江苏省泗阳县实验初级中学2018-2019学年八年级下学期期中考试数学试题_
- 格式:doc
- 大小:174.54 KB
- 文档页数:9
2018-2019学年江苏省八年级(下)期中数学试卷含解析一、选择题(每题3分,共18分)1.(3分)为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力情况,就这个问题来说,下面说法正确的是()A.9800名学生是总体B.每个学生是个体C.100名学生是所抽取的一个样本D.样本容量是1002.(3分)下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)下列各式:其中分式共有()个.A.1B.2C.3D.44.(3分)如果与最简二次根式是同类二次根式,那么a的值是()A.﹣2B.﹣1C.1D.25.(3分)如果把分式中的x和y都扩大为原来的5倍,那么分式的值()A.扩大为原来的5倍B.扩大为原来的10倍C.不变D.缩小为原来的6.(3分)如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点P作PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③EF最短长度为;④若∠BAP=30°时,则EF的长度为2.其中结论正确的有()A.①②③B.①②④C.②③④D.①③④二、填空题(每空3分,共30分)7.(3分)某口袋中有红色、黄色、黑色的小球共50个,这些小球除颜色外都相同,通过多次试验后发现摸到红色球的频率稳定在20%,则袋中红色球是个.8.(3分)若分式的值为零,则x=.9.(3分)如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是.10.(3分)计算:1﹣=.11.(3分)若分式方程+1=有增根,则a的值是.12.(3分)已知△ABC的3条中位线分别为3cm、4cm、5 cm,则△ABC的周长为cm.13.(3分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小为.14.(3分)在△ABC中a,b,c为三角形的三边,则=.15.(3分)关于x的方程的解是大于1的数,则a的取值范围是.16.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点(包括点B和点O),但F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=5,则EF的取值范围是.三、解答题(共102分)17.(10分)计算:(1)×﹣(﹣1)0+|﹣3|(2)(3+﹣4)÷18.(10分)化简:(1)1﹣÷(2)﹣x+119.(10分)解方程:(1)﹣=0(2)﹣1=.20.(10分)先化简再求值:化简÷(﹣),并在0,﹣1,1,2四个数中,取一个合适的数作为m的值代入求值.21.(8分)吸烟有害健康.你知道吗,被动吸烟也大大危害着人类的健康.为此,联合国规定每年的5月31日为世界无烟日.为配合今年的“世界无烟日”宣传活动,小明和同学们在学校所在地区展开了以“我支持的戒烟方式”为主题的问卷调查活动,征求市民的意见,并将调查结果分析整理后,制成下列统计图:(1)求小明和同学们一共随机调查了多少人?(2)根据以上信息,请你把统计图补充完整;(3)如果该地区有2万人,那么请你根据以上调查结果,估计该地区大约有多少人支持“强制戒烟”这种戒烟方式?。
2018-2019学年度八年级(下)期中数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.下列各式:,,,(a>0),其中是二次根式的有()A. 1个B. 2个C. 3个D. 4个2.将-a中的a移到根号内,结果是()A. B. C. D.3.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. B. C. D.4.若关于x的一元二次方程(m-1)x2+5x+m2-5m+4=0有一个根为0,则m的值等于()A. 1B. 4C. 1或4D. 05.若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是()A. 1,0B. ,0C. 1,D. 无法确定6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C. 5D. 47.用因式分解法解方程,下列方法中正确的是()A. ,或B. ,或C. ,或D. ,8.菱形ABCD的一条对角线长为6,边AB的长为方程y2-7y+10=0的一个根,则菱形ABCD的周长为()A. 8B. 20C. 8或20D. 109.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. B. C. D. b10.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A. 12厘米B. 16厘米C. 20厘米D. 28厘米二、填空题(本大题共10小题,共30.0分)11.计算()=______.12.以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数为______.13.若|b-1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是______.14.化简的结果为______.15.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为______.16.观察下列各式:,,…请你将发现的规律用含自然数n(n≥1)的代数式表达出来______.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为______.18.如果二次三项式x2-2(m+1)x+16是一个完全平方式,那么m的值是______.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为______.20.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为______度.三、计算题(本大题共2小题,共10.0分)21.计算(1)(-)2+2•3;(2)(5-6+4)÷.22.解方程(1)2x2-4x-5=0.(公式法)(2)x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)四、解答题(本大题共4小题,共30.0分)23.如下表,方程1、方程2、方程3…是按照一定的规律排列的一列方程,解方程3,(2)用你探究的规律解方程x2-8x-20=0.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.26.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.答案和解析1.【答案】B【解析】解:是三次根式;,符合二次根式的定义,所以它们是二次根式;∵a>0,-6a<0,(a>0)不是二次根式.综上所述,二次根式的个数是2个.故选:B.二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.本题考查了二次根式的定义.注意,二次根式的被开方数是非负数.2.【答案】B【解析】解:由题意得a<0,原式==故选:B.根据二次根式的运算即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3.【答案】B【解析】解:A、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当 ∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.4.【答案】B【解析】解:把x=0代入方程得m2-5m+4=0,解得m1=4,m2=1,而a-1≠0,所以m=4.故选:B.先把x=0代入方程求出m的值,然后根据一元二次方程的定义确定满足条件的m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.5.【答案】C【解析】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是-1.则方程的根是1,-1.故选:C.本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.6.【答案】A【解析】【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.本题考查了勾股定理和菱形的性质的应用,能根据菱形=是解此题的关键.的性质得出S菱形ABCD【解答】解:∵四边形ABCD是菱形,AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S=,菱形ABCD,DH=,故选:A.7.【答案】A【解析】解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.所以第一个正确.故选:A.用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.此题考查了学生对因式分解方法应用的条件的理解,提高了学生学以致用的能力.8.【答案】B【解析】解:∵解方程y2-7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;菱形的边长为5.菱形ABCD的周长为4×5=20.故选:B.边AB的长是方程y2-7y+10=0的一个根,解方程求得y的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.9.【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.10.【答案】C【解析】解:设斜线上两个点分别为P、Q,∵P点是B点对折过去的,∠EPH为直角,△AEH≌△PEH,∠HEA=∠PEH,同理∠PEF=∠BEF,∠PEH+∠PEF=90°,四边形EFGH是矩形,△DHG≌△BFE,HEF是直角三角形,BF=DH=PF,∵AH=HP,AD=HF,∵EH=12cm,EF=16cm,FH===20cm,FH=AD=20cm.故选:C.先求出△EFH是直角三角形,再根据勾股定理求出FH=20,再利用全等三角形的性质解答即可.本题考查的是翻折变换及勾股定理、全等三角形的判定与性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答.11.【答案】【解析】解:原式=÷(+)=÷=×=,故答案为:先计算括号内的加法,再计算除法即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.12.【答案】150°或30°【解析】解:如图(1)∠ABE=90°+60°=150°,AB=BE, ∠AEB=15°=∠DEC, ∠AED=30°如图(2)BE=BA,∠ABE=30°, ∠BEA=75°=∠CED∠AED=360°-75°-75°-60°=150°.故答案为30或150.等边△BCE可能在正方形,外如图(1),也可在正方形内如图(2),应分情况讨论.本题考查了正方形的性质及等边三角形的性质.13.【答案】k≤4且k≠0【解析】解:∵|b-1|+=0,b-1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,△=a2-4kb≥0且k≠0,即16-4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.14.【答案】2-【解析】解:原式=[(-2)(+2)]2015•(-2)=(3-4)2015•(-2)=-(-2)=2-.故答案为2-.先利用积的乘方得到原式=[(-2)(+2)]2015•(-2),然后根据平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】(0,-)【解析】解:由折叠的性质可知,∠B′AC=∠BAC,∵四边形OABC为矩形,OC∥AB,∠BAC=∠DCA,∠B′AC=∠DCA,AD=CD,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得,OA2+OD2=AD2,即9+x2=(6-x)2,解得:x=,点D的坐标为:(0,),故答案为:(0,-).由折叠的性质可知,∠B′AC=∠BAC,∠BAC=∠DCA,易得DC=DA,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得OD,得OD的坐标.本题主要考查了翻折变换的性质及其应用问题,灵活运用有关定理来分析、判断、推理或解答是解题的关键.16.【答案】(n≥1)【解析】解:∵=(1+1);=(2+1);=(n+1)(n≥1).故答案为:=(n+1)(n≥1).观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).17.【答案】4.8【解析】解:∵Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,连接CP,∵PD⊥AC于点D,PE⊥CB于点E,四边形DPEC是矩形,DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,DE=CP==4.8,故答案为:4.8.连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.18.【答案】3或-5【解析】解:中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,解得m=3或-5,故答案为:3或-5.这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,求解即可.本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19.