2015年四川高考数学试卷试卷及答案(理科)word版
- 格式:doc
- 大小:1.22 MB
- 文档页数:7
2015年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则( )(A )A B = (B )A B =∅ (C )A B (D )B A【答案】D【解析】A={1,2,2}B={2,3}B A B A B A ⇒⊂≠⇒⊂≠,且,故选D .(2)【2015年重庆,理2】在等差数列{}n a 中,若24a =,42a =,则6a =( )(A )1- (B )0 (C )1 (D )6 【答案】B【解析】利用264+2a a a =可求得60a =,故选B . (3)【2015年重庆,理3】重庆市2013年各月的平均气温(C ︒)数据的茎叶图如右,则这组数据的中位数是( ) (A )19(B )20 (C )21.5 (D )23【答案】B 【解析】这组数据是8,9,12,15,18,20,20,23,23,28,31,32. 中位数是20+20202=,故选B .(4)【2015年重庆,理4】“1x >”是“()12log 20x +<”的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B【解析】12log (2)01x x +<⇒>-,故选B .(5)【2015年重庆,理5】某几何体的三视图如图所示,则该几何体的体积为( )(A )13π+ (B )23π+ (C )123π+ (D )223π+【答案】A【解析】该立体图形是由一个三棱锥和一个半圆柱拼接而成的,其体积为两部分体积之和:211(1)212113223ππ⨯⨯⎛⎫⨯⨯⨯⨯+=+ ⎪⎝⎭,故选A . (6)【2015年重庆,理6】若非零向量,a b 满足22||||3a b =,且()()32a b a b -⊥+,则a 与b 的夹角为( ) (A )4π (B )2π (C )34π (D )π 【答案】A【解析】()(32)()(32)0a b a b a b a b -⊥+⇒-+=,结合22||||3a b =,可得2||3a b b =,2cos ,,,[0,],24||||a b a b a b a b a b ππ∴<>==<>∈⇒<>=,故选A .(7)【2015年重庆,理7】执行如图所示的程序框图,若输入k 的值为8,则判断框图可填入的条件是( )(A )34s ≤ (B )56s ≤ (C )1112s ≤ (D )1524s ≤【答案】C【解析】10,022s k k s ==⇒==是,是,114+24k s ⇒==,是,1116++246k s ⇒==,是11118+++2468k s ⇒==,否,判断框内应该填11111++=24612s ≤,故选C .(8)【2015年重庆,理8】已知直线l :()10x ay a R +-=∈是圆C :224210x y x y +--+=的对称轴,过点()4,A a -作圆C 的一条切线,切点为B ,则||AB =( )(A )2 (B) (C )6 (D)【答案】C【解析】()()22:-2-14C x y +=,其圆心坐标为2,1C (),半径2r =.由题意可知直线:10()l x ay a R +-=∈是圆的直径所在直线,它过圆心2,1C (),所以21101(4,1)a a A AC +⨯-=⇒=-⇒--⇒=知,6AB ==,故选C .(9)【2015年重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα--=( )(A )1 (B )2 (C )3 (D )4 【答案】C【解析】2sin5tan 2tansin cos 5cos5ππαααπ=⇒=⊗,3cos()cos[()]sin()sin cos cos sin cos 1052555sin()sin()sin()sin cos cos sin cos55555ππππππαααααπππππααααα-+-++∴===---- 将⊗式带入上式可得:3cos()103sin()5παπα-=-,故选C . (10)【2015年重庆,理10】设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线交于点D .若D 到直线BC 的距离小于a )(A )()()1,00,1- (B )()(),11,-∞-+∞ (C )()()0,2 (D )((),2,-∞+∞【答案】A【解析】由题意可得:22(,0),(,0),(,),b b A a F c B c AF c a BF a a ∴=-=.在Rt ABD ∆中,由射影定理有:22222()()()b BF c a c a a BF AF DF DF AF c a a +-=⋅⇒===-.即点D 到直线BC 的距离为22()()c a c a a +-,由题意得:22()()c a c a a +-<01ba a c a+⇒<<.而双曲线的渐近线斜率(1,0)(0,1)bk k a =±∴∈-,故选A .二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2015年重庆,理11】设复数()i ,a b a b R +∈()()i i a b a b +-= . 【答案】3【解析】复数i(,)a b a b R +∈223a b =+=.22(i)(i)3a b a b a b ∴+-=+=. (12)【2015年重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是 (用数字作答).【答案】52【解析】71535215517()()1582222r r rrr r r r T C x C x r x --+=⋅=∴-=∴=.故35()2x x +的展开式中8x 的系数为2521522C =. (13)【2015年重庆,理13】在ABC ∆中,0120B =,2AB =,P ABC -的角平分线3AD =,则AC = . 【答案】6【解析】由正弦定理可得:2sin 451530sin sin 2AD AB ADB ADB BAD BAC B ADB =⇒∠=⇒∠=⇒∠=⇒∠=∠, 30C ∴∠=,再由正弦定理可得:6sin sin AC ABAC B C=⇒=.考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. (14)【2015年重庆,理14】如图,圆O 的弦,AB CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = . 【答案】2【解析】由切割线定理可得:21296,3PA PC PD PD CD CE ED =⋅⇒=⇒=⇒==.再由相交弦定理可得:2AE BE CE DE BE ⋅=⋅⇒=.(15)【2015年重庆,理15】已知直线l 的参数方程为11x ty t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为235cos24(0,)44ππρθρθ=><<.则直线l 与曲线C 的交点的极坐标为 .【答案】()2,π【解析】直线l 的直角坐标方程为2y x =+.222222cos 24(cos sin )4 4.x y ρθρθθ=∴-=∴-=由 222240y x x x y y =+=-⎧⎧⇒⎨⎨-==⎩⎩222x y ρ∴=+=.由35sin 0=44y ππρθθθπ==<<⇒及. 故直线l 与曲线C 的交点的极坐标为2,π(). (16)【2015年重庆,理16】若函数()1f x x x a =++-的最小值为5,则实数a = __.【答案】4或-6【解析】分情况讨论:(1)当1a ≤-时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,所以|1|56a a +=⇒=-;(2)当1a >时,利用零点分段讨论法分段讨论并结合函数图像可知:()f x 在a 处取得最小值5,|1|54a a +=⇒=,综上,可得实数a =6-或4.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程. (17)【2015年重庆,理17】(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同, 从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(Ⅰ)令A 表示事件“三种粽子各取到一个”,则()11123531014C C C P A C ==. (Ⅱ)X 所有可能取值为0,1,2,且()383107015C P X C ===,()12283107115C C P X C ===, ()21283101215C C P X C ===.故分布列见表:且X 0 1 2 P715715 115()77130121515155E X =⨯+⨯+⨯=(个). (18)【2015年重庆,理18】(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设()2sin sin 3cos 2f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求()f x 的最小正周期和最大值;(Ⅱ)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.解:(Ⅰ)由题()()213cos sin 3cos sin 21cos22f x x x x x x =-=-+=3sin 23x π⎛⎫--⎪⎝⎭,故()f x 的最小正周期 T π=,最大值为23-. (Ⅱ)由2,63x ππ⎡⎤∈⎢⎥⎣⎦知023x ππ≤-≤,从而当0232x ππ≤-≤即5612x ππ≤≤时,()f x 单调递增;当223x πππ≤-≤即52123x ππ≤≤时,()f x 单调递减.因此,()f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减.(19)【2015年重庆,理19】(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)如图,三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,2ACB π∠=,,D E 分别为线段,AB BC 上的点,且2CD DE ==,22CE EB ==.(Ⅰ)证明:DE ⊥平面PCD ;(Ⅱ)求二面角A PD C --的余弦值.解:(Ⅰ)因PC ⊥平面ABC ,DE ⊂平面ABC ,故PC DE ⊥.又2CD DE ==,2CE =,故CDE ∆为等腰直角三角形,且CD DE ⊥.因PC CD C =,PC ⊂平面PCD ,CD ⊂平面PCD , 所以DE ⊥平面PCD .(Ⅱ)如图,取CE 的中点F ,连DF .由(Ⅰ)知CDE ∆为等腰直角三角形,故DF CE ⊥,1DF CF FE ===.又2ACB π∠=,故//DF AC ,因此23DF FB AC CB ==,从而32AC =.以C 为原点,,,CA CB CP 的方向分别为,,x y z 轴的正方向建立空间直角坐标系C xyz -.则()0,0,0C ,3,0,02A ⎛⎫ ⎪⎝⎭,()0,2,0E ,()1,1,0D ,()0,0,3P ,故1,1,02DA ⎛⎫=- ⎪⎝⎭,()1,1,3DP =--,()1,1,0DE =-.设()1111,,n x y z =为平面APD 的法向量,则110n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩即111112030x y x y z -=⎧⎨--+=⎩,取11y =得()12,1,1n =.由(Ⅰ)知DE ⊥平面PCD ,故DE 即为平面PCD 的法向量.因1113cos ,||||n DE n DE n DE ⋅==⋅,故所求二面角A PD C --的余弦值为3. (20)【2015年重庆,理20】(本小题满分12分,(Ⅰ)小问7分,(Ⅱ)小问5分)设函数()()23xx axf x a R e +=∈.(Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)若()f x 在[)3,+∞上为减函数,求a 的取值范围. 解:(Ⅰ)由题()()()()2226336x xxxx a e x ax e x a x af x ee+-+-+-+'==,因()f x 在0x =处取得极值,故()00f '=,得0a =.因此()23x f x x e -=,()()263x f x x x e -'=-.从而()31f e =,()31f e'=,所以曲线()y f x =在点()()1,1f 处的切线方程为()331y x e e-=-即30x ey -=.z yxF PEDC BA(Ⅱ)由题知()0f x '≤对3x ≥恒成立,故()2360x a x a -+-+≥即()3311a x x ≥---对3x ≥恒成立.显然()()3311g x x x =---在[)3,+∞单调递减,故()()max 932g x g ==-,所以92a ≥-,即a 的取值范围为9,2⎡⎫+∞⎪⎢⎣⎭. (21)【2015年重庆,理21】(本题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,过2F 的直线交椭圆于,P Q 两点,且 1PQ PF ⊥. (Ⅰ)若1||22PF =+,2||22PF =-,求椭圆的标准方程; (Ⅱ)若1||||PF PQ =,求椭圆的离心率e .解:(Ⅰ)由题122||||4a PF PF =+=,故2a =.又222124||||12c PF PF =+=,故23c =,因此2221b a c =-=,从而椭圆方程为2214x y +=.(Ⅱ)连1F Q ,由题()1114||||||22||a F P PQ QF F P =++=+,故()1||222F P a =-,从而21||2||F P a F P =-()221a =-,因此()2222124||||4962c PF PF a =+=-,所以()2296263e =-=-,得63e =-.(22)【2015年重庆,理22】(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)在数列{}n a 中,13a =,()2110n n n n a a a a n N λμ+++++=∈.(Ⅰ)若0λ=,2μ=-,求数列{}n a 的通项公式; (Ⅱ)若()0001,2k N k k λ+=∈≥,1μ=-,证明:010011223121k a k k ++<<+++. 解:(Ⅰ)由0λ=,2μ=-得212n n n a a a +=.因130a =>,故0n a >,得12n n a a +=.因此{}n a 是首项为3公比为2的等比数列,从而132n n a -=⋅.(Ⅱ)由题2101n n n a a a k +⎛⎫+= ⎪⎝⎭,因130a =>,故1230n a a a =>>>>>.因21000011111n n n n n a a a k k k a a k +==-+⋅+⎛⎫+ ⎪⎝⎭,即1001111n n n a a k k a +⎛⎫-=-⎪+⎝⎭, 故()0011111100000111113131213131k k k k i i i i i i a a a a k k a k k k ++===⎛⎫⎛⎫=+-=+->+-=+ ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,因此001212k k a a a a +>>>>>,从而00110001113122121k k i a k k k +=⎛⎫<+-=+⎪++⎝⎭∑. 综上可知010011223121k a k k ++<<+++.。
