的混凝土裂缝。
一、编制依据1. 《建筑施工模板安全技术规范》(JGJ162-2008)2. 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)3. 《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)4. 工程施工图纸及设计文件5. 相关国家及行业标准二、编制原则1. 安全第一,预防为主,确保施工安全。
2. 符合国家及行业相关规范、标准。
3. 确保支架结构稳定、可靠。
4. 优化施工方案,提高施工效率。
三、验算内容1. 杆件强度验算2. 构件刚度验算3. 构件稳定性验算4. 构造节点验算5. 支架整体稳定性验算四、验算方法1. 杆件强度验算:根据杆件材料、截面尺寸、荷载等参数,按照《钢结构设计规范》(GB50017-2003)进行计算,确保杆件强度满足要求。
2. 构件刚度验算:根据构件材料、截面尺寸、长度等参数,按照《钢结构设计规范》进行计算,确保构件刚度满足要求。
3. 构件稳定性验算:根据构件材料、截面尺寸、长度、荷载等参数,按照《钢结构设计规范》进行计算,确保构件稳定性满足要求。
4. 构造节点验算:根据节点类型、材料、连接方式等参数,按照《钢结构设计规范》进行计算,确保节点强度和稳定性满足要求。
5. 支架整体稳定性验算:根据支架结构形式、材料、尺寸、荷载等参数,按照《钢结构设计规范》进行计算,确保支架整体稳定性满足要求。
五、验算步骤1. 收集工程资料,包括施工图纸、设计文件、材料参数等。
2. 分析支架结构,确定验算内容和方法。
3. 根据验算内容,进行计算,得出计算结果。
4. 对计算结果进行分析,判断支架结构是否满足要求。
5. 如不满足要求,优化设计,重新计算。
六、验算报告1. 验算报告应包括验算依据、验算内容、验算方法、计算过程、计算结果、分析结论等。
2. 验算报告应由具有相应资质的工程师签字,并加盖单位公章。
3. 验算报告应作为施工组织设计、施工方案的重要组成部分,指导施工。
七、注意事项1. 验算过程中,应严格按照规范、标准进行计算。
脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。
而现行的国家标准中没有倾覆验算和稳定性验算内容。
根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。
最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。
[关键词]脚手架;倾覆;稳定性;验算结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。
《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。
④结构或结构构件丧失稳定(如压屈等)”。
可见它们同属于承载能力极限状态,但应分别考虑。
《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。
《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。
《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。
施工现场的起重机械在起吊重物时也要做倾覆验算。
对于脚手架,由于浮搁在地基上,更应该做倾覆验算。
《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。
如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。
所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。
如果需要,还可进行正常使用极限状态计算。
1脚手架的倾覆验算1.1通用的验算公式推导无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算:(1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。
侧墙模板支架稳定性验算:(1)最大侧压力计算F=0.22γc tβ1β2ν1/2F=γcH按上二式计算,并取二式中的较小值。