【答案】【解析】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°AB=AD,∠A=60°,∵BM=AE,AD=ME,∵△DEF为等边三角形,∠DAE=∠DFE=60°,DE=EF=FD,∠MEF+∠DEA═120°,∠ADE+∠DEA=180°-∠A=120°,∠MEF=∠ADE,在△DAE和△EMF中,△DAE≌EMF(SAS),AE=MF,∠M=∠A=60°,又∵BM=AE,△BMF是等边三角形,BF=AE,∵AE=t,CF=2t,BC=CF+BF=2t+t=3t,∵BC=4,3t=4,t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.20.【答案】32【解析】解:∵∠ABC=∠ADC=90°,点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∵∠BAD=58°,∠DEB=116°,∵DE=BE=AC,∠EBD=∠EDB=32°,故答案为:32.根据已知条件得到点A,B,C,D在以E为圆心,AC为直径的同一个圆上,根据圆周角定理得到∠DEB=116°,根据直角三角形的性质得到DE=BE=AC,根据等腰三角形的性质即可得到结论.本题考查了直角三角形斜边上的中线的性质,圆周角定理,推出A,B,C,D 四点共圆是解题的关键.21.【答案】解:(1)原式=2-2+3+×3=5-2+2=5;(2)原式=(20-18+4)÷=(2+4)÷=2+4.【解析】(1)先利用完全平方公式和二次根式的乘法法则运算,然后把各二次根式化简为最简二次根式后合并即可;(2)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:(1)2x2-4x-5=0,a=2,b=-4,c=-5,△=b2-4ac=(-4)2-4×2×(-5)=16+40=56,x===,x1=,x2=,(2)x2-4x+1=0,x2-4x+4=3,(x-2)2=3,x=2,x1=2+,x2=2-,(3)(y-1)2+2y(1-y)=0,y2-1=0,(y+1)(y-1)=0,y1=1,y2=-1.【解析】本题考查的是一元二次方程的解法,掌握公式法、配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)先确定a、b、c的值,根据公式法解方程;(2)根据配方法解方程;(3)先化为一般式,根据平方差公式分解因式后解方程.23.【答案】3;-9【解析】解:x2+6x-27=0,(x-3)(x+9)=0,所以,x1=3,x2=-9.故答案为:3,-9;(1)第m个方程为:x2+2mx-3•m2=0,方程的解是x1=m,x2=-3m;(2)∵x2-8x-20=0可化为(x-10)(x+2)=0,方程的解是x1=10,x2=-2.利用因式分解法将方程3变形为(x-3)(x+9)=0,进而求解即可;(1)观察图表,一次项系数为从2开始的连续偶数,常数项是从1开始的连续自然数的平方的3倍的相反数,然后写方程,再根据方程的第一个解是连续自然数,第二个解是3的倍数的相反数写出即可;(2)利用因式分解法将方程3变形为(x-10)(x+2)=0,进而求解即可.本题考查了因式分解法解一元二次方程,读懂图表信息,理解一元二次方程的解与一次项系数和常数项的关系是解题的关键.24.【答案】(1)证明:∵AF∥BC,∠AFE=∠DBE,∵E是AD的中点,AE=DE,在△AFE和△DBE中,∠ ∠∠ ∠△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线DB=DC,AF=CD.∵AF∥BC,四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,AD=DC=BC,四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,四边形ABDF是平行四边形,DF=AB=5,∵四边形ADCF是菱形,S菱形ADCF=AC▪DF=×4×5=10.【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.25.【答案】解:(1).(2)原式==.【解析】(1)分式的分子和分母都乘以-,即可求出答案;把2看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.本题考查了分母有理化,平方差公式的应用,主要考查学生的计算和化简能力.26.【答案】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∠BCD=90°,∠ECN=45°∠EMC=∠ENC=∠BCD=90°且NE=NC,四边形EMCN为正方形∵四边形DEFG是矩形,EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∠DEN=∠MEF,又∠DNE=∠FME=90°,∠ ∠在△DEN和△FEM中,,∠ ∠△DEN≌△FEM(ASA),ED=EF,矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∠ADE=∠CDG,在△ADE和△CDG中,∠ ∠ ,△ADE≌△CDG(SAS),AE=CGAC=AE+CE=AB=×2=4,CE+CG=4 是定值.【解析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.此题是四边形综合题,主要考查了正方形的性质,矩形的性质,矩形的判定,三角形的全等的性质和判定,勾股定理,解本题的关键是作出辅助线,判断三角形全等.。
2018-2019学年八年级下期中数学试卷一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来3.下列等式成立的是()A.B.C.D.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个5.下列根式中,最简二次根式是()A.B.C.D.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.129.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是.12.已知分式无意义,则x;当x时,分式的值为零.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.14.若最简二次根式与是同类二次根式,则a=.15.的最简公分母是.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED 等于度.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A 向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2.(3)△ABC是否为直角三角形?答(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE 是平行四边形.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:BE=CD.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、水涨船高是必然事件,选项错误;B、守株待兔是随机事件,选项正确;C、水中捞月是不可能事件,选项错误;D、冬去春来是必然事件,选项错误.故选:B.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列等式成立的是( )A .B .C .D .【分析】根据分式的运算即可求出答案.【解答】解:(A )原式=,故A 错误;(C )是最简分式,故C 错误;(D )原式=,故D 错误;故选:B .【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.4.分式:①;②;③;④中,最简分式的个数有( )A .1个B .2个C .3个D .4个【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a ﹣b );③中有公约数4;故①和④是最简分式. 故选:B .【点评】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.5.下列根式中,最简二次根式是( )A .B .C .D .【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A 、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选:B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵有意义,∴1﹣a>0,∴a﹣1<0,∴(a﹣1)=﹣=﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某中学九年级500名学生的体重情况,故总体是某中学九年级500名学生的体重情况.故选:C.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.12【分析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.【解答】解:∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选:B.【点评】本题考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四.9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.【点评】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.【分析】作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是x≥﹣1.【分析】二次根式的被开方数x+1是非负数.【解答】解:根据题意,得x+1≥0,解得,x≥﹣1;故答案是:x≥﹣1.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.已知分式无意义,则x=﹣1;当x=2时,分式的值为零.【分析】直接利用分式无意义则其分母为0,再利用分式的值为0,则其分子为零,进而求出答案.【解答】解:分式无意义,则x=﹣1;当x=2时,分式的值为零故答案为:=﹣1,=2.【点评】此题主要考查了分式的值为0以及分式分式有无意义,正确把握相关定义是解题关键.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.14.若最简二次根式与是同类二次根式,则a=4.【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣5=a+3,解得a=4.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.的最简公分母是12x3yz.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.【分析】根据频数=频率×数据总和求解即可.【解答】解:数据总和==200.故答案为;200.【点评】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=20度.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转85°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC﹣∠BAB′=20°.故答案是:20.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED 等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A 向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.【分析】(1)先算绝对值,化简二次根式,再合并同类项即可求解;(2)先分母有理化,根据平方差公式计算,再合并同类项即可求解;(3)先因式分解,将除法变为乘法,再约分计算即可求解;(4)先通分,再约分计算即可求解.【解答】解:(1)=2﹣3++3=3;(2)=﹣1+4﹣2=+1;(3)(xy﹣x2)÷=﹣x(x﹣y)×=﹣xy;(4)﹣a﹣1=﹣==.【点评】考查了二次根式的混合运算,分式的混合运算,关键是熟练掌握计算法则正确进行计算.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.【分析】先化简分式,再把x=2代入进行计算即可.【解答】解:原式=÷=•=,当x=2时,原式==4.【点评】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1(2,﹣4).(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2(﹣2,4).(3)△ABC是否为直角三角形?答不是(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.【分析】(1)依据△A1B1C1与△ABC关于x轴对称,即可得到△A1B1C1,并写出点A1的坐标;(2)依据△A1B1C1绕原点O旋转180°后得到的△A2B2C2进行画图并写出点A2的坐标;(3)利用勾股定理的逆定理进行计算即可;=×BC×AD,即可得到AD的长.(4)利用格点图,画出BC边上的高AD,依据S△ABC【解答】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标(2,﹣4);(2)如图所示,△A2B2C2,点A2的坐标(﹣2,4);(3)∵AB2+AC2<BC2,∴△ABC不是直角三角形;(4)如图所示,BC边上的高AD即为所求,=×BC×AD,∵S△ABC∴(1+2)×4﹣×1×2﹣×1×3=××AD,解得AD=,故答案为:(2,﹣4);(﹣2,4);不是;.【点评】本题主要考查了利用旋转变换以及轴对称变换进行作图,旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【分析】(1)根据A级人数除以A级所占的百分比,可得抽测的总人数;(2)根据抽测总人数减去A级、B级人数,可得C级人数,根据C级人数,可得答案;(3)根据圆周角乘以C级所占的百分比,可得答案;(4)根据学校总人数乘以A级与B级所占百分比的和,可得答案.