=2 答案:C 2010年普通高等学校招生全国统一考试(四川卷)数学(理工农医类)第I 卷参考公式:P n (k)=C ;p k (1 — p)n±(k =0,1,2,…n)一、选择题:(1) i 是虚数单位,计算i + i 2 + i 3 = (A )- 1( B ) 1(C ) -i(D ) i解析:由复数性质知:i 2=- 1 故 i + i 2+ i 3= i +( — 1)+( — i) =- 1 答案:A (2)下列四个图像所表示的函数,在点 x = 0处连续的是解析:由图象及函数连续的性质知, D 正确.答案:D (3)2log 510 + log 50 . 25=―(A ) 0( B ) 1( C ) 2解析:2log 510+ log 50. 25P(A+B) =P(A)+P(B)s 二 4 二 R 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A B)=P(A) P(B)球的体积公式如果事件A 在一次试验中发生的概率是 p ,那么4 D 2 v R3在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径如果事件A 、B 互斥,那么 球的表面积公式(B ) (C )(D) 4w=log 5100 + log50. 25=log 525=2答案:C(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱80(4) 函数f(x) = x2+ mx+ 1的图像关于直线(A) m = _2 ( B) m = 2答案:A2解析:由BC = 16,得| BC| =4 AB AC I A^-A C而AB AC AM答案:C w…(6)将函数y =sin x的图像上所有的点向右平行移动'个单位长度,再把所得各点的横坐10标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是w—m(A) y =sin(2x ) (B) y = sin(2x )10 51 兀 1 兀(C) y 二sin(—x ) (D) y 二sin(—x )2 10 2 20解析:将函数y=sinx的图像上所有的点向右平行移动一个单位长度,所得函数图象的解析10式为y= sin(x—) •10再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是1 ny"门(异-石).答案:C(7)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两解析:函数f( x) = x2+ mx+ 1的对称轴为x= —曰疋—m= 1 =• m= —22x=1对称的充要条件是(C) m - -1(5)设点M是线段BC的中点,点A在直线BC夕卜,BC2=16,AB ACi IA^-A C.贝y(A)8 (B)4 (C) 2 (D ) 1w_w-=BC = 4故二2车间每天总获利最大的生产计划为(D )甲车间加工原料 40箱,乙车间加工原料 30箱 解析:设甲车间加工原料 x 箱,乙车间加工原料 y 箱x y _ 70nt I则 <10x+6y 兰480x, y N目标函数z = 280x + 300y结合图象可得:当 x = 15, y = 55时z 最大 本题也可以将答案逐项代入检验 . 答案:Bw … (8)已知数列的首项印=0,其前n 项的和为S n ,且S n.i =2S 「印,则lim n 二1(A )0( B ) —( C ) 1 ( D )22解析:由 & 1=2Sn ' a 1,且Sn 2-2S n 1a1 1作差得 a n +2 = 2a n +1^又 S 2 2S 1 + a 1, 即卩 a ? + a 1 2 a 1 + a^ —■ a ? 2 a 1故{a n }是公比为2的等比数列S n = a 1+ 2a 1 + 22a 1 + .......................... + 2n 1a 1= (2n — 1) a 1则 lima n= lim nn;:S nn ::(2n -1)a 1答案:B2 2xy(9)椭圆二 2 =1(a 的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点a bP 满足线段AP 的垂直平分线过点 F ,则椭圆离心率的取值范围是 co(A ) 0,彳(B ) 0,1(C )J2-1,1(D ) 1,1解析:由题意,椭圆上存在点 P ,使得线段AP 的垂直平分线过点F ,2nJ 31即F 点到P 点与A 点的距离相等m2 ,2ab而 | FA| = C = 一c c| PF| € [a — c, a + c]即 ac — c ?w ac + c ?.j ac _c 2 兰 a 2 _c 2 a 2 -c 2 乞ac c 2于是b 2€ [ a — c, a + c]c—叮屏11 或--a — 2又e€ (0, 1)故e€ |-,1 | '2丿答案:D(10)由1、2、3、4、5、6组成没有重复数字且-3都不与5相邻的六位偶数的个数是(A)72 ( B)96 ( C) 108 ( D)144w …解析:先选一个偶数字排个位,有3种选法_…①若5在十位或十万位,则1、3有三个位置可排,3 A f A f = 24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A2A2 = 12个算上个位偶数字的排法,共计3(24 + 12) = 108个答案:C(11)半径为R的球O的直径AB垂直于平面「,垂足为B , BCD是平面〉内边长为与球面交于点M , N,/A、f 17(A) Rarccos——25 那么R的正三角形,线段AC、M、N两点间的球面距离是厂18(B) Rarccos -25(C)AD分别解析: 由已知,1 AB = 2R, BC = R,故tan / BAC = —•一.…2cos/ BAC =连结OM,则△ OAM为等腰三角形4品4亦AM = 2AOcos / BAC = R,同理AN= R,且MN// CD w5 5而AC = . 5R, CD = R故MN : CD = AN:AC w一MN = 4R ,5连结OM、ON, 有OM = ON= R于是cos/ MON =2 2 2OM ON -MN2OM LON172517所以M 、N 两点间的球面距离是 Rarccos25答案:A1i(12)设 a >b :- c ,0 ,则 2a 2 10ac :-25c 2 的最小值是ab a(a_b)(A )2( B )4( C ) 2,5( D ) 5解析: 2a 2 — 110ac - 25c 2ab a(a —b)=(a -5c)2 ab 丄 a(a -b) --ab a(a —b)> 0 + 2+ 2=4当且仅当a — 5c = 0, ab = 1, a( a -b) = 1时等号成立2c = 2满足条件5答案:B=(a _5c)2a 2 —ab ab 丄 --ab a(a —b)如取a =第口卷、填空题:本大题共 4小题,每小题4分,共16分.把答案填在题中横线上1 6(13) (2-3—)6的展开式中的第四项是.Jx(14)直线x -2y 5=0与圆x 2 y 2 =8相交于A 、B 两点,则 AB 〒解析:方法一、圆心为(0,0),半径为2、、2故 LABJ 二.、二二=二 2 二…2得 | AB| = 2 3 答案:2 3(15)如图,二面角〉-I - '■的大小是60°,线段AB 二:;• B 三丨,AB 与I 所成的角为30° .则AB 与平面1所成的角的正弦值是•解析:过点A 作平面B 的垂线,垂足为 C ,在B 内过C 作I 的垂线•垂足为D 连结AD ,有三垂线定理可知 AD 丄I ,故/ ADC 为二面角:• -I - 1的平面角,为60° 又由已知,/ ABD = 30° 连结CB ,则/ ABC 为AB 与平面一:所成的角..设 AD = 2,贝V AC = /3 , CD = 1ADAB =0 =4sin 30AC 3--sin / ABC =AB 4答案:空解析: T 4= C ;23160x答案:160 x 圆心到直线x -2y • 5=0的距离为4(16)设S为复数集C的非空子集.若对任意x, y S ,都有x • y,x - y,xy • S ,则称S为封闭集。
2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2c osθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年普通高等学校招生全国统一考试(湖南卷)数 学(理科)本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i zi +=-1)1(2(i 是虚数单位),则复数z=A. i +1B. i -1C. i +-1D. i --12. 设A 、B 是两个集合,则“A B A = ”是“B A ⊆”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3. 执行如图所示的程序框图,如果输入的3=n ,则输出的S =A.76 B. 73C. 98D. 944. 若变量x, y 满足约束条件⎪⎩⎪⎨⎧≤≤--≥+1121y y x y x ,则yx z -=3的最小值为A. 7-B. 1-C. 1D. 2 5. 设函数)1ln()1ln()(x x x f --+=,则)(x f 是A. 奇函数,且在)1,0(是增函数B. 奇函数,且在)1,0(是减函数C. 偶函数,且在)1,0(是增函数D. 偶函数,且在)1,0(是减函数 6. 已知5)(xa x -的展开式中含23x 的项的系数为30,则=aA. 3B. 3-C. 6D. 6- 7. 在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布)1,0(N 的密度曲线)的点的个数的估计值为A. 2386B. 2718C. 3413D. 4772附:若),(~2σμN X ,则6826.0)(=+≤<-σμσμX P , 9544.0)22(=+≤<-σμσμX P.8. 已知点A, B, C 在圆122=+y x 上运动,且BC AB ⊥ . 若点P 的坐标为)0,2(, 则||PC PB PA ++的最大值为A. 6B. 7C. 8D. 9 9. 将函数x x f 2sin )(=的图象向右平移ϕ)20(πϕ<<个单位后得到函数)(x g 的图象,若对满足2|)()(|21=-x g x f 的1x ,2x ,有3||min 21π=-x x ,则=ϕA. 125πB. 3πC.4π D. 6π 10. 某工件的三视图如图所示,现将该工件通过切削,加工成体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料的利用率原工件的体积新工件的体积=) A. π98 B. π916C.π2124)-( D.π21212)-(二、填空题:本大题共5小题,每小题5分,共25分. 11.⎰=-20)1(dx x __________.12. 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)茎叶图如图所示若将运动员按成绩由好到差编为1-35号,再用系统抽样的方法从中抽取7人,则其中成绩在区间]151,139[上的运动员的人数是_________.13. 设F 是双曲线C 1:2222=-by a x 的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.14.设n S 为等比数列}{n a 的前n 项和,若11=a ,且321,2,3S S S 成等差数列,则=n a ___________.15. 已知函数⎪⎩⎪⎨⎧>≤=.,,,)(23a x x a x x x f 若存在实数b ,使函数b x f x g -=)()(有两个零点,则a 的取值范围是___________.俯视图侧视图正视图三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)本小题有Ⅰ、Ⅱ、Ⅲ三个选做题,请考生任选两题作答,并将解答过程写在答题纸中相应题号的答题区域内,如果全做,则按所做的前两题计分. Ⅰ.(本小题满分6分)选修4-1 几何证明选讲如图,在⊙O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明:(i ) 180=∠+∠NOM MEN ; (ii )FO FM FN FE ⋅=⋅. Ⅱ.(本小题满分6分)选修4-4 坐标系与参数方程已知直线l ⎪⎪⎩⎪⎪⎨⎧+=+=.213,235:t y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=.(i )将曲线C 的极坐标方程化为直角坐标方程;(ii )设点M 的直角坐标为)3,5(,直线l 与曲线C 的交点为A ,B ,求||||MB MA ⋅的值. Ⅲ.(本小题满分6分)选修4-5 不等式选讲 设0,0>>b a ,且ba b a 11+=+,证明: (i ) 2≥+b a ;(ii )22<+a a 与22<+b b 不可能同时成立.F17. (本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,A b a tan =,且B 为钝角. (Ⅰ) 证明:2π=-A B ;(Ⅱ) 求C A sin sin +的取值范围.18. (本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖. 每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球. 在摸出的2球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (Ⅰ) 求顾客抽奖1次能获奖的概率; (Ⅱ) 若某顾客有3次抽奖的机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.19. (本小题满分13分)如图,在四棱台1111D C B A ABCD -的上、下底面分别是边长为3和6的正方形,61=AA ,且⊥1AA 底面ABCD ,点P ,Q 分别在棱1DD ,BC 上. (Ⅰ) 若点P 是1DD 的中点,证明:PQ AB ⊥1; (Ⅱ) 若//PQ 平面11A ABB ,二面角A QD P --的余弦值为73,求四面体ADPQ 的体积.BDQ20. (本小题满分13分)已知抛物线1C y x 4:2=的焦点F 也是椭圆2C )0(1:2222>>=+b a bx a y 的一个焦点,1C 与2C 的公共弦长为62. (Ⅰ) 求2C 的方程;(Ⅱ) 过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且与同向.(i ) 若||||BD AC =,求直线l 的斜率;(ii )设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21. (本小题满分13分)已知0>a ,函数)),0[(sin )(∞+∈=x x e x f ax ,记n x 为)(x f 的从小到大的第n *)(N n ∈个极值点. 证明: (Ⅰ) 数列)}({n x f 是等比数列; (Ⅱ) 若112-≥e a ,则对一切*N n ∈,|)(|n n x f x <恒成立.2015年高考湖南卷理科数学参考答案一、选择题D C B A A D C B D A 二、填空题 11. 0 12. 4 13.5 14. 13-n 15. ),1()0,(∞+-∞三、解答题 16. Ⅰ. 证明:(i )如图,因为M ,N 分别是两弦AB ,CD 的中点,所以AB OM ⊥, CD ON ⊥,即90=∠=∠ONE OME ,因此 180=∠+∠ONE OME ,又四边形的内角和等于 360,故 180=∠+∠NOM MEN .(ii ) 由(i )知, O ,M ,E ,N 四点共圆,故由割线定理即得FO FM FN FE ⋅=⋅.Ⅱ.解: (i )θρcos 2=等价于 θρρcos 22=,将222y x +=ρ,x =θρcos 代入上式即得曲线C 的直角坐标方程是0222=-+x y x .(ii ) 将⎪⎪⎩⎪⎪⎨⎧+=+=.213,235t y t x 代入0222=-+x y x 得018352=++t t .设这个方程的 两个实根分别为21,t t ,则由参数t 的几何意义知||||MB MA ⋅=.18||21=t tⅢ.证明: 由abb a b a b a +=+=+11,0,0>>b a 得 1=ab (i )由基本不等式及1=ab ,有22=≥+ab b a ,即2≥+b a .(ii ) 设22<+a a 与22<+b b 可同时成立,则由22<+a a 及0>a 可得10<<a ,同理 10<<b ,从而10<<ab 这与1=ab 相矛盾,故22<+a a 与22<+b b 不可能同时成立.17. 解:(Ⅰ)由A b a ta n =及正弦定理,得BAb a A A sin sin cos sin ==,所以A B cos sin =,即)2sin(sin A B +=π. 又B 为钝角,),2(2πππ∈+A ,故A B +=2π,即2π=-A B .(Ⅱ) 由(Ⅰ)知 022)(>-=+-=A B A C ππ, 所以)4,0(π∈A . 