F=0.22γc tβ1β2ν1/2=0.22×25×(200/28+15)×1.2×1.15×21/2=0.22×25×4.65×1.2×1.15×1.414=49.91KN/m2砼侧压力的计算高度高度取5.6m(取最大值)F=γcH=25×5.6=140 KN/m2按取最小值,故最大侧压力为49.91KN/m2(2)有效压头高度h=F/γc=49.91/25=1.996m(3)荷载组合1.2×(4.991+0.4)+1.4(0.3+0.4)=7.45t/m2(4)支架布置取柱网0.6m×0.6m(纵向×横向),横杆步距为0.8m,则每根立杆受力:0.6m ×0.6m/根×7.45t/m2×2=5.36t/根=107.41N/mm2。
(两侧墙同时对称浇筑)(5)立杆的稳定性验算N/ΨA≤f Ψ=N/Af=53600/(391×205)=0.668按《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130—2001附录C查得长细比λ=89钢管的回转半径i=1/4√(D2+d2)=16mmΨ为轴心受压构件稳定系数由λ=L0 /i可得立杆的允许长度即横杆的步距L=λi=89×16=1424mm所以横杆的步距选择为0.8m满足要求。
(6)模板计算侧墙面板为受弯结构,需要验算其抗弯强度和刚度。
强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力,取单位宽度0.6m的面板作为计算单元。
面板的截面惯性矩I和截面抵抗矩W分别为:W=60×1.82/6=32.4cm3;I=60×1.83/12=29.16cm4;模板面板的按照三跨连续梁计算(@200mm)。
1、材料选用4.1竹笆板模板采用2440×1220×18木胶合板,100×50木枋,100×100木枋。
4.2支架4.2.1支架选型支架采用钢管支架,外径为48mm,壁厚为3.5mm。
扣件选用万能扣件。
4.2.2支架要求1、钢管采用力学性能适中的Q235A(3号)钢,其力学性能应符合国家现行标准《炭素结构钢》中Q235A级钢的规定。
每批钢材进场时,应有材质检验合格证。
2、钢管选用焊接钢管。
钢管严禁打孔,立杆、横杆和斜杆的最大长度为6m。
3、扣件材质应符合现行国家标准《钢管脚手架扣件》GB15831规定。
铸件不得有裂纹、气孔,不宜有缩松、砂眼、浇冒口残余披缝,毛刺、氧化皮等要求清除干净。
4、扣件与钢管的贴合面必须严格整形,应保证与钢管扣紧时接触良好,当扣件夹紧钢管时,开口处的最小距离应不小于5mm。
5、扣件活动部位应能灵活转动,旋转扣件的两旋转面间隙应小于1mm。
6、扣件表面应进行防锈处理。
7、钢管及扣件报废标准:钢管出现弯曲、压扁、有裂纹或严重锈蚀等情况;扣件脆裂、变形、滑扣等应报废和禁止使用。
脚手架验算采用竹笆板作为脚手架承重面,施工荷载通过横向水平杆通过扣件传递给立杆,纵向水平杆按受力均布荷载的三跨连续梁计算,应该验算弯曲正应力、挠度;横杆按照受力集中荷载的简支梁计算,验算其正应力及挠度;立杆受力的稳定性等。
根据规范及技术方案要求,竹笆板的平均荷载为3KN/m 2.5.1.5 支架稳定性验算支撑系统整体结构分析所得的支撑立杆最大的内力设计值,可按照一般轴心受压构件进行验算。
支架采用Φ48×3.0焊接钢管,鉴于市场上Φ48×3.0钢管的壁厚基本都在2.7mm ,为确保计算的准确性钢管的相关力学特性按照壁厚2.7mm 的钢管取值。
由于本工程模板支撑系统主要应用基坑内部,故在计算时可不考虑风荷载对系统的影响,及按下式验算:σ=f A N ≤ϕΦ48×2.7钢管:A=(482-42.62)×π÷4=3.84cm2, i=226.4248+/4=1.6cm 。
脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。
而现行的国家标准中没有倾覆验算和稳定性验算内容。
根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。
最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。
[关键词]脚手架;倾覆;稳定性;验算结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。
《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。
④结构或结构构件丧失稳定(如压屈等)”。
可见它们同属于承载能力极限状态,但应分别考虑。