【解答】解:(1)此次抽样调查中,共调查了50÷25%=200名学生,故答案为:200;(2)C级人数为200﹣50﹣120=30(人),条形统计图;(3)C级所占圆心角度数:360°×(1﹣25%﹣60%)=360°×15%=54°(4)达标人数约有8000×(25%+60%)=6800(人).【点评】本题考查了条形统计图,观察统计图获得有效信息是解题关键.24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE 是平行四边形.【分析】利用平行四边形的性质,可先证得四边形BEDF为平行四边形,则可证得BE=DF,且BE∥DF,结合条件可求得ME=NF,则可证得结论.【解答】证明:∵四边形ABCD为平行四边形,∴AD=BC且AD∥BC,∵AE=CF,∴DE=BF,且DE∥BF,∴四边形BEDF为平行四边形,∴BE=DF,∵M、N分别是BE、DF的中点,∴ME=NF,且ME∥NF,∴四边形MFNE是平行四边形.【点评】本题主要考查平行四边形的性质和判定,熟练掌握平行四边形的性质和判定方法是解题的关键.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:BE=CD.【分析】由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;【点评】此题考查了平行四边形的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质,是解决问题的关键.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.【分析】(1)证明四边形ABDF是平行四边形,再利用平行四边形对角线互相平分可证出结论;(2)首先证明四边形ABCD是菱形,再用菱形的性质可得到AC⊥BD,再根据两直线平行,同位角相等得到∠CAF=∠COD=90°.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.【点评】此题主要考查了平行四边形的判定与性质,菱形的判定与性质,平行线的性质,解决问题的关键是熟练掌握平行四边形的判定方法与性质.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)可求得B、D的坐标,利用待定系数法可求得直线BD的解析式;(2)可求得E点坐标,求出直线OE的解析式,联立直线BD、OE解析式可求得H点的横坐标,可求得△OFH的面积;(3)当△MFD为直角三角形时,可找到满足条件的点N,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N点坐标.【解答】解:(1)∵BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S=××=;△OFH(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,该情况不符合题意.②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).【点评】本题主要考查一次函数的综合应用,涉及待定系数法、旋转的性质、矩形的性质、相似三角形的性质等.在(1)中求得B、D坐标是解题的关键,在(2)中联立两直线求得H点的横坐标是解题的关键,在(3)中确定出M点的坐标是解题的关键,注意分类讨论思想的应用.本题考查知识点较基础,难度适中.。
2018-2019学年八年级下期中数学试卷一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来3.下列等式成立的是()A.B.C.D.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个5.下列根式中,最简二次根式是()A.B.C.D.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.129.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是.12.已知分式无意义,则x;当x时,分式的值为零.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.14.若最简二次根式与是同类二次根式,则a=.15.的最简公分母是.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2.(3)△ABC是否为直角三角形?答(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE是平行四边形.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:BE=CD.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列事件中,是随机事件的为()A.水涨船高B.守株待兔C.水中捞月D.冬去春来【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、水涨船高是必然事件,选项错误;B、守株待兔是随机事件,选项正确;C、水中捞月是不可能事件,选项错误;D、冬去春来是必然事件,选项错误.故选:B.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列等式成立的是()A.B.C.D.【分析】根据分式的运算即可求出答案.【解答】解:(A)原式=,故A错误;(C)是最简分式,故C错误;(D)原式=,故D错误;故选:B.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.4.分式:①;②;③;④中,最简分式的个数有()A.1个B.2个C.3个D.4个【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a﹣b);③中有公约数4;故①和④是最简分式.故选:B.【点评】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.5.下列根式中,最简二次根式是()A.B.C.D.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选:B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.6.(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵有意义,∴1﹣a>0,∴a﹣1<0,∴(a﹣1)=﹣=﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.7.为了了解某校九年级500名学生的体重情况,从中抽取50名学生的体重进行统计分析,在这个问题中,总体是指()A.500B.被抽取的50名学生C.500名学生的体重D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某中学九年级500名学生的体重情况,故总体是某中学九年级500名学生的体重情况.故选:C.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.已知O是▱ABCD对角线的交点,△ABC的面积是3,则▱ABCD的面积是()A.3B.6C.9D.12【分析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.【解答】解:∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选:B.【点评】本题考查的是平行四边形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四.9.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【分析】首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.【点评】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.10.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.【分析】作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.二、填空题(本大题共9小题,每空2分,共20分,答案填入答题纸上)11.若有意义,则x的取值范围是x≥﹣1.【分析】二次根式的被开方数x+1是非负数.【解答】解:根据题意,得x+1≥0,解得,x≥﹣1;故答案是:x≥﹣1.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.已知分式无意义,则x=﹣1;当x=2时,分式的值为零.【分析】直接利用分式无意义则其分母为0,再利用分式的值为0,则其分子为零,进而求出答案.【解答】解:分式无意义,则x=﹣1;当x=2时,分式的值为零故答案为:=﹣1,=2.【点评】此题主要考查了分式的值为0以及分式分式有无意义,正确把握相关定义是解题关键.13.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.14.若最简二次根式与是同类二次根式,则a=4.【分析】根据题意,它们的被开方数相同,列出方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣5=a+3,解得a=4.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.的最简公分母是12x3yz.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.16.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有200个数.【分析】根据频数=频率×数据总和求解即可.【解答】解:数据总和==200.故答案为;200.【点评】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.17.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,则∠CAB′=20度.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转85°得到△AB′C′,∴∠BAB′=50°,又∵∠BAC=70°,∴∠CAB′=∠BAC﹣∠BAB′=20°.故答案是:20.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.三.简答题20.(12分)计算或化简:(1);(2)(3)(xy﹣x2)÷;(4)﹣a﹣1.【分析】(1)先算绝对值,化简二次根式,再合并同类项即可求解;(2)先分母有理化,根据平方差公式计算,再合并同类项即可求解;(3)先因式分解,将除法变为乘法,再约分计算即可求解;(4)先通分,再约分计算即可求解.【解答】解:(1)=2﹣3++3=3;(2)=﹣1+4﹣2=+1;(3)(xy﹣x2)÷=﹣x(x﹣y)×=﹣xy;(4)﹣a﹣1=﹣==.【点评】考查了二次根式的混合运算,分式的混合运算,关键是熟练掌握计算法则正确进行计算.21.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x 值代入求值.【分析】先化简分式,再把x=2代入进行计算即可.【解答】解:原式=÷=•=,当x=2时,原式==4.【点评】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1(2,﹣4).(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2(﹣2,4).(3)△ABC是否为直角三角形?答不是(填是或者不是).(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.【分析】(1)依据△A1B1C1与△ABC关于x轴对称,即可得到△A1B1C1,并写出点A1的坐标;(2)依据△A1B1C1绕原点O旋转180°后得到的△A2B2C2进行画图并写出点A2的坐标;(3)利用勾股定理的逆定理进行计算即可;(4)利用格点图,画出BC边上的高AD,依据S=×BC×AD,即可得到AD△ABC的长.【解答】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标(2,﹣4);(2)如图所示,△A2B2C2,点A2的坐标(﹣2,4);(3)∵AB2+AC2<BC2,∴△ABC不是直角三角形;(4)如图所示,BC边上的高AD即为所求,=×BC×AD,∵S△ABC∴(1+2)×4﹣×1×2﹣×1×3=××AD,解得AD=,故答案为:(2,﹣4);(﹣2,4);不是;.【点评】本题主要考查了利用旋转变换以及轴对称变换进行作图,旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.23.(6分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【分析】(1)根据A级人数除以A级所占的百分比,可得抽测的总人数;(2)根据抽测总人数减去A级、B级人数,可得C级人数,根据C级人数,可得答案;(3)根据圆周角乘以C级所占的百分比,可得答案;(4)根据学校总人数乘以A级与B级所占百分比的和,可得答案.【解答】解:(1)此次抽样调查中,共调查了50÷25%=200名学生,故答案为:200;(2)C级人数为200﹣50﹣120=30(人),条形统计图;(3)C级所占圆心角度数:360°×(1﹣25%﹣60%)=360°×15%=54°(4)达标人数约有8000×(25%+60%)=6800(人).【点评】本题考查了条形统计图,观察统计图获得有效信息是解题关键.24.如图,在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明四边形MFNE是平行四边形.【分析】利用平行四边形的性质,可先证得四边形BEDF为平行四边形,则可证得BE=DF,且BE∥DF,结合条件可求得ME=NF,则可证得结论.【解答】证明:∵四边形ABCD为平行四边形,∴AD=BC且AD∥BC,∵AE=CF,∴DE=BF,且DE∥BF,∴四边形BEDF为平行四边形,∴BE=DF,∵M、N分别是BE、DF的中点,∴ME=NF,且ME∥NF,∴四边形MFNE是平行四边形.