于是)22sin(sin sin sin A A C A -+=+πA A 2cos sin +=.89)41(s i n2s i n 21s i n 22+--=-+=A A AF因为40π<<A ,所以 22sin 0<<A ,因此8989)41(sin 2222≤+--<A .由此可得C A sin sin +的取值范围是]89,22(.18. 解:(Ⅰ)记事件1A ={从甲箱中摸出的一个球是红球},2A ={从乙箱中摸出的一个球是红球},1B ={顾客抽奖一次获一等奖},2B ={顾客抽奖一次获二等奖},C ={顾客抽奖一次能获奖}.由题意1A 与2A 相互独立,21A A 与21A A 互斥,1B 与2B 互斥,且 211A A B =,2B =21A A +21A A ,21B B C +=. 又因为52104)(1==A P ,21105)(2==A P ,所以 512152)()()()(21211=⨯===A P A P A A P B P , )()()()(212121212A A P A A P A A A A P B P +=+=2121)521()211(52)()()()(2121=⨯-+-⨯=+=A P A P A P A P , 故所求概率为1072151)()()()(2121=+=+=+=B P B P B B P C P .(Ⅱ) 顾客抽奖3次可视为3次独立重复实验,由(Ⅰ)知,顾客抽奖1次获一等奖的概率为51,所以)51,3(~B X ,于是 )3,2,1,0()54()51()(33===-K C K X P KK KX 的数学期望为553)(=⨯=X E . 19. 解法一: (Ⅰ)如图,取1AA 的中点R ,连结PR BR ,, 因为1AA ,1DD是梯形D D AA 11的两腰,点P 是1DD 的中点,所以AD PR //,于是由BC AD //知,BC PR //,所以C B R P ,,,四点共面. 由题设知 AB BC ⊥,1AA BC ⊥,A AA AB =1 ,所以⊥BC 平面11A ABB , ⊂1AB 平面11A ABB ,因此 1AB BC ⊥.因为11111tan 63tan AB A AA B A AB AR ABR ∠====∠,所以11AB A ABR ∠=∠,因此901111=∠+∠=∠+∠BAB AB A BABABR , 于是 1ABBR ⊥, 又已证得1AB BC ⊥,所以⊥1AB 平面BRPC ,显然有⊂PQ 平面BRPC , 故 PQ AB ⊥1.DB(Ⅱ) 如下图,过点P 作1//AA PM 交AD 于点M ,则//PM 平面11A ABB , 因为⊥1AA 底面ABCD ,所以⊥PM 底面ABCD ,过点M 作QD MN ⊥于点N ,连结PN ,则QD PN ⊥,PNM ∠是二面角A QD P --的平面角. 所以 73cos =∠PNM ,即 73=PN MN ,从而340=MN PM . 连结MQ ,由//PQ 平面11A ABB 及//PM 平面11A ABB 知,平面//PQM 平面11A ABB ,所以AB MQ //,又ABCD 是正方形,所以ABQM 是矩形,故MQ=AB=6. 设MD =t ,则.366222ttMD MQ MD MQ MN +=+⋅=过点1D 作A A E D 11//交AD 于点E ,则E D AA 11是矩形,所以 611==AA E D ,311==D A AE ,因此 3=-=AE AD DE . 于是21==DEED MD PM , 所以t MD PM 22==,从而t t t MN PM 63623402+⨯==,解得2=t ,所以4=PM . 故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .解法二:由题设知AB AD AA ,,1G 两两垂直,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,则相关各点的坐标为)0,0,0(A ,)6,0,3(1B ,)0,6,0(D ,)6,3,0(1D , )0,,6(m Q ,其中m BQ =,60≤≤m .(Ⅰ) 若点P 是1DD 的中点,则)3,29,0(P ,)3,29,6(--=m PQ ,又)6,0,3(1=AB ,于是018181=-=⋅, 所以AB ⊥1,即PQ AB ⊥1.(Ⅱ) 由题设知,)0,6,6(-=m , )6,3,0(1-=DD 是平面PQD 内两个不共线的向量,设),,(1z y x n =是平面PQD 的一个法向量,则 ⎪⎩⎪⎨⎧=⋅=⋅0,0111DD n 即⎩⎨⎧=+-=-+063,0)6(6z y y m x 取6=y ,得)3,6,6(1m n -=. 又平面AQD 的一个法向量是BD)1,0,0(2=n ,所以45)6(336)6(3||||,cos 2222212121+-=++-=⋅>=<m m n n n n ,而二面角A QD P --的余弦值为73,所以7345)6(32=+-m ,解得m=4或m=8(舍去),此时)0,4,6(Q . 再设)10(1≤<=λλDD ,而)6,3,0(1-=DD ,由此得到)6,36,0(λλ-P ,)6,23,6(λλ--=. 因为//PQ 平面11A ABB ,且平面11A ABB 的一个法向量是)0,1,0(3=n ,所以 0233=-=⋅λn ,32=λ,从而)4,4,0(P .于是,将四面体ADPQ 视为ADQ ∆为底面的三棱锥ADQ P -,其高4=h ,故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .20. 解:(Ⅰ) 由1C y x 4:2=知其焦点F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,所以 122=-b a (1)又1C 与2C 的公共弦长为62,1C 与2C 都关于y 轴对称,且1C 的方程为y x 42=,由此易知1C 与2C 的公共点坐标为)23,6(±,所以164922=+ba (2) 联立(1)(2)得8,922==b a ,故2C 的方程为18922=+x y . (Ⅱ) 如图,设),(11y x A ,),(22y x B ,),(33y x C ,),(44y x D .(i )因AC 与同向,且 ||||BD AC =,所以 =,从而 2413x x x x -=-,即4321x x x x -=-,于是43243212214)(4)(x x x x x x x x -+=-+. (3) 设直线l 的斜率为k ,则l 的方程为1+=kx y .由⎩⎨⎧=+=yx kx y 4,12 得0442=--kx x ,而21,x x 是这个方程的两根,所以 4,42121-==+x x k x x (4)由⎪⎩⎪⎨⎧=++=189,122x y kx y 得06416)89(22=-++kx x k ,而43,x x 是这个方程的两根,所以2212438964,8916kx x k k x x +-=+-=+ (5)将(4)(5)代入(3)得 22222289644)89(16)1(16k k k k +⨯++=+,即22222)89()1(916)1(16k k k ++⨯=+, 所以 916)89(22⨯=+k ,解得 46±=k ,即直线l 的斜率为46±. (ii )由 y x 42=得 2'xy =,所以1C 在点A 处的切线方程为)(2111x x x y y -=-,即42211x x x y -=,令0=y 得21x x =,即)0,2(1x M ,所以)1,2(1-=x ,而)14,(211-=x x ,于是014)14(2212121>+=--=⋅x x x ,因此AFM ∠总是锐角,从而AFM MFD ∠-=∠ 180是钝角. 故直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21. 解:(Ⅰ) )cos sin (cos sin )('x x a e x e x ae x f ax ax ax +=+=)sin(12ϕ+⋅+=x e a ax ,其中a 1tan =ϕ,20πϕ<<. 令 0)('=x f ,由0≥x 得 πϕm x =+,即*,N m m x ∈-=ϕπ.对N k ∈,若πϕπ)12(2+<+<k x k ,即ϕπϕπ-+<<-)12(2k x k ,则0)('>x f ;若πϕπ)22()12(+<+<+k x k ,即ϕπϕπ-+<<-+)22()12(k x k ,则0)('<x f . 因此,在区间),)1((ϕππ--m m 与),(πϕπm m -上,)('x f 的符号总相反,于是,当*,N m m x ∈-=ϕπ时,)(x f 取得极值,所以*,N n n x n ∈-=ϕπ. 此时,)(1)()1()sin()(ϕπϕπϕπ-+--=-=n a n n a n e n e x f ,易知0)(≠n x f ,且πϕπϕπa n a n n a n n n e ee xf x f -=--=-+-+++)(1])1[(21)1()1()()(是常数,故数列)}({n x f 是首项为ϕϕπsin )()(1-=a e x f ,公比为πa e -的等比数列.(Ⅱ) 由(Ⅰ)知,11sin 2+=a ϕ,于是对一切*N n ∈,|)(|n n x f x <恒成立,即)(211ϕπϕπ-+<-n a e a n 恒成立,等价于)(1)(2ϕπϕπ-<+-n a e a a n a (*)恒成立(因为a>0). 设)0()(>=t t e t g t ,则0)1()('2=-=t t e t g t 得1=t ,当10<<t 时,0)('<t g ,所以)(t g 在)1,0(上单调递减;当1>t 时,0)('>t g ,所以)(t g 在),1(∞+上单调递增.从而当1=t 时,函数)(t g 取得最小值e g =)1(. 因此,要使(*)式恒成立,只需e g a a =<+)1(12,即只需112->e a . 而当112-=e a 时,由311t a n 2>-==e a ϕ且由20πϕ<<知,23πϕπ<<. 于是1322-<<-e πϕπ,第11页 共11页且当2≥n 时,12322->>-≥-e n πϕπϕπ,因此,对一切*N n ∈,112≠--=e n ax n ϕπ,所以a a e g ax g n 1)1()(2+==>,故(*)式也恒成立. 综上所述,若112-≥e a ,则对一切*N n ∈,|)(|n n x f x <恒成立.。
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•原题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2] C.(1,2)D.[1,2]2.(5分)(2015•原题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•原题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•原题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•原题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•原题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•原题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•原题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•原题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•原题)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.11.(6分)(2015•原题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•原题)若a=log43,则2a+2﹣a= .13.(4分)(2015•原题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•原题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•原题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•原题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•原题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•原题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•原题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•原题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年高考数学试卷(理科)答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(原题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由析:已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
2019年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( ) (A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2019年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A )33(B )23(C )22(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA DB =DB DC =DC DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( ) (A )434(B )494(C )37634+(D )372334+第II卷(非选择题100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年湖北,理1,5分】i 为虚数单位,607i 的共轭复数....为( ) (A )i (B )i - (C )1 (D )1- 【答案】A【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.(2)【2015年湖北,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) (A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米内夹谷约为281534169254⨯=石,故选B .【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.(3)【2015年湖北,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) (A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用 以及计算能力.(4)【2015年湖北,理4,5分】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )(A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.(5)【2015年湖北,理5,5分】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( ) (A )p 是q 的充分条件,但不是q 的必要条件 (B )p 是q 的必要条件,但不是q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当时,成立;②当时,根据柯西不等式,等式成立,则,所以成等比数列,所以p 是q 的充分条件,但不是q 的必要 0=n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++0≠n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++nn a a a a a a 13221-=⋅⋅⋅==12,,,n a a a条件.