《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。
《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。
《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。
施工现场的起重机械在起吊重物时也要做倾覆验算。
对于脚手架,由于浮搁在地基上,更应该做倾覆验算。
《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。
如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。
所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。
如果需要,还可进行正常使用极限状态计算。
1脚手架的倾覆验算1.1通用的验算公式推导无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。
现浇门式墩盖梁碗扣架稳定性的验算1、工程概况龙华河 1 号大桥是五台至盂县高速公路上跨越龙华河的一座大桥,位于盂县下社镇碾子坪村西约100m处,本桥中心桩号为K36+700,右前夹角为90°。
龙华河1 号大桥施工图设计方案为上部采用20 X 25米预应力混凝土连续箱梁,下部结构桥墩采用门式墩,基础采用灌注桩基础;承台采用肋板台,基础采用灌注桩基础。
2 施工方案1 、参考资料钢结构设计手册路桥施工计算手册起重机设计规范公路桥梁施工技术规范五台至盂县龙华河 1 号大桥设计图纸地基处理在支架架立前,在支架搭设范围内,首先进行基础处理,处理方案为对原地面开挖换填,根据现场情况,开挖表层70cm虚土,然后抛填50cm卵石,砂砾填筑按照路基96区填筑要求实施,用人工配合推土机平整场地后用20T以上压路机压实,如现场发现局部软弱地段,则重新开挖回填处理,砂砾填筑完成后,在地基表面浇筑20cmC2(砼,浇筑宽度为支架搭设宽度两边加1m在支架地基外侧设置排水沟,防止地基积水软化造成支架下沉。
满堂支架:采用满布搭设的碗扣式支架,采用10 cmX 15 cm方木做地梁,横向HG-90,通长布置;支架立杆间距普通段按X布置;门洞旁采用X双支,横杆采用竖向步距采用1.2m,立杆主要采用LG-300,结合梁体距地面的实际高度,可在顶托下加顶管(DG-210及DG-90进行调整,托架和底座的调节长度必须满足施工需要,支架的搭设宽度超出盖梁四周各。
支架安装就位后进行横、纵梁安装,横梁采用15 X 15 cm方木,横向间距同立杆间距;纵梁采用10X10 cm方木,置于纵梁之上,纵向间距30 cm。
盖梁底模采用1cm厚钢板加工、侧模采用定型模板。
为保证支架的稳定性,必须按安全规范纵横向每六排立杆设一道剪刀撑。
具体见箱梁支架横断面示意图:支架拼装注意事项:a.支撑架立杆接缝应在同一水平面,顶杆仅在顶端使用,以便能插入托座。
现浇门式墩盖梁碗扣架稳定性的验算1、工程概况龙华河1号大桥是五台至盂县高速公路上跨越龙华河的一座大桥,位于盂县下社镇碾子坪村西约100m处,本桥中心桩号为K36+700,右前夹角为90°。
龙华河1号大桥施工图设计方案为上部采用20×25米预应力混凝土连续箱梁,下部结构桥墩采用门式墩,基础采用灌注桩基础;承台采用肋板台,基础采用灌注桩基础。
2 施工方案1、参考资料钢结构设计手册路桥施工计算手册起重机设计规范公路桥梁施工技术规范五台至盂县龙华河1号大桥设计图纸地基处理在支架架立前,在支架搭设范围内,首先进行基础处理,处理方案为对原地面开挖换填,根据现场情况,开挖表层70cm虚土,然后抛填50cm卵石,砂砾填筑按照路基96区填筑要求实施,用人工配合推土机平整场地后用20T以上压路机压实,如现场发现局部软弱地段,则重新开挖回填处理,砂砾填筑完成后,在地基表面浇筑20cmC20砼,浇筑宽度为支架搭设宽度两边加1m,在支架地基外侧设置排水沟,防止地基积水软化造成支架下沉。
满堂支架:采用满布搭设的碗扣式支架,采用10㎝×15㎝方木做地梁,横向通长布置;支架立杆间距普通段按×布置;门洞旁采用×双支,横杆采用HG-90,竖向步距采用1.2m,立杆主要采用LG-300,结合梁体距地面的实际高度,可在顶托下加顶管(DG-210及DG-90)进行调整,托架和底座的调节长度必须满足施工需要,支架的搭设宽度超出盖梁四周各。