【点评】本题主要考查平行四边形的性质和判定,熟练掌握平行四边形的性质和判定方法是解题的关键.25.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC 的延长线于点E.求证:BE=CD.【分析】由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;【点评】此题考查了平行四边形的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质,是解决问题的关键.26.(6分)已知:如图,平行四边形ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.【分析】(1)证明四边形ABDF是平行四边形,再利用平行四边形对角线互相平分可证出结论;(2)首先证明四边形ABCD是菱形,再用菱形的性质可得到AC⊥BD,再根据两直线平行,同位角相等得到∠CAF=∠COD=90°.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DF=CD,∴AB∥DF.∵DF=CD,∴AB=DF.∴四边形ABDF是平行四边形,∴AE=DE.(2)解:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形.∴AC⊥BD.∴∠COD=90°.∵四边形ABDF是平行四边形,∴AF∥BD.∴∠CAF=∠COD=90°.【点评】此题主要考查了平行四边形的判定与性质,菱形的判定与性质,平行线的性质,解决问题的关键是熟练掌握平行四边形的判定方法与性质.27.(8分)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在y轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)可求得B、D的坐标,利用待定系数法可求得直线BD的解析式;(2)可求得E点坐标,求出直线OE的解析式,联立直线BD、OE解析式可求得H 点的横坐标,可求得△OFH的面积;(3)当△MFD为直角三角形时,可找到满足条件的点N,分∠MFD=90°、∠MDF =90°和∠FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N点坐标.【解答】解:(1)∵BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,=××=;∴S△OFH(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,该情况不符合题意.②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).【点评】本题主要考查一次函数的综合应用,涉及待定系数法、旋转的性质、矩形的性质、相似三角形的性质等.在(1)中求得B、D坐标是解题的关键,在(2)中联立两直线求得H点的横坐标是解题的关键,在(3)中确定出M点的坐标是解题的关键,注意分类讨论思想的应用.本题考查知识点较基础,难度适中.。
苏 教 版 八 年 级 下 学 期期 中 测 试 卷一、选择题:(每题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.2. 为了了解我市2018年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析.在这个问题中,样本容量是 ( )A. 500B. 被抽取的500名考生C. 被抽取的500名考生的中考数学成绩D. 我市2018年中考数学成绩3. 某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )A. 13B. 12C. 1D. 04. 在下列性质中,矩形具有而菱形不一定有的是 ( )A. 对角线互相垂直B. 四个角是直角C. 对角线互相平分D. 四条边相等 5. 已知ABCD 中,∠A+∠C=200°,则∠B 的度数是( )A. 100°B. 160°C. 80°D. 60° 6. 下列关于分式的判断正确的是 ( )A. 无论x 为何值,231x +的值总为正数 B. 无论x 为何值,31x +不可能是整数值 C. 当x =2时,12x x +-的值为零 D. 当x ≠3时3x x -,有意义 7. 把分式2x x 3y -中的x 和y 都扩大2倍,分式的值( ) A. 不变 B. 扩大2倍C. 缩小2倍D. 扩大4倍8. 如图,正方形ABCD 中,AE=AB ,直线DE 交BC 于点F ,则∠BEF=( )A. 50°B. 30°C. 60°D. 45°二、填空题(每空3分,共30分)9. “a是实数,“a>0”这一事件是________ 事件.(填确定或随机)10. 当x= ________ 时,232xx-+的值为零.11. 如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是___.12. 矩形两条对角线的夹角为60°,一条对角线与矩形较短边的和为15,则矩形的较短边长为_____________.13. 菱形的两条对角线分别为3cm•和4cm,则菱形的面积为_____cm2;14. 平行四边形ABCD的周长是30,则AB+BC =________15. 在□ABCD中,若添加一个条件(写出一个即可)__________,则四边形ABCD是矩形;16. 当x______时,11x+有意义.17. 分式12ab bc与的最简公分母是________.18. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为____三、解答题(66分)19. 计算:(1)2x+3x(2)aa1-+11a-(3)2m3m2-÷229m4-×13m2+20. 先化简,再求值:(31a1a1--+)×2a1a-,其中a=221. 如图,□ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6cm,BC=10cm,试求:⑴□ABCD 的周长;⑵线段DE 的长.22. 如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折后再沿x 轴向右平移1个单位,在图中画出平移后的△A 1B 1C 1.(2)若△ABC 内有一点P (a,b ),则经过(1)中的两次变换后点P 的坐标变为_____________(3)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.23. 某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A ,B ,C ,D 四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(1)抽取了______名学生成绩;(2)请把条形统计图补充完整;(3)扇形统计图中等级D 所在的扇形的圆心角度数是______;(4)若A ,B ,C 代表合格,该校初二年级有300名学生,求全年级生物合格的学生共约多少人24. 已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO.求证:四边形ABCD 是平行四边形.25. 已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是_____________ ,(证明你的结论. )(2)当四边形ABCD的对角线满足__________条件时,四边形EFGH是矩形(不用证明)26. 已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).答案与解析一、选择题:(每题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行判断即可.【详解】A、不是轴对称图形,是中心对称图形.故选项错误;B、是轴对称图形,也是中心对称图形.故选项正确;C、不是轴对称图形,是中心对称图形.故选项错误;D、不是轴对称图形,也不是中心对称图形.故选项错误,故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. 为了了解我市2018年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析.在这个问题中,样本容量是()A. 500B. 被抽取的500名考生C. 被抽取的500名考生的中考数学成绩D. 我市2018年中考数学成绩【答案】A【解析】【分析】根据样本容量是指样本中个体的数目进行求解即可.【详解】为了了解我市2018年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析.在这个问题中,样本容量是500,故选A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3. 某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )A. 13B.12C. 1D. 0【答案】A【解析】【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可. 【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种,因此选到月季花的概率是13,故选A.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.4. 在下列性质中,矩形具有而菱形不一定有的是( )A. 对角线互相垂直B. 四个角是直角C. 对角线互相平分D. 四条边相等【答案】B【解析】【分析】由矩形的性质和菱形的性质,容易得出结论.【详解】矩形的性质有:四个角都是直角;对角线互相平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;矩形具有而菱形不一定有的是:四个角都是直角,故选B.【点睛】本题考查了矩形的性质、菱形的性质;熟练掌握矩形的性质和菱形的性质,并能进行推理论证是解决问题的关键.5. 已知ABCD中,∠A+∠C=200°,则∠B的度数是()A. 100°B. 160°C. 80°D. 60°【答案】C【解析】试题分析:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC.∵∠A+∠C=200°,∴∠A=100°.∴∠B=180°﹣∠A=80°.故选C .6. 下列关于分式的判断正确的是 ( )A. 无论x 为何值,231x +的值总为正数 B. 无论x 为何值,31x +不可能是整数值 C. 当x =2时,12x x +-的值为零 D. 当x ≠3时3x x-,有意义 【答案】A【解析】【分析】 根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得.【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误;D 、当x=0时,分母x=0,分式无意义,故D 选项错误,故选A .【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.7. 把分式2x x 3y-中的x 和y 都扩大2倍,分式的值( ) A . 不变 B. 扩大2倍 C. 缩小2倍 D. 扩大4倍【答案】A【解析】【分析】 把分式2x x 3y-中的x 和y 都扩大2倍,分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可. 【详解】把分式2x x 3y -中的x 和y 都扩大2倍,得 ()22222232233x x x x y x y x y⨯⨯==-⨯--,即分式的值不变,故选A.【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.8. 如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A. 50°B. 30°C. 60°D. 45°【答案】D【解析】【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【详解】设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°-∠BAE)=90°-12x°,∠DAE=90°-x°,∠AED=∠ADE=12(180°-∠DAE)=12[180°-(90°-x°)]=45°+12x°,∴∠BEF=180°-∠AEB-∠AED=180°-(90°-12x°)-(45°+12x°)=45°,故选D.【点睛】本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角和未知角结合起来.二、填空题(每空3分,共30分)9. “a是实数,“a>0”这一事件是________事件.(填确定或随机)【答案】随机根据必然事件、不可能事件、随机事件的概念可正确解答.【详解】因为a是实数,所以a可能为正数,也可能为负数,还有可能是0,所以a>0这一事件是随机事件,故答案为随机.【点睛】本题考查了随机事件,用到的知识点为:确定事件指在一定条件下一定发生(或一定不发生)的事件,随机事件是指在一定条件下可能发生也可能不发生的事件.10. 当x= ________ 时,232xx-+的值为零.【答案】2【解析】【分析】根据分式值为0的条件进行求解即可.【详解】由题意:x-2=0时,x23x2-+的值为零,解得:x=2,故答案为2.【点睛】本题考查了分式值为0的条件,熟练掌握是解题的关键.11. 如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是___.【答案】AB=DC(答案不唯一)【解析】试题分析:∵在四边形ABCD中,AB∥CD,∴根据一组对边平行且相等的四边形是平行四边形的判定,可添加的条件是:AB=DC(答案不唯一).还可添加的条件AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等.12. 矩形两条对角线的夹角为60°,一条对角线与矩形较短边的和为15,则矩形的较短边长为_____________.【答案】5根据矩形ABCD,得到OA=OC,OB=OD,AC=BD,推出OA=OB,根据等边三角形的判定得出△OAB是等边三角形,即可求出AB长.