故选A .(6)【2015年湖北,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年湖北,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年湖北,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e <(C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,22211a b b e a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a m ++++⎛⎫==+ ⎪+⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.(9)【2015年湖北,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【答案】C【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .【点评】本题以新定义为载体,主要考查了几何的基本定义及运算,解题中需要取得重复的元素.(10)【2015年湖北,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年湖北,理11,5分】已知向量OA AB ⊥,||3OA =,则OA OB ⋅= . 【答案】9 【解析】因为OA AB ⊥,3OA =,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===.【点评】本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.(12)【2015年湖北,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【解析】因为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点,所以函数()f x 由2个零点.【点评】本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.(13)【2015年湖北,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD BC ︒==,所以1006CD =m . 【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.(14)【2015年湖北,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NBMB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =,且E 为AB 中点,∴()0,21A -,()0,21B +,M ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.)(15)【2015年湖北,理15,5分】(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______.【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆的割线,由切割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. 【点评】本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.(16)【2015年湖北,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =.【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t 得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得2232x y ⎧=⎪⎪⎨⎪=⎪⎩或2232x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,A ⎛⎫ ⎪ ⎪⎝⎭,232,B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年湖北,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期(1...........(2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.解:(1)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律的应用,属于基本知识的考查.(18)【2015年湖北,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n na nb -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++ ① 2345113579212222222n n n T -=+++++ ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.(19)【2015年湖北,理19,12分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:解法一:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BD DPF PD λ=∠==+=, 解得2λ=.所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =,于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =,所以PB DEF ⊥平面. 因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑, 四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+, 解得2λ=. 所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年湖北,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.(2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.【点评】本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.(21)【2015年湖北,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y +=(2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为21d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQ P Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.(22)【2015年湖北,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(1)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(2)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212n n b b b a a a 的公式,并给出证明;(3)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.解:(1)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增;当()0f x '<,即0x >时,()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞.当0x >时,()(0)0f x f <=,即1e xx +<. 令1x n=,得111e n n +<,即1(1)e n n +<. ①(2)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n n nb b b n a a a =+ ② 下面用数学归纳法证明②.①当1n =时,左边=右边2=,②成立.②假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++.所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(3)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++ 1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n =++++++12e e e n a a a <+++=e n S . 即e n n T S <.【点评】本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
2015年高考理科数学试卷全国卷11.设复数z 满足11zz+-=i ,则|z|=( ) (A )1 (B )2 (C )3 (D )2 2.o o o o sin 20cos10cos160sin10- =( ) (A )3-(B )3 (C )12- (D )123.设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2nn N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2nn N n ∀∈≤ (D )2,=2nn N n ∃∈4.投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<u u u u r u u u u r,则0y 的取值范围是( )(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(23-,23)6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛7.设D 为ABC ∆所在平面内一点3BC CD =u u u r u u u r,则( )(A )1433AD AB AC =-+u u u r u u ur u u u r (B )1433AD AB AC =-u u u r u u u r u u u r(C )4133AD AB AC =+u u u u u r u u u r u u u r (D )4133AD AB AC =-u u u u u u u ru u u r u u u r8.函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13 (,),44 kk k Zππ-+∈(B)13(2,2),44k k k Zππ-+∈(C)13(,),44k k k Z-+∈(D)13(2,2),44k k k Z-+∈9.执行右面的程序框图,如果输入的t=0.01,则输出的n=()(A)5 (B)6 (C)7 (D)810.25()x x y++的展开式中,52x y的系数为()(A)10 (B)20 (C)30 (D)6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=()(A)1 (B)2 (C)4 (D)812.设函数()f x=(21)xe x ax a--+,其中a1,若存在唯一的整数x,使得()f x 0,则a的取值范围是()(A)[-32e,1)(B)[-32e,34)(C)[32e,34)(D)[32e,1)13.若函数f(x)=2ln()x x a x+为偶函数,则a=14.一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为 .15.若,x y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则yx的最大值为 .16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 .17.(本小题满分12分)n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 18.如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x ry u rw u r821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()iii w w yy =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中i i w x =,w u r =1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与x y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数. 22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是的直径,AC 是的切线,BC 交于E.(Ⅰ)若D 为AC 的中点,证明:DE 是的切线;(Ⅱ)若3OA CE =,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【答案解析】 1.【答案】A 【解析】由11z i z +=-得,11i z i-+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点:本题主要考查复数的运算和复数的模等.2.【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 3.【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C. 考点:本题主要考查特称命题的否定 4.【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式 5.【答案】A【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •u u u u r u u u u r = 0000(3,)(3,)x y x y --•- =2220003310x y y +-=-<,解得033y <<,故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 6.【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B.考点:圆锥的性质与圆锥的体积公式 7.【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r=1433AB AC -+u u ur u u u r ,故选A. 考点:平面向量的线性运算 8.【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质9.【答案】C【解析】执行第1次,t=0.01,S=1,n=0,m=12=0.5,S=S-m=0.5,2mm ==0.25,n=1,S=0.5>t=0.01,是,循环,执行第2次,S=S-m=0.25,2mm ==0.125,n=2,S=0.25>t=0.01,是,循环, 执行第3次,S=S-m=0.125,2mm ==0.0625,n=3,S=0.125>t=0.01,是,循环,执行第4次,S=S-m=0.0625,2mm ==0.03125,n=4,S=0.0625>t=0.01,是,循环,执行第5次,S=S-m=0.03125,2mm ==0.015625,n=5,S=0.03125>t=0.01,是,循环,执行第6次,S=S-m=0.015625,2mm ==0.0078125,n=6,S=0.015625>t=0.01,是,循环,执行第7次,S=S-m=0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C.