支架安装就位后进行横、纵梁安装,横梁采用15×15㎝方木,横向间距同立杆间距;纵梁采用10×10㎝方木,置于纵梁之上,纵向间距30㎝。
盖梁底模采用1cm厚钢板加工、侧模采用定型模板。
为保证支架的稳定性,必须按安全规范纵横向每六排立杆设一道剪刀撑。
具体见箱梁支架横断面示意图:支架拼装注意事项:a.支撑架立杆接缝应在同一水平面,顶杆仅在顶端使用,以便能插入托座。
模板支架验算应考虑的因素在进行模板支架验算时,需要考虑的因素有很多。
模板支架是建筑施工中常用的辅助工具,用于支撑和固定混凝土浇铸过程中的模板,而模板支架验算则是为了保证支架的稳定性和安全性。
在进行模板支架验算时,需要考虑以下因素:1. 荷载因素:模板支架在施工过程中需要承受来自混凝土、工人、设备等方面的荷载。
在进行验算时,需要考虑这些荷载的大小、分布和作用方式,以确保支架能够承受这些荷载而不会发生变形或破坏。
2. 材料强度:模板支架的材料通常是钢材或铝合金,其强度和刚度是影响支架安全性的重要因素。
在验算时,需要考虑支架材料的强度参数,如抗压强度、抗拉强度等,以保证支架在承受荷载时不会发生材料的破坏。
3. 结构稳定性:模板支架的结构稳定性是保证支架安全的关键。
在验算时,需要考虑支架结构的稳定性参数,如稳定性系数、位移限制等,以保证支架在使用过程中不会发生倾覆或失稳的情况。
4. 环境因素:施工现场的环境因素,如风载、地震、温度等,也会对模板支架的验算产生影响。
在验算时,需要考虑这些环境因素对支架的影响,并做出相应的安全措施。
从简到繁地探讨模板支架验算应考虑的因素,可以更好地帮助施工相关人员深入理解支架验算的重要性和复杂性。
模板支架验算是保证施工安全和质量的重要环节,在施工中必不可少。
只有充分考虑各种因素,并进行严谨的验算,才能保证模板支架在施工中的安全可靠。
总结回顾一下,模板支架验算的因素包括荷载因素、材料强度、结构稳定性和环境因素等。
这些因素相互作用,共同影响着支架的安全性和稳定性。
在进行支架验算时,需要对这些因素进行综合考虑,确保支架能够满足施工的要求并保证施工安全。
个人观点上,我认为模板支架验算是一项非常重要的工作,它直接关系到施工现场的安全和质量。
只有通过严谨的验算和充分考虑各种因素,才能保证模板支架的稳定性和安全性,从而保障整个施工工程的顺利进行。
在施工过程中,需要高度重视模板支架验算工作,确保支架的安全可靠性。
地铁车站结构支架、模板受力分析及施工方法摘要:结合石家庄地铁**站土建工程施工实例,对住建部规定的危险性较大工程之一的高支模设计计算及应用进行了详细介绍,重点说明了设计计算的主要内容及施工注意事项,对类似工程具有普遍指导意义。
关键词:地铁车站危险性较大工程高支模受力分析施工方法1工程概况**站车站为地下两层三跨岛式站台车站,中心里程为DK7+583.000,车站全长223.62m,结构标准段总宽度21.1m,基坑深约13.34m。
该车站为二层明挖现浇框架结构,车站中板厚度为400mm,侧墙厚度为700mm,顶板厚度为800mm 和900mm,负一层层高4950mm,负二层层高6190mm。
2 侧墙、顶板设计计算在地铁站混凝土施工过程中,大量使用高支模现浇施工方法,为保证施工质量与安全,模板和脚手架计算显得更为重要,需要受力验算的部位有:顶板、中板、梁、柱、侧墙等,验算主要包括强度、刚度、稳定性三个方面,下面以侧墙、顶板、立柱的受力验算为例,计算模板和脚手架的布置。
根据风道结构形式、施工荷载、施工质量等方面的因素,结合北京地铁车站主体结构工程施工经验,侧墙模板、顶板底模都采用2440×1220×15mm木模板。
背楞采用100×100mm方木,侧墙次楞间距200mm,主楞间距600mm;顶板次楞间距300mm,主楞间距600mm。
立杆间距:600×900mm(横×纵),水平杆步距:1200mm。
模板支撑体系采用扣件式脚手架钢管。
2.1侧墙模板支架验算2.1.1荷载计算新浇筑的混凝土作用于模板的最大侧压力计算C40混凝土自重(γc)取25 kN/m3,采用导管卸料,浇注速度v=2m/h,浇注入模温度T=25℃;β1=1.2;β2=1.15;t0=200/(T+15);墙高H=6.29m;F1=0.22γ c t0β1β2v1/2 =0.22×25×200/(25+15)×1.2×1.15×21/2=44.7KN/m2F2=γ c H=25×6.29=157.25KN/m2取较小值F1=44.7KN/m2作为计算值。
补充方案
以新通波塘桥为例:
立柱高度3.6m,盖梁宽1.5m,高0.9m,长8.213m,根据搭设横距为0.5 米,纵距为0.5 米,则盖梁横向立杆需4 根,纵向需17根,共需立杆68 根,进行立杆受力计算并验算支架稳定性:
一、计算N 值
1 、施工荷载N
1 )盖梁重量为砼的重量加上钢筋的重量等于(1.5米X 0.9米X
8.213 米X 2.5 X 103KG/米'+1917KG X 10=296.4KN
2 )模板为定型钢模板,每套重2t ,铺设工字钢及槽钢合计重1t 合计3t 即30KN
3)施工荷载合计总重296.4+30=326.4KN,支架共计立杆68根,
则每根立杆的承重N=326.4KN/68=4.8KN
二、计算A
经查表得外径为48mm壁厚为3.5mm的脚手架钢管的截面积为A
为 4.89cm2,合489mm
三、稳定性计算
根据公式(T = N/ A=4800/489=9.8N/mnm小于强度设计值
f=205N/mm,通过以上稳定性计算,可以确定脚手架满足使用及安全要求。
L 油1 兮飼t
盖梁承重脚手架俯视图。
*创作编号:GB8878185555334563BT9125XW*创作者:凤呜大王*脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。
而现行的国家标准中没有倾覆验算和稳定性验算内容。
根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。
最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。
[关键词]脚手架;倾覆;稳定性;验算结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。
《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。
④结构或结构构件丧失稳定(如压屈等)”。
可见它们同属于承载能力极限状态,但应分别考虑。
《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。
《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。
《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。
施工现场的起重机械在起吊重物时也要做倾覆验算。
对于脚手架,由于浮搁在地基上,更应该做倾覆验算。
《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。
如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。
所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。
如果需要,还可进行正常使用极限状态计算。
支架受力验算支架体系受力验算主要包括以下几个方面:1)底模的强度及刚度2)底模支撑方木的强度及刚度3)支架立杆承载力、横杆强度及刚度4)砼垫层、地基承载力、软弱下卧层及地基沉降支架体系主要承受竖向压力及侧向压力,竖向受力包括梁体自重,支架、模板重量,施工人员、料具运输、堆放荷载,倾倒混凝土、振捣混凝土产生冲击荷载;侧模承受侧压力及倾倒混凝土、振捣混凝土水平荷载。
荷载组合:(1)箱梁梁体自重:qm=16.2KN/m2(2)模板自重:q模=1.0KN/m2(3)施工荷载:计算立杆,均布荷载q施=1.0 kN/m2(4)倾倒混凝土冲击荷载:侧模q冲=2.0kN/m2(5)振捣荷载:底模q振=2.0kN/m2侧模q冲=4.0kN/m21、碗扣支架设计验算支架采用碗扣支架为Φ48×3.0钢管,A=4.24cm2,Ix=10.8 cm4,Wx=4.49 cm3,回旋半径rx=1.595cm。
按两端铰接受压构件计算变厚断面荷载:q={1.2( qm变+ q模)+1.4(q施+q振)} ×0.9×0.9={1.2×(16.2+1)+1.4×(1+2)}×0.9×0.9=20.12KN满堂式碗扣支架按7米高计,其自重为:g=7×0.23=1.61KN单根立杆所承受的最大竖向力为:N=20.12+1.61=21.73kN①、立杆稳定性:横杆步距为1.2m,故立杆计算长度取1.2m。
长细比λ=L/i=1200/15.95=75<[λ]=150,查表得轴心受压杆件稳定系数ф=0.714,则:σ=N/φA=21.73×103/0.714×424=71.78<[σ]=215MPa满足要求。