【详解】∵矩形ABCD,∴AC=2OA,BD=2OB,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA,又∵AC+AB=15,∴AB=OB=OA=13×15=5,故答案为5.【点睛】本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键.13. 菱形的两条对角线分别为3cm•和4cm,则菱形的面积为_____cm2;【答案】6【解析】解:根据菱形的面积等于两对角线乘积的一半得,菱形的面积为3×4÷2=6cm2.故答案为6.14. 平行四边形ABCD的周长是30,则AB+BC =________【答案】15【解析】【分析】根据平行四边形的两组对边分别相等及已知条件即可求解.【详解】∵▱ABCD∴AB=CD,AD=BC∵平行四边形ABCD 的周长为30 ,∴AB+BC=15,故答案为15.【点睛】本题考查了平行四变形的性质,熟练掌握平行四边形的两组对边分别相等是解本题的关键. 15. 在□ABCD 中,若添加一个条件(写出一个即可)__________,则四边形ABCD 是矩形;【答案】一个角等于90度或者对角线相等【解析】【分析】根据有一个角是直角的平行四边形是矩形或对角线相等的平行四边形是矩形进行求解即可.【详解】∵四边形ABCD 是平行四边形,∠A=90°,∴平行四边形ABCD 是矩形,或:∵四边形ABCD 是平行四边形,AC=BD ,∴平行四边形ABCD 是矩形,故答案为一个角等于90度或者对角线相等.【点睛】本题考查了矩形的判定,熟练掌握矩形的定义以及矩形的判定方法是解题的关键.16. 当x______时,11x +有意义. 【答案】1x ≠-【解析】【分析】根据分式有意义的条件即可求解.【详解】依题意得10x +≠,解得1x ≠-【点睛】此题主要考查分式的性质,解题的关键是熟知分式的分母不为零.17. 分式12ab bc与的最简公分母是________. 【答案】abc【解析】【分析】根据确定最简公分母的方法求出最简公分母即可.【详解】分式12ab bc与的最简公分母是abc,故答案为abc.【点睛】本题考查了最简公分母,确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.18. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为____【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2 =,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故答案为:32或3.三、解答题(66分)19. 计算:(1)2x+3x(2)aa1-+11a-(3)2m3m2-÷229m4-×13m2+【答案】(1)5x(2)1(3)m【解析】【分析】(1)根据同分母分式加减法的运算法则进行求解即可;(2)先通分,然后根据同分母分式加减法的运算法则进行求解即可;(3)根据分式乘除法的法则按运算顺序进行计算即可.【详解】(1)2x + 3x =235x x +=; (2)a a 1- +11a -=11111a a a a a --=---=1; (3)2m 3m 2-÷229m 4-×13m 2+=()()32322132232m m m m m +--+=m. 【点睛】本题考查了分式的加减法,分式的乘除混合运算,熟练掌握各自的运算法则是解题的关键.20. 先化简,再求值:(31a 1a 1--+)×2a 1a-,其中a=2 【答案】2a 4a+,4 【解析】【分析】 括号内先通分进行分式的加减运算,然后进行分式的乘法运算进行化简,最后把数值代入化简后的结果进行计算即可.【详解】原式=()()()()()()()311111111a a a a a a a a a ⎡⎤++---⎢⎥-+-+⎣⎦=()()()()1133111a a a a a a a -++-+-+ =2a 4a+, 当a=2时,原式=2242⨯+=4.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解题的关键.21. 如图,□ABCD 中,BE 平分∠ABC 且交边AD 于点E ,如果AB=6cm ,BC=10cm ,试求:⑴□ABCD 的周长;⑵线段DE 的长.【答案】⑴周长=32cm ;⑵DE=4cm【解析】【分析】 (1)已知平行四边形的两邻边,根据平行四边形的性质,对边相等,即可求出平行四边形ABCD 的周长;(2)由平行四边形的性质及角平分线的定义可得出AB=AE ,进而利用题中数据即可求解.【详解】(1)∵四边形ABCD 是平行四边形,AB=6cm ,BC=10cm ,∴平行四边形ABCD 的周长=2(AB+BC)=2×16=32(cm);(2)在平行四边形ABCD 中,∵AD ∥BC ,∴∠AEB=∠CBE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴∠ABE=∠AEB ,∴AB=AE ,又∵AB=6cm ,AD=BC=10cm ,∴DE=AD-AE=10-6=4cm .【点睛】本题考查了平行四边形的性质:①边:平行四边形的对边相等;②角:平行四边形的对角相等;③对角线:平行四边形的对角线互相平分.22. 如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)将△ABC 沿x 轴翻折后再沿x 轴向右平移1个单位,在图中画出平移后的△A 1B 1C 1. (2)若△ABC 内有一点P (a,b ),则经过(1)中的两次变换后点P 的坐标变为_____________ (3)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.【答案】(1)见解析;(2)(a+1,-b);(3)见解析.【解析】【分析】(1)根据网格结构找出点A 、B 、C 关于x 轴对称并向右平移1个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据轴对称和平移的性质写出点P的对应点的坐标即可;(3)根据网格结构找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可;【详解】(1)如图所示;(2)沿x轴翻折后点(a,b)坐标变为(a,-b),再沿x轴向右平移1个单位后则变为(a+1,-b),故答案为(a+1,-b);(3)如图所示.【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,利用中心对称作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23. 某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(1)抽取了______名学生成绩;(2)请把条形统计图补充完整;(3)扇形统计图中等级D所在的扇形的圆心角度数是______;(4)若A,B,C代表合格,该校初二年级有300名学生,求全年级生物合格学生共约多少人【答案】(1)50(2)见解析(3)36(4)270【解析】【分析】(1)根据B等级的人数以及所占的百分比即可求得抽取的学生数;(2)求出D等级的人数补全条形统计图即可;(3)用D等级所占的比例乘以360度即可得;(4)用300乘以A、B、C三个等级所占的比例的和即可得.【详解】(1)根据题意得:23÷46%=50(名),则抽取了50名学生成绩,故答案为50;(2)D等级的学生有50-(10+23+12)=5(名),补全图形,如图所示:(3)根据题意得:550×360°=36°,故答案为36°;(4)根据题意得:300×10231250++=270(人),则全年级生物合格的学生共约270人.【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,弄清题中的数据是解本题的关键.24. 已知:如图,四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.【答案】证明见解析【解析】【分析】先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD ,进而可得出结论.【详解】∵AB ∥CD ,∴∠ABO=∠CDO ,在△ABO 与△CDO 中,ABO CDO BO DOAOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△CDO(ASA),∴AB=CD ,又∵AB//CD ,∴四边形ABCD 是平行四边形.【点睛】本题考查的是平行四边形的判定、全等三角形的判定与性质,熟知平行四边形的判定定理是解此题的关键.25. 已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 _____________ ,(证明你的结论. )(2)当四边形ABCD 的对角线满足 __________条件时,四边形EFGH 是矩形(不用证明)【答案】(1)平行四边形;证明见解析(2)AC ⊥BD【解析】【分析】(1)连接BD ,根据三角形的中位线定理得到EH ∥BD ,EH=12BD ,FG ∥BD ,FG=12BD ,推出,EH ∥FG ,EH=FG ,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH 是平行四边形;(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD 的对角线满足AC ⊥BD 的条件时,四边形EFGH 是矩形.【详解】(1)四边形EFGH 的形状是平行四边形.理由如下:如图,连结BD ,∵E 、H 分别是AB 、AD 中点,∴EH∥BD,EH=12 BD,同理FG∥BD,FG=12 BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD,∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形,故答案为AC⊥BD.【点睛】本题考查了中点四边形,涉及了三角形中位线定理,平行四边形的判定,矩形的判定等,熟练掌握相关知识是解题的关键.26. 已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).【答案】(1)t=5(2)(2,4)(2.5,4)(3,4)(8,4)【解析】【分析】(1)根据平行四边形的性质就可以知道PB=5,可以求出PC=5,从而可以求出t的值;(2)当P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5时分别作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA 于G,利用勾股定理得到P1C,OE,P3F,DG的值,就可以求出P的坐标.【详解】由题意可知OD =5,PC=t,(1)∵四边形PODB是平行四边形,∴PB=OD=5,∴PC=5,∴t=5;(2)当P1O=OD=5时,由勾股定理可以求得P1C=3,P2O=P2D时,作P2E⊥OA,∴OE=ED=2.5;当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,∴P3C=2;当P4D=OD=5时,作P4G⊥OA,由勾股定理,得DG=3,∴OG=8,∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4).【点睛】本题考查了矩形的性质,坐标与图形的性质,等腰三角形的性质,平行四边形的判定及性质,勾股定理的运用等,熟练掌握相关知识是解题的关键.注意分类讨论思想和数形结合思想的运用.。
2018-2019学年八年级下期中数学试卷一.选择题(每题3分,共10小题,共30分.)1.在、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.使二次根式有意义的x的取值范围是()A.x=1B.x≠1C.x>1D.x≥15.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°7.下列运算正确的是()A.=B.=C.=x+y D.=8.若2<x<3,那么+的值为()A.1B.2x﹣5C.1或2x﹣5D.﹣19.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件.②若=﹣1﹣2a,则a≥﹣;③和是同类二次根式;④分式是最简分式;其中正确的有()个.A.1个B.2个C.3个D.4个10.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为()A.9B.10C.13D.25二.填空题(每空2分,共18分)11.当x=时,分式无意义;当x=时,分式的值为0.12.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.13.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到球的可能性最大.14.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为(精确到0.1).15.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.16.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠2;(3)当x=0时,分式的值为﹣1.你所写的分式为.17.已知xy>0,则化简代数式x的结果是.18.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为.三.解答题:(共72分)19.(8分)计算:①(3﹣)(3+)+(2﹣)②÷﹣×+ 20.(8分)计算:(1)﹣(2)﹣(a+1)21.(8分)“摩拜单车”公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了名市民,扇形统计图中m=.(2)请根据数据信息补全条形统计图.(3)扇形统计图中“D类型”所对应的圆心角的度数是.(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且与△ABC关于原点O成中心对称.(1)请直接写出A1的坐标;并画出.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.