考点:本题注意考查程序框图 10.【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式 12.【答案】D【解析】设()g x =(21)xe x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)xg x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题13.【答案】1【解析】由题知ln(y x =是奇函数,所以ln(ln(x x +- =22ln()ln 0a x x a +-==,解得a =1. 考点:函数的奇偶性 14.【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程 15.【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法16.【答案】【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得AB 的取值-).考点:正余弦定理;数形结合思想17.【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.试题解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列, 所以n a =21n +; (Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{nb }前n项和为12nb b b +++L =1111111[()()()]235572123n n -+-++-++L =11646n -+. 考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法18.【答案】(Ⅰ)见解析(Ⅱ)3【解析】 试题分析:(Ⅰ)连接BD ,设BD∩AC=G,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1易证EG ⊥AC ,通过计算可证EG ⊥FG ,根据线面垂直判定定理可知EG ⊥平面AFC ,由面面垂直判定定理知平面AFC ⊥平面AEC ;(Ⅱ)以G 为坐标原点,分别以,GB GC u u u r u u u r的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,利用向量法可求出异面直线AE 与CF 所成角的余弦值. 试题解析:(Ⅰ)连接BD ,设BD∩AC=G,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB=1,由∠ABC=120°,可得 由BE ⊥平面ABCD ,AB=BC 可知,AE=EC ,又∵AE ⊥EC ,∴EG ⊥AC ,在Rt △EBG 中,可得,故DF=2.在Rt △FDG 中,可得FG=2在直角梯形BDFE 中,由BD=2,,DF=2可得EF=2, ∴222EG FG EF +=,∴EG ⊥FG ,∵AC∩FG=G,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC.(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,,0),E (),F (-1,0,2),C (00),∴AE u u u r =(1),CF uuu r =(-1,,2) (10)分故cos ,||||AE CF AE CF AE CF ⋅<>==u u u r u u u r u u u r u u u r u u u r u u u r .所以直线AE 与CF. 考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力19.【答案】(Ⅰ)y c =+适合作为年销售y 关于年宣传费用x 的回归方程类型;(Ⅱ)$100.6y =+46.24【解析】 试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w =先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.试题解析:(Ⅰ)由散点图可以判断,y c =+适合作为年销售y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =y 关于w 的线性回归方程,由于$81821()()()iii ii w w yy dw w ==--=-∑∑=108.8=6816, ∴$cy dw =-$=563-68×6.8=100.6. ∴y 关于w 的线性回归方程为$100.668y w =+,∴y 关于x 的回归方程为$100.6y =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值 $100.6y =+,576.60.24966.32z=⨯-=$. (ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.620.12zx x =+-=-+$,=13.6=6.82,即46.24x =时,z $取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20.【答案】0y a --=0y a ++=(Ⅱ)存在【解析】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x =,C 在,)a 处的切线方程为y a x -=-0y a --=.故24x y =在x =-处的到数值为,C 在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=.(Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力21..【答案】(Ⅰ)34a =;(Ⅱ)当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. 【解析】试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的a 值;(Ⅱ)根据对数函数的图像与性质将x 分为1,1,01x x x >=<<研究()h x 的零点个数,若零点不容易求解,则对a 再分类讨论.试题解析:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==. 因此,当34a =时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,+∞)无零点.当x =1时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===,故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.…10分 综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点. 考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想22.【答案】(Ⅰ)见解析(Ⅱ)60°【解析】试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由OA =得,AB=AE=x ,由勾股定理得BE ,由直角三角形射影定理可得2AE CE BE =⋅,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB ,在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE ,连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE 是圆O 的切线.(Ⅱ)设CE=1,AE=x ,由已知得AB=BE ,由射影定理可得,2AE CE BE =⋅,∴2x =,解得x考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理23.【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】 试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN V的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ|MN|=1ρ-2ρ因为2C 的半径为1,则2C MN V 的面积o 11sin 452⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系24.【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞) 【解析】试题分析:(Ⅰ)利用零点分析法将不等式f (x )>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围.试题解析:(Ⅰ)当a=1时,不等式f (x )>1化为|x+1|-2|x-1|>1, 等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<, 所以不等式f (x )>1的解集为2{|2}3x x <<.(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >. 所以a 的取值范围为(2,+∞).考点:含绝对值不等式解法;分段函数;一元二次不等式解法。
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32i i- =( ) A.3.执行如图所示的程序框图,输出S 的值是( ) A.32 B.3212D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A) (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.故答案为:1.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f (x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).。
绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i 的共轭..复数..为 A .iB .i -C .1D .1-2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A .134石 B .169石 C .338石D .1365石3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为A .122B .112C .102D .924.设211(,)XN μσ,222(,)YN μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥5.设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77 B .49 C .45 D .3010.设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数n 的最大值是 A .3 B .4 C .5 D .6二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. 第4题图(一)必考题(11—14题)11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅= .12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m.14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为 ; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=;③NB MA NAMB+=其中正确结论的序号是 . (写出所有正确结论的序号)(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线, 且3BC PB =,则ABAC= . 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l第13题图第14题图AB第15题图APBC的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 18.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}nc 的前n 项和n T . 19.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于 点F ,连接,,,.DE DF BD BE(Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写 出结论);若不是,说明理由;第19题图(Ⅱ)若面DEF与面ABCD所成二面角的大小为π3,求DCBC的值.20.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产,A B两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(Ⅰ)求Z的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.21.(本小题满分14分)一种作图工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且1DN ON==,3MN=.当栓子D在滑槽AB内作往复运动时,带动..N绕O转动一周(D不动时,N也不动),M 处的笔尖画出的曲线记为C.以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C的方程;(Ⅱ)设动直线l与两定直线1:20l x y-=和2:20l x y+=分别交于,P Q两点.若直线l总与曲线C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.第21题图1 第21题图222.(本小题满分14分)已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n +与e 的大小;(Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <.绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试题参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.B 3.D 4.C 5.A 6.B 7.B 8.D 9.C 10.B 二、填空题(本大题共6小题,考生需作答5小题,每小题5分,共25分)11.912.2 13.14.(Ⅰ)22(1)(2x y -+-=;(Ⅱ)①②③ 15.1216.三、解答题(本大题共6小题,共75分) 17.(11分)(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 18.(12分)(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++, ① 2345113579212222222n nn T -=++++++. ② ①-②可得221111212323222222n n n nn n T --+=++++-=-, 故n T 12362n n -+=-. 19.(12分) (解法1)(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥.又PB EF ⊥,DE EF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (Ⅱ)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD的交线. 