②、强度验算:σ=N/A=21.73×103/424=51.25MPa≤ [σ]=215 MPa 满足要求。
一、顶模验算1、模板计算(忽略模板自重)模板采用mm 15厚的竹胶板,直接搁置在cm 107⨯的横向方木上,净距cm 20,计算模板跨径按净距计算;涵洞顶板最厚处的厚度m d 5.0=,模板跨径m l 2.0=,取模板的宽度m b 0.1=,钢筋混凝土涵洞顶板单位容重3m /26kN =γ,模板每米宽、每米长上的荷载;1)、恒荷载钢筋混凝土涵洞顶板: 2/13265.0m kN d =⨯=⨯γ2)、活荷载①、施工人员:2/0.3m kN②、倾倒混凝土时产生的冲击荷载和振捣混凝土时产生的荷载均按2KN/m 2考虑。
3)、应力验算模板上每米长上的荷载组合为:()[]m kN q /4.2512234.1132.1=⨯⨯+⨯+⨯= mm 15厚竹胶板的截面参数和材料力学性能指标:34221075.361510006mm bh W ⨯=⨯== 4533mm 108125.21215100012⨯=⨯==bh I m kN ql M .084.082.0836.168max 22=⨯==[]Mpa Mpa W M 800245.21075.310084.0max max 46=∠=⨯⨯==δδ 4)、扰度验算 mm EI ql f 314.0108125.21063842004.25538455344=⨯⨯⨯⨯⨯⨯== []mm f 5.04002000== ;[]0f f ∠ 合格。
2、横向方木验算横向方木搁置在间距为cm 60的纵向方木上,计算跨径为cm 601=l ,横向方木的规格为cm 107⨯的落叶松、间距为cm 30,1米范围内有3根横向方木支撑竹胶板; 单根横向方木上的均布荷载为:m kN q q /467.84.2531311=⨯== cm 107⨯方木的截面参数和材料力学性能指标:81667670100622=⨯==bh W 285833312701001233=⨯==bh I 381.086.0467.88max 2211=⨯==l q M []pa 5.80665.48166710381.0max 6M Mpa W W =∠=⨯==δδ mm EI l q f 50.028583331010384600467.85384534411=⨯⨯⨯⨯⨯== []mm l f 5.1400/01==, []0f f ∠ 合格。
13支撑模板架搭设和验算方案为确保模板支撑体系安全可靠,对下列位置的模板架搭设编制专项施工方案并对主要杆件进行受力验算。
13.1搭设方案本工程的架子采用满堂脚手架。
钢管采用直径d=48mm,壁厚δ=3.5mm 的钢管,有严重锈蚀、弯曲、压扁或有裂缝的钢管严禁使用,选用的扣件要有出厂合格证,禁止使用有脆裂、变形、滑丝的扣件,扣件表面应进行防锈处理,扣件活动部位应能灵活旋转,当扣件夹紧钢管时,开口处的最小距离不小于5mm。
13。
2脚手架的结构计算满堂脚手架将直接搭设楼板上。
满堂架主要杆件有立杆、横杆、扫地杆和剪刀撑。
在满堂脚手架的搭设过程中,满堂脚手架的钢管立杆不得直接立于楼板面上,必须在立杆下加设100×50的木方作为垫木,支撑楼板的钢管立杆顶部采用可调顶座.下图所示,梁底模木方采用50×100的木方,间距250mm,在所有的梁底设二道支撑横杆,与立杆上下两扣件扣牢,使之形成复扣。
板底采用木方规格同梁,木方长度顺着结构宽度方向摆放,间距为400,并长出结构侧边300~500mm,以便侧模加斜撑用,木方上满铺模板。
13。
2.1 标准层模板支撑计算依据:《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001).《施工技术》2002.3。
《扣件式钢管模板高支撑架设计和使用安全》(杜荣军)。
计算参数:模板支架搭设高度为 3.1m,立杆的纵距 b=1。
30m,立杆的横距l=1.30m,立杆的步距 h=1。
50m。
面板厚度18mm,剪切强度1.4N/mm2,抗弯强度15.0N/mm2,弹性模量6000。
0N/mm4.木方50×80mm,间距300mm,剪切强度1.6N/mm2,抗弯强度13.0N/mm2,弹性模量9500。
0N/mm4。
梁顶托采用10号工字钢。
模板自重0。
35kN/m2,混凝土钢筋自重25。
00kN/m3,施工活荷载3。
00kN/m2。
扣件计算折减系数取1。
侧墙模板支架稳定性验算:
(1)最大侧压力计算
F=0.22γct0β1β2ν1/2
F=γcH