(3)若和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.23.(8分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.24.(12分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.25.(10分)如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(,),B为(,);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(每题3分,共10小题,共30分.)1.在、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个【分析】根据分式的定义对各式进行逐一判断即可.【解答】解:在、、的分母中含有字母,属于分式,故选:B.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:一批手机电池的使用寿命适合抽样调查;中国公民保护环境的意识适合抽样调查;你所在学校的男、女同学的人数适合普查;端午节期间苏州市场上粽子的质量适合抽样调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.【点评】本题考查了轴对称图形与中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.使二次根式有意义的x的取值范围是()A.x=1B.x≠1C.x>1D.x≥1【分析】根据二次根式的被开方数为非负数可得出关于x的一次不等式,解出即可得出x的范围.【解答】解:∵二次根式有意义,∴可得x﹣1≥0,解得x≥1.故选:D.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题关键是掌握二次根式有意义的条件:二次根式的被开方数为非负数.5.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【解答】解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选:D.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别.6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点评】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.7.下列运算正确的是()A.=B.=C.=x+y D.=【分析】根据分式的基本性质即分子分母同时扩大或缩小相同的倍数,分式的值不变,分别对每一项进行分析,即可得出答案.【解答】解:A、=﹣,故本选项错误;B、,不能约分,故本选项错误;C、,不能约分,故本选项错误;D、==,故本选项正确;故选:D.【点评】此题考查了分式的性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.8.若2<x<3,那么+的值为()A.1B.2x﹣5C.1或2x﹣5D.﹣1【分析】根据=|a|=,进而化简求出即可.【解答】解:∵2<x<3,∴2﹣x<0,3﹣x>0,∴+=x﹣2+3﹣x=1.故选:A.【点评】此题主要考查了二次根式的化简求值,正确记忆公式是解题关键.9.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件.②若=﹣1﹣2a,则a≥﹣;③和是同类二次根式;④分式是最简分式;其中正确的有()个.A.1个B.2个C.3个D.4个【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断.【解答】解:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②若=﹣1﹣2a,则a≤﹣,错误;③=,=3,是同类二次根式,正确;④分式是最简分式,正确;故选:C.【点评】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.10.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为()A.9B.10C.13D.25【分析】正方形ABCD的面积为边长的平方,所以只要能求边长的平方即可;作辅助线构建全等三角形,证明△ABN≌△CDG(AAS),则AN=CG,AM=CH=h2+h3,即h1=h3=2,BN=2+1=3,利用勾股定理求出AB的平方,可得结论.【解答】解:过A点作AM⊥l3分别交l2、l3于点N、M,过C点作CH⊥l2分别交l2、l3于点H、G,∵四边形ABCD是正方形,l1∥l2∥l3∥l4,∴AB=CD,∠ABN+∠HBC=90°,∵CH⊥l2,∴∠BCH+∠HBC=90°,∴∠BCH=∠ABN,∵∠BCH=∠CDG,∴∠ABN=∠CDG,∵∠ANB=∠CGD=90°,在△ABN和△CDG中,,∴△ABN≌△CDG(AAS),∴AN=CG,AM=CH=h2+h3,即h1=h3=2,BN=2+1=3,在Rt△ABN中,由勾股定理得:AB2=AN2+BN2=22+32=13,则正方形ABCD的面积=AB2=13;故选:C.【点评】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理、正方形的面积,同时利用了同角的余角相等证明两角相等,为全等创造了条件,此方法在直角三角形经常运用,要熟练掌握.二.填空题(每空2分,共18分)11.当x=1时,分式无意义;当x=﹣3时,分式的值为0.【分析】依据“分式的分母为零时分式无意义”和“当分式的分子为零且分母不为零时分式的值为0”分别求出x的值即可.【解答】解:当x﹣1=0,即x=1时分式无意义;当时,分式的值为0,解得x=﹣3;故填:1;﹣3.【点评】本题主要考查分式有意义及分式的值为零的条件,注意分式的值为零需要满足分式有意义.12.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.13.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到红球的可能性最大.【分析】先求出总球的个数,再分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最大.【解答】解:∵袋中装有6个红球,4个黄球,1个白球,∴总球数是:6+4+1=11个,∴摸到红球的概率是=;摸到黄球的概率是;摸到白球的概率是;∴摸出红球的可能性最大.故答案为:红.【点评】本题主要考查可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.14.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为0.8(精确到0.1).【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该玉米种子发芽的概率为0.8,故答案为:0.8.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【分析】AC与BD相交于点O,如图,根据菱形的性质得AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,则可在Rt△AOD中,根据勾股定理计算出AD=5,于是可得菱形ABCD的周长为20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.16.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠2;(3)当x=0时,分式的值为﹣1.你所写的分式为.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠2,即当x=2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.已知xy>0,则化简代数式x的结果是﹣.【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【解答】解:∵xy>0,且有意义,∴x<0,y<0,∴x=x•=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.18.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为4.【分析】根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.【解答】解:如图,连接MN,∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS),∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,过E点作EF⊥BC交CB的延长线于F,∴∠EBF=180°﹣120°=60°,∵BC=4,∴BF=2,EF=2,在Rt△EFC中,∵EF2+FC2=EC2,EC=4.故答案为:4【点评】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质,轴对称最短路线问题和旋转的问题.三.解答题:(共72分)19.(8分)计算:①(3﹣)(3+)+(2﹣)②÷﹣×+【分析】①原式利用平方差公式和乘法分配律计算,再计算加减可得;②先计算乘除,再合并同类二次根式即可得.【解答】解:①原式=32﹣()2+2﹣2=9﹣7+2﹣2=2;②原式=﹣+2=﹣+2=4+.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.(8分)计算:(1)﹣(2)﹣(a+1)【分析】(1)利用同分母分式加减运算法则计算,再约分即可得;(2)先通分,再根据加减法则计算可得.【解答】解:(1)原式===;(2)原式=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算顺序和运算法则.21.(8分)“摩拜单车”公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了50名市民,扇形统计图中m=32.(2)请根据数据信息补全条形统计图.(3)扇形统计图中“D类型”所对应的圆心角的度数是43.2°.(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是.【分析】(1)根据A类型的人数和所占的百分比求出随机调查的总人数,用C类型的人数除以总人数即可求出m的值;(2)用总人数乘以B类型的人数所占的百分比求出B类型的人数,从而补全统计图;(3)用360°乘以“D类型”所占的百分比即可;(4)用“不了解”的人数除以总人数即可得出“不了解”的概率.【解答】解:(1)本次问卷共随机调查的市民数是:8÷16%=50(人),m%=×100%=32%,故扇形统计图中m=32;故答案为:50,32;(2)根据题意得:50×40%=20(人),补全条形统计图如图所示:(3)扇形统计图中“D类型”所对应的圆心角的度数是:360°×=43.2°;故答案为:43.2°;(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是=;故答案为:.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且与△ABC关于原点O成中心对称.(1)请直接写出A1的坐标(3,﹣4);并画出.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.(3)若和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(1,﹣3).【分析】(1)直接利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用平移规律得出△ABC平移后的位置;(3)利用所画三角形连接对应点得出对称中心.【解答】解:(1)如图所示:△A1B1C1即为所求,A1(3,﹣4);故答案为:(3,﹣4);(2)如图所示:△A2B2C2即为所求;(3)如图所示:中心对称点O′的坐标为:(1,﹣3).故答案为:(1,﹣3).【点评】此题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.23.(8分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.24.(12分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】方法一:(1)解:如图1(1)过点E作EF⊥AM交AM于F点,连接EM,∵AE平分∠DAM∴∠DAE=∠EAF在△ADE和△AEF中,AE=AE∠D=∠AFE=90°∴△ADE≌△AEF∴AD=AF,EF=DE=EC,在△EFM和△ECM中,∠EFM=∠CEM=EMEF=CE∴△EFM≌△ECM,∴FM=MC,AM=AF+FM=AD+MC方法二:证明:延长AE、BC交于点N,如图1(2),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.方法一:证明:将△ADE绕点A顺时针旋转90°,得到新△ABF,如图1(3)∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM方法二:证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(4)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.25.(10分)如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(8,0),B为(0,4);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.【分析】(1)由点C的坐标利用待定系数法即可求出直线l1的解析式,再分别令直线l1的解析式中x=0、y=0求出对应的y、x值,即可得出点A、B的坐标;(2)由点C的坐标利用待定系数法即可求出直线l2的解析式,结合点E的横坐标即可得出点E、F的坐标,再根据平行四边形的性质即可得出关于m的一元一次方程,解方程即可得出结论;(3)分AB为边和AB为对角线两种情况讨论.