由(Ⅰ)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PDPB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角, 设1PD DC ==,BC λ=,有BD = 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,第19题解答图2第19题解答图1则 πtantan 3BD DPF PD=∠=解得λ= 所以1DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC(解法2)(Ⅰ)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =, 于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DEEF E =,所以PB DEF ⊥平面.因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,.(Ⅱ)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(Ⅰ)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则π1cos32||||BP DP BP DP λ⋅===⋅, 解得λ=所以12DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC 20.(12分)(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200zy x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200zy x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D .将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯=第20题解答图1 第20题解答图2第20题解答图33311(1)10.30.973.p p =--=-=(Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为21.(14分)(Ⅰ)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -=由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ的距离为d =和|||P Q PQ x x -,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 第21题解答图当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.22.(14分)(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增; 当()0f x '<,即0x >时,()f x 单调递减.故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<.令1x n=,得111e n n +<,即1(1)e n n +<. ①(Ⅱ)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n nnb b b n a a a =+ ② 下面用数学归纳法证明②.(1)当1n =时,左边=右边2=,②成立. (2)假设当n k =时,②成立,即1212(1)k kkb b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++. 所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立. (Ⅲ)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++12312112122334(1)nb b b b b b b b b n n ++++++≤++++⨯⨯⨯+121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n=++++++12e e e n a a a <+++=e n S .即e n n T S <.。
2015年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设复数z 满足1+z1z-=i ,则|z |=(A )1 (B (C (D )2 (2)sin 20°cos 10°-con 160°sin 10°=(A ) (B (C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N , 2n >2n (B )∃ n ∈N , 2n ≤2n (C )∀n ∈N , 2n ≤2n (D )∃ n ∈N , 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若12MF MF ⋅<0,则y 0的取值范围是(A )(-33) (B )(-66)(C )(3-,3) (D )()(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛(7)设D 为错误!未找到引用源。
数学试卷 第1页(共24页)数学试卷 第2页(共24页)数学试卷 第3页(共24页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用2B 铅笔将答题卡上试卷类型A 后的方框涂黑. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1-2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石3.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .122B .112C .102D .924.设211(,)X N μσ~,222(,)Y N μσ~,这两个正态分布密度曲线如图所示.下列结论中正确的是 ( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥5.设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :222121()n a a a -+++22(a +222312231)()n n n a a a a a a a a -++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( )A .123p p p <<B .231p p p <<C .312p p p <<D .321p p p <<8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >9.已知集合22{(,)|1,,}A x y x y x y =+∈Z ≤,{(,)|||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 ( ) A .77B .49C .45D .30 10.设x ∈R ,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是( )A .3B .4C .5D .6 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.把答案填在题中的横线上. (一)必考题(11~14题)11.已知向量OA AB ⊥,||3OA =,则OA OB =___________. 12.函数2π()4cos cos()2sin |ln(1)|22xf x x x x =---+的零点个数为___________. 13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m .14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准方程为___________;(2)过点A 任作一条直线与圆22:1O x y +=相交于M ,N 两点,下列三个结论: ①||||||||NA MA NB NB =; ②||||2||||NB MA NA MB -=;③||||||||NB MA NA MB += 其中正确结论的序号是___________(写出所有正确结论的序号). -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共24页)数学试卷 第5页(共24页)数学试卷 第6页(共24页)(二)选考题(请考生在第15,16两题中任选一题作答,如果全选,则按第15题作答结果记分) 15.(选修4—1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=___________. 16.(选修4—4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1,x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),l与C 相交于A ,B 两点,则||AB =___________.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.18.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .19.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,DE DF BD BE . (Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.20.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量. (Ⅰ)求Z 的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率. 21.(本小题满分14分)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,MN 3=.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.22.(本小题满分14分)已知数列{}n a 的各项均为正数,*1(1)()n n n b n a n n=+∈N ,e 为自然对数的底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n +与e 的大小; (Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.数学试卷 第7页(共24页)数学试卷 第8页(共24页)数学试卷 第9页(共24页)2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】60760433i i i i +===-,它的共轭复数为i . 【提示】直接利用复数的单位的幂运算求解即可. 【考点】虚数单位i 及其性质 2.【答案】B【解析】由题意,这批米内夹谷约为281534169254⨯≈石. 【提示】根据254粒内夹谷28粒,可得比例,即可得出结论. 【考点】随机抽样,样本估计总体的实际应用 3.【答案】D【解析】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,可得37nnC C =,可得3710n =+=,10(1)x +的展开式中奇数项的二项式系数和为1091222⨯=.【提示】直接利用二项式定理求出n ,然后利用二项式定理系数的性质求出结果即可. 【考点】二项式定理,二项式系数的性质 4.【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤.【提示】直接利用正态分布曲线的特征,集合概率,直接判断即可.【考点】正态分布曲线的特点及曲线所表示的意义 5.【答案】A【解析】由12,,,,3n a a a n ⋯∈≥R ,运用柯西不等式,可得:222222212-1231223-1()()()n n n n a a a a a a a a a a a a ++⋯+++⋯+≥++⋯+,若12,,,na a a ⋯成等比数列,即有32121n n a a a a a a -==⋯=,则22222212-1231223-1()()()nnn n a a a aaa a a a a a a ++⋯+++⋯+=++⋯+,即由p 推得q ,但由q 推不到p ,比如1230n a a a a ===⋯==,则12,,,n a a a ⋯不成等比数列,故p 是q 的充分不必要条件.【提示】运用柯西不等式,可得22222212-1231223-1()()()nn nn a a a aaa a a a a a a++⋯+++⋯+≥++⋯+,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到. 【考点】等比数列的性质 6.【答案】B【解析】由于本题是选择题,可以常用特殊法,符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,令()f x x =,2a =,则()()()g x f x f a x x=-=-,sgn[()]sgn()g x x =-,所以A 不正确,B 正确,sgn[()]sgn()f x x =,C 不正确;D 正确;对于D ,令()1f x x =+,2a =, 则()()()g x f x f ax x=-=-,1,1sgn[()]sgn(1)0,11,1x f x x x x >⎧⎪=+==-⎨⎪-<-⎩;1,0sgn[()]sgn()0,01,0x g x x x x >⎧⎪=-==⎨⎪-<⎩,1,1sgn[()]sgn(1)0,11,1x f x x x x ->-⎧⎪-=+==-⎨⎪<-⎩;所以D 不正确;故选B .【提示】直接利用特殊法,设出函数()f x ,以及a 的值,判断选项即可.【考点】函数与方程的综合运用 7.【答案】B【解析】分别作出事件对应的图象如图(阴影部分).P 1:10,2D ⎛⎫ ⎪⎝⎭,1,02F ⎛⎫⎪⎝⎭,(0,1)A ,(1,1)B ,(1,0)C ,则阴影部分的面积11111711122288S =⨯-⨯⨯=-=,211113112122243S =⨯-⨯⨯⨯=-=, 31111121ln 212222S dx x =⨯+=+⎰,231S S S ∴<<,即231p p p <<.【提示】作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可. 【考点】几何概型 8.【答案】D【解析】由题意,双曲线C 1:222c a b =+,1ce a =;双曲线C 2:222()()c a m b m '=+++,2e =,222222122()(2)()b b m abm bm am e e a a a m +++∴-=-+,∴当a b >时,12e e <;当a b <时,12e e >.【提示】分别求出双曲线的离心率,再平方作差,即可得出结论.【考点】双曲线的简单性质 9.【答案】C【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有5个元素,即图中圆中的整点,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,中有5525⨯=个元素,即图中正方形ABCD 中的整点,12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D 中的整点(除去四个顶点),即77445⨯-=个.数学试卷 第10页(共24页)数学试卷 第11页(共24页)数学试卷 第12页(共24页)【提示】分别求出集合A 与集合B 的解集,将其在坐标系中标出,即可求. 【考点】集合中元素个数的最值 10.