按上二式计算,并取二式中的较小值。
F=0.22γct0β1β2ν1/2=0.22×25×(200/28+15)×1.2×1.15×21/2=0.22×25×4.65×1.2×1.15×1.414=49.91KN/m2
砼侧压力的计算高度高度取5.6m(取最大值)
F=γcH=25×5.6=140 KN/m2
按取最小值,故最大侧压力为49.91KN/m2
(2)有效压头高度
h=F/γc=49.91/25=1.996m
(3)荷载组合
1.2×(4.991+0.4)+1.4(0.3+0.4)=7.45t/m2
(4)支架布置
取柱网0.6m×0.6m(纵向×横向),横杆步距为0.8m,则每根立杆受力:0.6m×0.6m/根×7.45t/m2×2=5.36t/根=107.41N/mm2。
(两侧墙同时对称浇筑)
(5)立杆的稳定性验算
N/ΨA≤f Ψ=N/Af=53600/(391×205)=0.668
按《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130—2001附录C查得长细比λ=89
钢管的回转半径i=1/4√(D2+d2)=16mm
Ψ为轴心受压构件稳定系数
由λ=L0 /i可得立杆的允许长度即横杆的步距L0 =λi=89×16=1424mm
所以横杆的步距选择为0.8m满足要求。
(6)模板计算
侧墙面板为受弯结构,需要验算其抗弯强度和刚度。
强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力,取单位宽度0.6m的面板作为计算单元。
面板的截面惯性矩I和截面抵抗矩W分别为:
W=60×1.82/6=32.4cm3;
I=60×1.83/12=29.16cm4;
模板面板的按照三跨连续梁计算(@200mm)。
1)强度计算
最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下:
M=0.1×7.45×0.22=0.0298t.m;
面板最大应力计算值σ=29800/32400=0.920N/mm2;
面板的抗弯强度设计值[f]=13N/mm2;
面板的最大应力计算值为0.920N/mm2小于面板的抗弯强度设计值13N/mm2,满足要求。
2)挠度计算
挠度计算公式为
1 / 2
面板最大挠度计算值
ω=0.677×4.991×2004/(100×9500×291600)=0.020mm;
面板最大允许挠度[ω]200/250=0.8mm;
面板的最大挠度计算值0.020mm小于面板的最大允许挠度0.8mm,满足要求。
(7)小方木计算(模板下拟设置50mm×100mm方木)
柱网0.6m×0.6m,即50mm×100mm方木(垂直车站纵轴线布置)间距选择为200mm,方木承受的线荷载为:q小方木=7.45×0.2=1.49t/m。
M小方木max=1/8ql2=1.49×0.62/8=0.067t·m
W小方木=bh2/6=0.05×0.12/6=0.83×10-4m3
σ小方木max= M小方木max/W=0.067/(0.83×10-4)=807.23t/ m2 =8.07mm2<[σ]=17N/mm2(东北落叶松)
I小方木=bh3/12=50×1003/12=4.17×106mm4
E小方木=10000N/mm2
f小方木=5qL4/384EI=5×14900×10-3×6004/(384×10000×4.17×106)=0.60mm<1/400L=1.5mm 满足要求。
(8)大方木计算(支架以上至50mm×100mm方木以下拟设置100mm×100mm方木)
柱网0.6m×0.6m,即100mm×100mm方木(平行车站纵轴线布置)间距选择为600mm,方木承受的线荷载为:q大方木=7.45×0.6=4.47t/m。
M大方木max=1/8ql2=4.47×0.62/8=0.201t·m
W大方木=bh2/6=0.1×0.12/6=1.67×10-4m3
σ大方木max= M大方木max/W大方木=0.201/1.67×10-4=1203.59t/m2 =12.04N/mm2<[σ]=17N/mm2(东北落叶松)
I大方木= bh3/12=100×1003/12=8.33×106mm4
E大方木=10000N/mm2
f大方木=5qL4/384EI=5×44700×10-3×6004/(384×10000×8.33×106)=0.91mm<1/400L=1.5mm 满足要求。
2 / 2。