当AB为边时,根据菱形的性质找出点P的坐标,结合A、B的坐标即可得出点Q的坐标;当AB为对角线时,根据三角形相似找出点P的坐标,再根据菱形对角线互相平分即可得出点Q的坐标.综上即可得出结论.【解答】解:(1)将点C(4,2)代入y=﹣x+b中,得:2=﹣2+b,解得:b=4,∴直线l1为y=﹣x+4.令y=﹣x+4中x=0,则y=4,∴B(0,4);令y=﹣x+4中y=0,则x=8,∴A(8,0).故答案为:8;0;0;4.(2)∵点C(4,2)是直线l2:y=kx﹣6上的点,∴2=4k﹣6,解得:k=2,∴直线l2为y=2x﹣6.∵点E的横坐标为m(0≤m≤4),∴E(m,﹣m+4),F(m,2m﹣6),∴EF=﹣m+4﹣(2m﹣6)=10﹣m.∵四边形OBEF是平行四边形,∴BO=EF,即4=10﹣m,解得:m=.故当m=时,四边形OBEF是平行四边形.(3)假设存在.以P、Q、A、B为顶点的菱形分两种情况:①以AB为边,如图1所示.∵点A(8,0),B(0,4),∴AB=4.∵以P、Q、A、B为顶点的四边形为菱形,∴AP=AB或BP=BA.当AP=AB时,点P(8﹣4,0)或(8+4,0);当BP=BA时,点P(﹣8,0).当P(8﹣4,0)时,Q(8﹣4﹣8,0+4),即(﹣4,4);当P(8+4,0)时,Q(8+4﹣8,0+4),即(4,4);当P(﹣8,0)时,Q(﹣8+8﹣0,0+0﹣4),即(0,﹣4).②以AB为对角线,对角线的交点为M,如图2所示.∵点A(8,0),B(0,4),∴M(4,2),AM=AB=2.∵PM⊥AB,∴∠PMA=∠BOA=90°,∴△AMP∽△AOB,∴,∴AP=5,∴点P(8﹣5,0),即(3,0).∵以P、Q、A、B为顶点的四边形为菱形,∴点Q(8+0﹣3,0+4﹣0),即(5,4).综上可知:若点P为x轴上一点,则在平面直角坐标系中存在一点Q,使得P、Q、A、B四个点能构成一个菱形,此时Q点坐标为(﹣4,4)、(4,4)、(0,﹣4)或(5,4).【点评】本题考查了待定系数法求函数解析式、平行四边形的性质以及菱形的性质,解题的关键是:(1)利用待定系数法求出直线解析式;(2)找出关于m的一元一次方程;(3)分AB为边或对角线考虑.本题属于中档题,难度不大,解决该题型题目时,充分利用平行四边形和菱形的性质是解题的关键.。
2018~2019学年度第二学期期中检测八年级数学试题(全卷共140分,考试时间90分钟)一、选择题(本大题有8小题,每小题3分,共24分)1. 下列电视台的台标,是中心对称图形的是(▲)A B C D2. 下列调查中,适合采用普查方式的是(▲) A. 调查某校八(1)班学生校服的尺码 B. 调查某电视连续剧在全国的收视率 C. 调查一批炮弹的杀伤半径D. 调查长江中现有鱼的种类3. 为了了解某市50000名学生参加初中毕业考试数学成绩,从中抽取了1000名考生的数学成绩进行统计.下列说法错误的是(▲) A. 50000 名学生的数学成绩的全体是总体B. 每个考生是个体C. 从中抽取的1000名考生的数学成绩是总体的一个样本D. 样本容量是10004. 下列选项中,能够显示部分在总体中所占百分比的统计图是(▲)A.扇形统计图B.条形统计图C.折线统计图D.频数分布直方图5. 一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是(▲) A. 摸到红球是必然事件B. 摸到白球是不可能事件C. 摸到白球与摸到红球的可能性相等D. 摸到红球比摸到白球的可能性大6. 下列事件:①东边日出西边雨②抛出的篮球会下落;③没有水分,水稻种子发芽:④367人中至少有2人的生日相同.其中确定事件有(▲) A. 1个B. 2个C. 3个D. 4个7. 如图,矩形ABCD 的对角线AC= 8cm ,∠AOD= 120°,则AB 的长为(▲) A. 2cmB. 4cmC.3cm D. 32cm8. 将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1, A 2, ... An 分别是正方形对角线的交点,则n 个正方形重叠形成的阴影部分面积的和为(▲) A.41cm 2B.41 n cm 2C.4n cm 2 D. n)41(cm 2ODABC二、填空题(本大题共有8小题,每小题4分,共32分)9. 如果分式32-x 有意义, 则x 的值为 . 10.若32=b a ,则a b a +的值为 .11.“平行四边形的对角线互相平分”是 事件. (填“必然”“不可能” 或“随机”)12.在学校“传统文化”考核中,某个班50名学生中有40人达到优秀。
苏教版八年级下学期期中考试数学试题一.选择题(本大题共8小题,每小题3分,共计24分)1. 下列图形中,中心对称图形有( )A. 4个B. 3个C. 2个D. 1个2. 下列各式中,分式的个数有( )2221211()5,,,,,,3122()11x b x y x y a a m x y π-+--+-+-+ A. 2个 B. 3个 C. 4个 D. 5个3. 下列事件:①如果a 、b 都是实数,那么a•b =b•a ;②打开电视机,正在播少儿节目;③百米短跑比赛,一定产生第一名;④掷一枚骰子,点数不超过5.其中是随机事件的有( )A. 1个B. 2个C. 3个D. 4个4. 下列约分正确的是 ( ) A. 62x x=x 3; B. =0++x y x y ; C. 21x y x xy x+=+; D. 222142xy x y = 5. 下列命题中,正确的是( )A. 两条对角线相等的四边形是平行四边形B. 两条对角线相等且互相垂直的四边形是矩形C. 两条对角线互相垂直平分的四边形是菱形D. 两条对角线互相平分且相等的四边形是正方形6. 如果把代数式x y xy+中x 与y 都扩大到原来的8倍,那么这个代数式的值( ) A. 不变B. 扩大为原来的8倍C. 缩小为原来的18D. 扩大为原来的16倍7. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB =5,AC =6,过点D 作AC 的平行线交BC 的延长线于点E ,则△BDE 的面积为( )A. 24B. 18C. 48D. 448. 如图,在△ABC 中,AB=8, AC=10,D 点在AC 上,AB =CD ,E 、F 分别是BC 、AD 的中点,连结EF 并延长,与BA 的延长线交于点G ,连接GD ,若∠EFC =60°,则EG 的长为( )A. 4B. 5C. 6D. 7二.填空题(本大题共10小题,每小题3分,共计30分)9. 为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.10. 当a =______时,211a a --的值为零. 11. 化简分式2x 11x---的结果是_____. 12. 下列三个分式212x 、514()x m n --、3x的最简公分母是____. 13. 如图,将Rt ABC △绕着直角顶点C 顺时针旋转90︒,得到A B C '',连接AA ',若25CA B ''∠=︒,则BAA '∠=__________度.14. 已知234x y z ==,则23x y z x y z+--+=_____. 15. 小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是_____.16. 如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合.若BC =3,则折痕CE 的长为________.17. 如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .18. 如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.三.解答题(本大题共9大题,共计96分)19. 计算:(1)22222x 2y x y x y --- (2)()2a a 1a 1-+- 20. 如图,在□ABCD 中,点E 、F 分别在AD 、BC 边上,且AE =CF ,求证:BE //FD .21. (1).如果43x y xy +==、;求 y x x y +的值.(2)先化简分式323a 4a 4a a 4a-+-,然后在0,1,2三个数值中选择一个合适的a 求分式的值. 22. 如图,平行四边形ABCD 中,AB=3cm ,BC=5cm ,∠B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF .(1)求证:四边形CEDF 是平行四边形;(2)①当AE= cm 时,四边形CEDF 是矩形;②当AE= cm 时,四边形CEDF 是菱形;(直接写出答案,不需要说明理由)23. 某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?24. 某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2 a20 16 4 50频率0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.25. 如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1) 求证:AF=DC;(2) 若AC⊥AB,试判断四边形ADCF的形状,并说明理由;(3) 当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.26. 分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式是2x1+,234xx3x-是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式x 1x 1-+,2x x 1-是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,()x 12x 121x 1x 1x 1+--==-+++. (1)将假分式2x 3x 1-+化为一个整式与一个真分式的和; (2)如果分式2x x 1-的值为整数,求x 的整数值. 27. 【问题情境】如图,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分∠DAM .【探究展示】(1)直接写出AM 、AD 、MC 三条线段的数量关系: ;(2)AM =DE+BM 是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.答案与解析一.选择题(本大题共8小题,每小题3分,共计24分)1. 下列图形中,中心对称图形有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.【详解】第一、二、三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形. 综上所述,是中心对称图形的有3个.故答案选B.【点睛】本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.2. 下列各式中,分式的个数有( ) 2221211()5,,,,,,3122()11x b x y x y a a m x y π-+--+-+-+ A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】判断分式的依据是看分母中是否含有字母,如果分母中含有字母则是分式,如果分母中不含有字母则不是分式. 【详解】21b a +,12m --,22()()x y x y -+,这3个式子分母中含有字母,因此是分式. 其它式子分母中均不含有字母,是整式,而不是分式.故选B .【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.3. 下列事件:①如果a 、b 都是实数,那么a•b =b•a ;②打开电视机,正在播少儿节目;③百米短跑比赛,一定产生第一名;④掷一枚骰子,点数不超过5.其中是随机事件的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别.根据实际情况即可解答.【详解】①如果a 、b 都是实数,那么a ⋅b=b ⋅a 是必然事件;②打开电视机,正在播少儿节目是随机事件;③百米赛跑比赛,一定产生第一名是必然事件;④掷一枚骰子,点数不超过5是随机事件.其中是随机事件的有2个,所以B 正确.【点睛】本题考察了必然事件、不可能事件、随机事件的概念,熟练掌握其概念是解决本题的关键. 4. 下列约分正确的是 ( ) A. 62x x=x 3; B. =0++x y x y ; C. 21x y x xy x+=+; D. 222142xy x y = 【答案】C【解析】【分析】 【详解】A 、62x x=x 4,故本选项错误; B 、x y x y++=1,故本选项错误; C 、21x y x xy x+=+,故本选项正确; D 、22242=xy y x y x,故本选项错误;故选C . 5. 下列命题中,正确的是( )A. 两条对角线相等的四边形是平行四边形B. 两条对角线相等且互相垂直的四边形是矩形C. 两条对角线互相垂直平分的四边形是菱形D. 两条对角线互相平分且相等的四边形是正方形【答案】C【解析】【分析】根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.【详解】解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6. 如果把代数式x yxy中的x与y都扩大到原来的8倍,那么这个代数式的值()A. 不变B. 扩大为原来的8倍C. 缩小为原来的18D. 扩大为原来的16倍【答案】C【解析】【分析】根据x与y都扩大到原来的8倍,分别判断出x+y、xy的变化情况,即可判断出这个代数式值的变化情况. 【详解】因为x与y都扩大到原来的8倍,所以x+y扩大到原来的8倍,xy扩大到原来的64倍,所以这个代数式的值缩小为原来的18.所以A、B、D错误,C正确.【点睛】本题主要考察了分式的基本性质应用,要熟练掌握分式的基本性质;解答此题的关键在于分别判断出x+y、xy的变化情况.7. 