【答案】B【解析】若[]1t =,则[1,2)t ∈,若2[]2t =,则t ∈(因为题目需要同时成立,则负区间舍去),若3[]3t =,则t ∈,若4[]4t =,则t ∈,若5[]5t =,则t ∈,1.732≈1.587≈1.4951.431 1.495≈<; 通过上述可以发现,当4t =时,可以找到实数t使其在区间334554[1,2)[2,3)[3,4)[4,5)[5,6)上,但当5t =时,无法找到实数t 使其在区间334554[1,2)[2,3)[3,4)[4,5)[5,6)上,∴正整数n 的最大值4.【提示】由新定义可得t 的范围,验证可得最大的正整数n 为4. 【考点】进行简单的演绎推理第Ⅱ卷二、填空题 (一)必考题 11.【答案】9【解析】由OA AB ⊥uu r uu u r ,得0O A A B =u u r u uur g ,即()0O A O B O A -=uu r uu u r uu r g ,3OA =uu rQ ,2||9OA AB OA ∴==u u r u u u r u u r g .【提示】由已知结合平面向量是数量积运算求得答案. 【考点】平面向量数量积的运算 12.【答案】2【解析】函数()f x 的定义域为{|1}x x >-.22π()4cos cos 2sin |ln(1)|2sin 2cos 1|ln(1)|sin 2|ln(1)|222x x f x x x x x x x x ⎛⎫⎛⎫=---+=--+=-+ ⎪ ⎪⎝⎭⎝⎭,分别画出函数sin 2y x =,|ln(1)|y x =+的图象,由函数的图象可知,交点个数为2,所以函数的零点有2个.【提示】利用二倍角公式化简函数的解析式,求出函数的定义域,画出函数的图象,求出交点个数即可.【考点】根的存在性及根的个数判断 13.【答案】【解析】设此山高h (m ),则BC =,在ABC △中,30BAC ∠=,105CBA ∠=,45BCA ∠=,600AB =,根据正弦定理得600sin 30sin 45=,解得h =m ). 【提示】设此山高h (m ),在BCD △中,利用仰角的正切表示出BC ,进而在ABC △中利用正弦定理求得h .【考点】解三角形的实际应用 14.【答案】(1)22(1)(2x y -+= (2)①②③【解析】解:(1)Q 圆C 与x 轴相切于点(1,0)T ,∴圆心的横坐标1x =,取AB 的中点E ,||2AB =Q ,||1BE ∴=,则||BC=,即圆的半径||rBC ==∴圆心C ,则圆的标准方程为22(1)(2x y -+=.(2)Q 圆心C,E ∴,又||2AB =Q,且E 为AB 中点,1)A ∴,1)B ,Q M 、N 在圆O :221x y +=上,∴可设(cos ,sin )M αα,(cos ,sin )N ββ, ||NA ∴=====||NB====||1||NA NB∴===, 同理可得||1||MA MB =,||||||||NA MA NB MB ∴=,①成立; ||||1)2||||NB NA NA NB-==,②正确; ||||1)||||NB MA NA MB +==,③正确.【提示】(1)取AB 的中点E ,通过圆C 与x 轴相切于点T ,利用弦心距、半径与半弦长之间的关系,计算即可;(2)设(cos ,sin )M αα,(cos ,sin )N ββ,计算出||||MA MB 、||||NA NB、||||NB NA 的值即可. 【考点】命题的真假判断与应用,圆与圆的位置关系及其判定 (二)选考题 15.【答案】12数学试卷 第13页(共24页)数学试卷 第14页(共24页)数学试卷 第15页(共24页)【解析】由切割线定理可知2PA PB PC =g ,又3BC PB =,可得2PA PB =,在PAB △与PAC △中,P P ∠=∠,PAB PCA ∠=∠(同弧上的圆周角与弦切角相等),可得PAB PCA△∽△, 122AB PB PB AC PA PB ∴===.【提示】利用切割线定理推出2PA PB =,利用相似三角形求出比值即可. 【考点】与圆有关的比例线段 16.【答案】【解析】由(sin 3cos )0ρθθ-=,得30y x -=,由C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),两式平方作差得224x y -=-.联立2234y x x y =⎧⎨-=-⎩,得212x =,即2x =±,22A ⎛∴ ⎝⎭,,22B ⎛-- ⎝⎭,||AB ∴==.【提示】化极坐标方程化直角坐标方程,参数方程化为普通方程,联立直线方程和双曲线方程后求得交点坐标,由两点间的距离公式可得答案. 【考点】简单曲线的极坐标方程,双曲线的参数方程 三、解答题 17.【答案】(Ⅰ)π127π12 13π12π()5sin 26f x x ⎛⎫=- ⎪⎝⎭(Ⅱ)π6【解析】(Ⅰ)根据表中已知数据,解得5A =,2,ω=,π6ϕ=-,数据补全如下表:且函数表达式为()5sin 26f x x ⎛⎫=- ⎪⎝⎭.(Ⅱ)由(Ⅰ)知π()5sin 26f x x ⎛⎫=- ⎪⎝⎭,得π()5sin 226g x x θ⎛⎫=+- ⎪⎝⎭,因为sin y x =的对称中心为(π,0)k ,k ∈Z ,令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z , 由于函数()y g x =的图象关于点5π,012⎛⎫⎪⎝⎭成中心对称, 令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【提示】(Ⅰ)根据表中已知数据,解得5A =,2,ω=,π6ϕ=-,从而可补全数据,解得函数表达式为π()5sin 26f x x ⎛⎫=- ⎪⎝⎭;(Ⅱ)由(Ⅰ)及函数sin()y A x ωϕ=+的图象变换规律得π()5sin 226g x x θ⎛⎫=+- ⎪⎝⎭.令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z ,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z ,由0θ>可得解.【考点】由sin()y A x ωϕ=+的部分图象确定其解析式,函数sin()y A x ωϕ=+的图象变换18.【答案】(Ⅰ)21n a n =-,12n n b -=或1(279)9n a n =+,1299n n b -⎛⎫= ⎪⎝⎭g (Ⅱ)12362n n n T -+=-【解析】(Ⅰ)设1a a =,由题意可得10451002a d ad +=⎧⎨=⎩,解得12a d =⎧⎨=⎩,或929a d =⎧⎪⎨=⎪⎩,当12a d =⎧⎨=⎩时,21n a n =-,12n nb -=; 当929a d =⎧⎪⎨=⎪⎩时,1(279)9n a n =+,1299n n b -⎛⎫= ⎪⎝⎭g .(Ⅱ)当1d >时,由(Ⅰ)知21n a n =-,12n n b -=,1212n n n n a n c b --∴==, 23411111113579(21)22222n n T n -∴=++++++-g g g g L g ,234111*********(23)(21)2222222n n n T n n -∴=+++++-+-g g g g L g g 23421111111232(21)322222222n n n n n T n -+=++++++--=-L g 12362n n n T -+∴=-.【提示】(Ⅰ)利用前10项和与首项、公差的关系,联立方程组计算即可;(Ⅱ)当1d >时,由(Ⅰ)知1212nn n c --=,写出n T 、12n T 的表达式,利用错位相减法及等比数列的求和公式,计算即可. 【考点】数列的求和 19.【答案】(Ⅰ)见解析(Ⅱ)DC BC =【解析】解法一:(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD , 而DE ⊂平面PDC ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥, 而PC CB C =I ,所以DE ⊥平面PBC ,而PB ⊂平面PBC ,所以PB DE ⊥.又PB EF ⊥,DE FE E =I ,所以PB ⊥平面DEF .数学试卷 第16页(共24页)数学试卷 第17页(共24页) 数学试卷 第18页(共24页)由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB ∠,DEF ∠,EFB ∠,DFB ∠. (Ⅱ)如图,在面BPC 内,延长BC 与FE 交于点G ,则D G 是平面DEF 与平面ACBD 的交线.由(Ⅰ)知,PB ⊥平面DEF ,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥, 而PD PB P =I ,所以DG ⊥平面PBD , 所以DG DF ⊥,DG DB ⊥.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角, 设1PD DC ==,BC λ=,有BD =在Rt PDB △中,由DF PB ⊥,得π3DPF FDB ∠=∠=,则πtan tan 3BDDPF PD=∠===解得λ=1DC BC λ=, 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =解法二:(Ⅰ)以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设1PD DC ==,BC λ=,则(0,0,0)D ,(0,0,1)P ,(,1,0)B λ,(0,1,0)C ,(,1,1)PB λ=-uu r,点E 是PC 的中点,所以110,,22E ⎛⎫ ⎪⎝⎭,110,,22DE ⎛⎫= ⎪⎝⎭uuur ,于是0PB DE =uu r uuu rg ,即PB DE ⊥.又已知EF PB ⊥,而ED EF E =I ,所以PB ⊥平面DEF , 因(0,1,1)PC =-uu u r ,0DE PC =uuu r uu u rg ,则DE PC ⊥,所以DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB ∠,DEF ∠,EFB ∠,DFB ∠.(Ⅱ)由PD ⊥底面ABCD ,所以(0,0,1)DP =uu u r是平面ACDB 的一个法向量;由(Ⅰ)知,PB ⊥平面DEF ,所以(,1,1)BP λ=--uu r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则运用向量的数量积求解得出π1cos 32==,解得λ=12DC BC λ==, 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =【提示】解法一:(Ⅰ)直线与直线,直线与平面的垂直的转化证明得出PB EF ⊥,DE FE E =I ,所以PB ⊥平面DEF ,即可判断DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,确定直角;(Ⅱ)根据公理2得出DG 是平面DEF 与平面ACBD 的交线,利用直线平面的垂直判断出DG DF ⊥,DG DB ⊥,根据平面角的定义得出BDF ∠是面DEF 与面ABCD 所成二面角的平面角,转化到直角三角形求解即可.解法二:(Ⅰ)以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可;(Ⅱ)由PD ⊥底面ABCD ,所以(0,0,1)DP =uu u r是平面ACDB 的一个法向量;由(Ⅰ)知,PB ⊥平面DEF ,所以(,1,1)BP λ=--uu r是平面DEF 的一个法向量,根据数量积得出夹角的余弦即可得出所求解的答案.【考点】用空间向量求平面间的夹角,直线与平面垂直的判定 20.【答案】(Ⅰ)见解析 (Ⅱ)0.973【解析】(Ⅰ)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为Z ,则有2 1.51.512200,0x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩①,如图1,目标函数为10001200Z x y =+.当12W =时,①表示的平面区域如图1,三个顶点分别为(0,0)A ,(2.4,4.8)B ,(6,0)C ,将10001200Z x y =+变形为561200Zy x =-+,当 2.4x =, 4.8y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z Z ==⨯+⨯=; 当15W =时,①表示的平面区域如图2,三个顶点分别为(0,0)A ,(3,6)B ,(7.5,0)C , 将10001200Z x y =+变形为561200Zy x =-+,当3x =,6y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z Z ==⨯+⨯=; 当18W =时,①表示的平面区域如图3,四个顶点分别为(0,0)A ,(3,6)B ,(6,4)C ,(9,0)D , 将10001200Z x y =+变形为561200Zy x =-+,当6x =,4y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z Z ==⨯+⨯=.因此,()81600.3102000.5108000.29708E Z =⨯+⨯+⨯=.数学试卷 第19页(共24页)数学试卷 第20页(共24页)数学试卷 第21页(共24页)(Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7P P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为311(1)0.973P P =--=.【提示】(Ⅰ)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,列出可行域,目标函数,通过当12W =时,当15W =时,当18W =时,分别求出目标函数的最大获利,然后得到Z 的分布列,求出期望即可;(Ⅱ)判断概率类型是二项分布,然后求解所求概率即可. 【考点】简单线性规划的应用,离散型随机变量的期望与方差21.【答案】(Ⅰ)221164x y += (Ⅱ)见解析【解析】(Ⅰ)设(,0)(||2)D t t ≤,00(,)N x y ,(,)M x y ,由题意得2MD DN =uuu r uuu r,且||||1DN ON ==uuu r uuu r ,00(,)2(,)t x y x t y ∴--=-,且22002200()11x t y x y ⎧-+=⎪⎨+=⎪⎩,即00222t x x t y y -=-⎧⎨=-⎩,且0(2)0t t x -=, 由于当点D 不动时,点N 也不动,∴t 不恒等于0,于是02t x =,故04x x =,02yy =-, 代入2201x y +=,得方程221164x y +=.(Ⅱ)(1)当直线l 的斜率k 不存在时,直线l 为:4x =或4x =-,都有14482OPQ S =⨯⨯=△, (2)直线l 的斜率k 存在时,直线l 为:12y kx m k ⎛⎫=+≠± ⎪⎝⎭,由22416y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=, 直线l 总与椭圆C 有且只有一个公共点,2222644(14)(416)0k m k m ∴∆=-+-=,即22164m k =+①. 由20y kx m x y =+⎧⎨-=⎩,可得2,1212m m P k k ⎛⎫ ⎪--⎝⎭,同理得2,1212mm Q k k -⎛⎫ ⎪++⎝⎭, 原点O 到直线PQ的距离d =和|||P Q PQ x x -, 可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ==-=+=-+-△②. 将①代入②得222224181441OPQm k S k k +==--△, 当214k >时,22241288184141OPQ k S k k ⎛⎫+⎛⎫==+> ⎪ ⎪--⎝⎭⎝⎭△, 当2104k ≤<时,22222414128881414114OPQ k k S k k k ⎛⎫++⎛⎫==-=-+ ⎪ ⎪---⎝⎭⎝⎭△, 2104k ≤<时,20141k ∴<-≤,22214k ≥-, 2281814OPQS k ⎛⎫∴=-+≥ ⎪-⎝⎭△,当且仅当0k =时取等号,0k ∴=时,OPQ S △的最小值为8.综上可知当直线l 与椭圆C 在四个顶点处相切时,三角形OPQ 的面积存在最小值为8. 【提示】(Ⅰ)根据条件求出a ,b 即可求椭圆C 的方程;(Ⅱ)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.【考点】直线与圆锥曲线的关系,椭圆的标准方程22.【答案】(Ⅰ)()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞11e nn ⎛⎫+< ⎪⎝⎭ (Ⅱ)见解析 (Ⅲ)见解析【解析】(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-, 当()0f x '>,即0x <时,()f x 单调递增, 当()0f x '<,即0x >时,()f x 单调递减,故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<,令1x n =,得111e n n +<,即11e nn ⎛⎫+< ⎪⎝⎭①(Ⅱ)1111111121b a ⎛⎫=+=+= ⎪⎝⎭g ;222121212121221(21)32b b b b a a a a ⎛⎫==+=+= ⎪⎝⎭g g ;32331233121231231331(31)43b b b b b b a a a a a a ⎛⎫==+=+= ⎪⎝⎭g g ; 由此推测:1212(1)n nnb b b n a a a =+L L ② 下面用数学归纳法证明②,(1)当1n =时,2==左边右边,②成立.(2)假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+L L , 当1n k =+时,1111(1)11k k k b k a k +++⎛⎫=++ ⎪+⎝⎭,由归纳假设可得111211211211211(1)(1)1(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++⎛⎫==+++=+ ⎪+⎝⎭L L g L L∴当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(Ⅲ)证明:由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得数学试卷 第22页(共24页) 数学试卷 第23页(共24页) 数学试卷 第24页(共24页)111131212311212312()()()()nn n n T c c c c a a a a a a a a a =++++=++++11113121231212312112112()()()()2341122334(1)nn n b b b b b b b b bb b b b b b b b b n n n ++++++=++++≤+++++⨯⨯⨯+L L L L1211111111223(1)2334(1)(1)n b b b n n n n n n ⎡⎤⎡⎤=+++++++++⎢⎥⎢⎥⨯⨯+⨯⨯++⎣⎦⎣⎦L L L g 1212111111121112n n b b b b b b n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-<+++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭ 121212111111e e e 12nn n a a a a a a n ⎛⎫⎛⎫⎛⎫=++++++<+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L即e n n T S <.【提示】(Ⅰ)求出()f x 的定义域,利用导数求其最大值,得到1e x x +<,取1x n=即可得到答案;(Ⅱ)由11()nn n b n a n n +⎛⎫=+∈ ⎪⎝⎭N ,变形求得11b a ,1212b b a a ,123123b b b a a a ,由此推测1212(1)n nnb b b n a a a =+,然后利用数学归纳法证明;(Ⅲ)由n c 的定义、1212(1)n n n b b b n a a a =+、算术-几何平均不等式、n b 的定义及11e nn ⎛⎫+< ⎪⎝⎭,利用放缩法证得e n n T S <. 【考点】数列与不等式的综合。
2015年普通高等学校招生全国统一考试(四川)理科{x|(1)(2)0}{x|13} 1.设集合,集合,则 A. B. C. D.{x|13}{x|11}{x|12}{x|23}【答案】 A 【解析】,且,故选 A {x|12}{x|13}{x|13}22.设是虚数单位,则复数i3i3C. D. 【答案】C 22i【解析】,故选C32ii3.执行如图所示的程序框图,输出S的值是332211 B. C. D.22【答案】515k【解析】进入循环,当时才能输出的值,则sin,故选D 624.下列函数中,最小正周期为且图象关于原点对称的函数是cos(2)sin(2) B. 22 C.sin2cos2sin cos x【答案】A 【解析】cos(2)sin2可知其满足题意2sin(2)cos2 B. ,0)()(,最小正周期为可知其图像的对称中心为242sin(2) C. 可知其图像的对称中心为,最小正周期428为sincos2sin()2可知其图像的对称中心为小正周期为442y5.过双曲线2x的右焦点且与轴垂直的直线,交该双曲线的两条渐近线于、两点,3则436 A. B.C. D. 23433【答案】D 【解析】由题可知渐近线方程为,右焦点,则直线与两条渐近线的交点分别为,,所以6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(A)144个(B)120个(C)96个(D)72个 B【答案】【解析】分类讨论① 当5在万位时,个位可以排0、2、4三个数,其余位置没有限制,故有13种。
当4在万位时,个位可以排0、2两个数,其余位置没有限制,固有13种,综上:共有120种。
故选B。
ABADBMMC7.设四边形ABCD为平行四边形,.若点M,N满足,DNNC,则()(A)20 (B)15 (C)9 (D)6【答案】C 【解析】C.本题从解题方式方法上可有两种思路。
方法①:这个地方四边形ABCD为平行四边形,可赋予此四边形为矩形,进而以A为坐标原点A(),M()N(),AM建立坐标系。
2017年四川高考数学(理科数学)试题Word版真题试卷含答案2017年普通高等学校招生全国统一考试(新课标Ⅲ)四川理科数学注意事项:1.考生答卷前必须在答题卡上填写姓名和准考证号。
2.回答选择题时,在答题卡上涂黑对应题目的答案标号。
如需更改,用橡皮擦干净后再涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在试卷上无效。
3.考试结束后,将试卷和答题卡一并交回。
一、选择题(共12小题,每小题5分,共60分)1.已知集合 $A=\{(x,y)|x+y=1\}$,$B=\{(x,y)|y=x\}$,则$A\cap B$ 中元素的个数为A。
3B。
2C。
1D。
02.设复数 $z$ 满足 $(1+i)z=2i$,则 $|z|$ 等于A。
$\frac{1}{2}$B。
$\frac{\sqrt{2}}{2}$___D。
$2\sqrt{2}$3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图。
根据该折线图,下列结论错误的是A。
月接待游客量逐月增加B。
年接待游客量逐年增加C。
各年的月接待游客量高峰期大致在7、8月份D。
各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.$(x+y)(2x-y)5$ 的展开式中 $x^3y^3$ 的系数为A。
$-80$B。
$-40$___D。
$80$5.已知双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的一条渐近线方程为 $y=x$,且与椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 有公共焦点,则$C$ 的方程为A。
$\frac{x^2}{12}-\frac{y^2}{10}=1$B。
$\frac{x^2}{5}-\frac{y^2}{4}=1$C。
$\frac{x^2}{4}-\frac{y^2}{5}=1$D。
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =U ( ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3}2.设i 是虚数单位,则复数32i i- =( ) A.-i B.-3i C.i. D.3i3.执行如图所示的程序框图,输出S 的值是( ) A.32-B.32C.-12D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( ) (A).433(B )23 (C )6 (D )43 6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =u u u r ,4AD =u u u r.若点M ,N 满足3BM MC =u u u u r u u u u r ,2DN NC =u u u r u u u r ,则.AM NM =u u u u r u u u u r( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
11.在5(21)x -的展开式中,含2x 的项的系数是 (用数字填写答案). 12. sin15sin 75+o o 的值是 .13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C ο)满足函数关系b kx e y +=(Λ718.2=e 为自然对数的底数,k 、b 为常数)。
若该食品在0C ο的保鲜时间设计192小时,在22C ο的保鲜时间是48小时,则该食品在33C ο的保鲜时间是 小时.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。
设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为 . 15.已知函数xx f 2)(=,ax x x g +=2)((其中R a ∈)。
对于不相等的实数21,x x ,设2121)()(x x x f x f m --=,2121)()(x x x g x g n --=,现有如下命题:(1)对于任意不相等的实数21,x x ,都有0>m ;(2)对于任意的a 及任意不相等的实数21,x x ,都有0>n ; (3)对于任意的a ,存在不相等的实数21,x x ,使得n m =; (4)对于任意的a ,存在不相等的实数21,x x ,使得n m -=。
其中的真命题有 (写出所有真命题的序号)。
三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程演算步骤。
16、(本题满分12分)设数列{}(1,2,3...)n a n =的前n 项和n S 满足12n n S a a =-,且123,1,a a a +成等差数列 (I )求数列{}n a 的通项公式 (II )记数列1{}n a 的前项和n T ,求使得111000n T -<成立n 的最小值。
17、(本题满分12分)某市A 、B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生,2名女生,A 中学推荐了3名男生,4名女生,两校所推荐的学生一起参加集训,由于集训后队员水平相当,从参加集训的男生中随机抽取3人,从参加集训的女生中随机抽取3人组成代表队 (I )求A 中学至少有一名学生入选代表队的概率(II )某场比赛前,从代表队的6名中随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列于数学期望。
18、(本题满分12分)一个正方体的平面展开图和直观图的示意图如图所示,在正方体中,设BC 的中点为M,GH 的中点为N(I )请将字母F 、G 、H 标记在正方体的直观意图相应的顶点处(不要求说明理由) (II )证明:直线MN ∥平面BDH(III )求二面角A-EG-M 的余弦值19、(本题满分12分)如图A 、B 、C 、D 为平面四边形ABCD 的四个内角(I )证明:1cos tan 2sin A AA-=(II )若A+C=0180,AB=6,BC=3,CD=4,AD=5 求:tantan tan tan 2222A B C D+++的值20、(本题满分13分)(III )如图,椭圆E: 22221(0)x y a b a b+=>>的离心率是22,过点P(0,1)的动直线l 与椭圆交于A 、B 两点当直线l 平行于x 轴时,直线l 被椭圆E 截的线段长为22(I )求椭圆E 的方程(II )在平面直角坐标系中是否存在与点P 不同的定点Q,使得QA PAQB PB=恒成立,若存在,求出Q 点的坐标,若不存在,说明理由21、(本题满分14分)已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >,(I )设()g x 是()f x 的导函数,讨论函数()g x 的单调性(II )证明:存在(0,1)a ∈使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解ECFB DA MDCB AEACBAOy2015年普通高等学校招生全国统一考试(四川)详细参考答案1.【答案】A 【解析】{|12}A x x =-<<Q,且{|13}B x x =<<{|13}A B x x ∴⋃=-<<,故选A2.【答案】C 【解析】3222ii i i i i-=--=,故选C 3.【答案】D【解析】进入循环,当5k =时才能输出k 的值,则51sin 62S π==,故选D4.【答案】A 【解析】 A. cos(2)sin 22y x x π=+=-可知其满足题意B. sin(2)cos 22y x x π=+=可知其图像的对称中心为(,0)()42k k Z ππ+∈,最小正周期为π C. sin 2cos 22sin(2)4y x x x π=+=+可知其图像的对称中心为(,0)()28k k Z ππ-∈,最小正周期为πD. sin cos 2sin()4y x x x π=+=+可知其图像的对称中心为(,0)()4k k Z ππ-∈小正周期为2π5.【答案】D 【解析】由题可知渐近线方程为3y x =±,右焦点(2,0),则直线2x =与两条渐近线的交点分别为A (2,23),B (2,23)-,所以||43AB = 6.【答案】B 【解析】分类讨论① 当5在万位时,个位可以排0、2、4三个数,其余位置没有限制,故有133472C A =种。
② 当4在万位时,个位可以排0、2两个数,其余位置没有限制,固有132448C A =种,综上:共有120种。
故选B 。
7.【答案】C【解析】这个地方四边形ABCD 为平行四边形,可赋予此四边形为矩形,进而以A 为坐标原点建立坐标系。
由0,06,34,4A (),M ()N (),进而(6,3)AM =u u u v,(2,1)NM =-u u u v,⋅=u u u v u u u v9AM NM 。
8.【答案】B【解析】条件333ab>>等价于1a b >>。
当1a b >>时,33log log 0a b >>。
所以,3311log log a b<,即log 3log 3a b <。
所以,“333a b>>”是“log 3log 3a b <”的充分条件。
但1,33a b ==也满足log 3log 3a b <,而不满足1a b >>。
所以,“333a b >>”是“log 3log 3a b <”的不必要条件。
故,选B 。
9.【答案】B【解析】同前面一样,m n 满足条件()()1,2。
由条件()2得:()1122m n ≤-。
于是,()211121218222n n mn n n +-⎛⎫≤-≤= ⎪⎝⎭。
mn 当且仅当3,6m n ==时取到最大值18。
经验证,3,6m n ==满足条件()()1,2。
故选B 。
10.【答案】D【解析】方法一:当直线l 与x 轴垂直的时候,满足条件的直线有且只有2条。
当直线l 与x 轴不垂直的时候,由对称性不妨设切点()5cos ,sin M r r θθ+()0θπ<<,则切线的斜率为:cos sin AB k θθ=-。
另一方面,由于M 为AB 中点,故由点差法得:2sin AB k r θ=。
故2cos r θ=-,2r >。
由于()5cos ,sin M r r θθ+在抛物线内,所以满足24y x <。