如图,在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC 的延长线于点E,则△BDE的面积为()A. 24B. 18C. 48D. 44【答案】B【解析】∵AD ∥BE ,AC ∥DE , ∴四边形ACED 是平行四边形,∴AC=DE=6,在RT △BCO 中,BO=2222()42AC AB AO AB -=-=,即可得BD=8, 又∵BE=BC+CE=BC+AD=10,∴△BDE 是直角三角形,∴BDE S △=12DE ⋅BD=24. 故选B. 点睛:本题考查了勾股定理及菱形的性质,先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可. 8. 如图,在△ABC 中,AB=8, AC=10,D 点在AC 上,AB =CD ,E 、F 分别是BC 、AD 的中点,连结EF 并延长,与BA 的延长线交于点G ,连接GD ,若∠EFC =60°,则EG 的长为( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】 连接BD 取BD 中点为H ,连接HF 、HE ,利用中位线的性质及等腰三角形的性质,在△AFG 中找到各角之间的关系,继而可得△AGF 是等边三角形,推出GF 、FE 各自的边长,继而得到GE 的长度.【详解】连接BD 取BD 中点H ,连接HF 、HE.因为F 是AD 的中点,所以HF∥AB,HF=12 AB,所以∠AGF=∠HFE,HF=4.同理HE∥CD,HE=12 CD,所以∠HEF=∠EFC=60°.又因为AB=CD=8,所以HE=4.因为∠HFE=60°,HE=HF=4,所以△HEF为等边三角形,所以EF=4.因为∠AGE=∠AFG=60°,所以△AGF为等边三角形.因为F为AD中点且AD=2,所以GF=1.因为GE=EF+GF,所以GE=5.【点睛】解答此题的重点在于作出辅助线,利用三角形的中位线定理及平行线的性质建立各角之间的关系. 二.填空题(本大题共10小题,每小题3分,共计30分)9. 为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.【答案】从中抽取的1000名中学生的视力情况【解析】【分析】根据从总体中取出的一部分个体叫做这个总体的一个样本解答即可.【详解】解:这个问题中的样本是从中抽取的1000名中学生的视力情况,故答案为从中抽取的1000名中学生的视力情况.【点睛】本题考查的是样本的概念,掌握从总体中取出的一部分个体叫做这个总体的一个样本是解题的关键.10. 当a=______时,211aa--的值为零.【答案】﹣1.根据分式的值为零的条件列式计算即可.【详解】由题意得:a 2﹣1=0,a ﹣1≠0,解得:a =﹣1.故答案为:﹣1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可.11. 化简分式2x 11x ---的结果是_____. 【答案】x+1【解析】【分析】通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】2x 1(x 1(x 1)=x+11x x-1-+--=-) 【点睛】本题考查的是约分,熟练掌握因式分解是解题的关键. 12. 下列三个分式212x 、514()x m n --、3x 的最简公分母是____. 【答案】4(m -n)2x【解析】试题分析:公分母去常数的最小公倍数,各字母的最高次数. 考点:分式的公分母13. 如图,将Rt ABC △绕着直角顶点C 顺时针旋转90︒,得到A B C '',连接AA ',若25CA B ''∠=︒,则BAA '∠=__________度.【分析】首先由旋转的性质,得△ABC ≌△A′B′C ,然后利用等腰直角三角形的性质等角转换,即可得解.【详解】由旋转的性质,得△ABC ≌△A′B′C ,∴AC=A′C ,∠BAC=∠B′A′C ,∠ACA′=90°,∴∠CAA′=∠CA′A=45°∵25CA B ''∠=︒∴∠BAC=25°∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°故答案为:70.【点睛】此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.14. 已知234x y z ==,则23x y z x y z +--+=_____. 【答案】37. 【解析】【分析】可以设234x y z ===k ,进而可以得出x 、y 、z 的值,代入所要求的代数式中即可得出答案. 【详解】设234x y z ===k ,即x =2k ,y =3k ,z =4k , 则23x y z x y z +--+=434634k k k k k k +--+=3k 7k =37, 故答案为:37. 【点睛】本题考查了分式的化简求值问题,设234x y z ===k ,得出x 、y 、z 的值是解题关键. 15. 小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是_____.【答案】14.根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】如图,根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为14.16. 如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合.若BC=3,则折痕CE的长为________.【答案】2【解析】【分析】先根据图形翻折变换的性质证出AC=2BC,∠BAC=30°,再推出∠BCE=30°,再解解直角三角形即可得出结论.【详解】∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC,∴∠BAC=30°,∴∠BCE=30°,在Rt△ABC中,解得CE=32 cos303 BC==故答案为2【点睛】本题考核知识点:矩形,折叠,解直角三角形. 解题关键点:由矩形性质和折叠性质得到含有30°角的直角三角形.17. 如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF的面积是 .【答案】3【解析】【分析】【详解】∵四边形ABCD 是平行四边形,∴AD =BC =4,AB ∥CD ,AB =CD =3,∵E 为BC 中点,∴BE =CE =2,∵∠B =60°,EF ⊥AB ,∴∠FEB =30°,∴BF =1,由勾股定理得:EF 3∵AB ∥CD ,∴∠B =∠ECH ,在△BFE 和△CHE 中,B ECH BE CE BEF CEH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFE ≌△CHE (ASA ),∴EF =EH 3CH =BF =1,∵S △DHF =12DH FH 3∴S△DEF=12S△DHF=23.故答案为23.18. 如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.【答案】3或5【解析】【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=5.故答案为3或5.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.三.解答题(本大题共9大题,共计96分)19. 计算:(1)22222x 2y x y x y --- (2)()2a a 1a 1-+- 【答案】(1)2x y + (2)11a - 【解析】【分析】(1)利用同分母分式加减运算法则计算,再约分即可得;(2)先通分,再根据加减法则计算可得.【详解】(1)原式=()()()222222++x y x y x y x y x y x y--==-- (2)原式=2211111a a a a a --=---. 【点睛】本题考查的是分式计算,熟练掌握因式分解是解题的关键.20. 如图,在□ABCD 中,点E 、F 分别在AD 、BC 边上,且AE =CF ,求证:BE //FD .【答案】证明见解析.【解析】【分析】由四边形ABCD 是平行四边形,根据平行四边形对边平行且相等,即可得AD//BC ,AD=BC ,又由AE=CF ,即可证得DE=BF ,然后根据对边平行且相等的四边形是平行四边形,即得四边形BFDE 是平行四边形.从而得出结论BE=DF ,【详解】证明:∵四边形ABCD 是平行四边形,∴AD//BC ,AD=BC ,∵AE=CF ,∴AD−AE=BC−CF ,∴ED=BF ,又∵AD//BC ,∴四边形BFDE 是平行四边形,∴BE=DF【点睛】此题考查了平行四边形的性质与判定,注意熟练掌握定理与性质是解决问题的关键. 21. (1).如果43x y xy +==、;求 y x x y+的值. (2)先化简分式323a 4a 4a a 4a-+-,然后在0,1,2三个数值中选择一个合适的a 求分式的值. 【答案】(1)103 (2)22a a -+,-13【解析】【分析】(1)原式通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将x+y 与xy 的值代入计算即可求出值.(2)根据完全平方公式和平方差公式可以化简题目中的式子,然后在0,1,2三个数值中选择一个使得原分式有意义的值代入即可解答本题.【详解】(1)∵x+y=4,xy=3, ()222216-610=33+xy y x x yxy xy x y y x -++=== (2)2323a a 4a 4a (a 2)=a 4a(a 2)(a 2)(a 2)(a 2)a -+-=--++- 当a=1时,原式=-13. 【点睛】本题考查的是分式,熟练掌握因式分解是解题的关键.22. 如图,平行四边形ABCD 中,AB=3cm ,BC=5cm ,∠B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF .(1)求证:四边形CEDF 是平行四边形;(2)①当AE= cm 时,四边形CEDF 是矩形;②当AE= cm 时,四边形CEDF 是菱形;(直接写出答案,不需要说明理由)【答案】(1)证明见解析;(2)① 当AE =3.5cm 时,四边形CEDF 是矩形.② 当AE =2cm 时,四边形CEDF 是菱形.【解析】【分析】【详解】(1)∵ 四边形ABCD 是平行四边形, ∴ CF ∥ED , ∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴CG =DG ,在△FCG 和△EDG 中,{FCG EDGCG DG CGF DGE∠=∠=∠=∠,∴ △FCG ≌△EDG (ASA ),∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)①当AE=3.5时,平行四边形CEDF 是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDA AB CD =⎧⎪∠=∠⎨⎪=⎩∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形,故答案为3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为2.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定;4.菱形的判定.23. 某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?【答案】(1)50(2)36%(3)160【解析】【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人, 18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.24. 某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题: 分组 49.5~59.559.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计 频数2a 20 16 4 50 频0.04 0.16 0.40 0.32b 1率(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.【答案】(1)a=8,b=0.08;(2)作图见解析;(3)14.【解析】【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.25. 如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1) 求证:AF=DC;(2) 若AC⊥AB,试判断四边形ADCF的形状,并说明理由;(3) 当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.【答案】(1)证明见解析(2)四边形ADCF是菱形(3)当AB=AC且∠BAC=90°时,四边形ADCF是正方形【解析】【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;(3)根据等腰三角形性质求出AD⊥BC,得出∠ADC=90°,根据正方形的判定得出即可.【详解】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,∠AFE=∠DBE,∠FEA=∠DEB,AE=DE,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC ;(2)四边形ADCF 的形状是菱形,理由如下:∵AF=DC,AF ∥BC ,∴四边形ADCF 是平行四边形,∵AC ⊥AB ,∴∠CAB=90°,∵AD中线, ∴AD=12BC=DC , ∴平行四边形ADCF 是菱形;(3)当△ABC 满足AC=AB 且∠BAC=90°时,四边形ADCF 为正方形,理由如下:∵∠CAB=90°,AC=AB ,AD 为中线,∴AD ⊥BC ,∴∠ADC=90°,∵四边形ADCF 是菱形,∴四边形ADCF 是正方形.【点睛】本题考查的是四边形的综合运用,熟练掌握全等三角形的性质和正方形和菱形的性质是解题的关键.26. 分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式是2x 1+,234x x 3x-是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式x 1x 1-+,2x x 1-是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,()x 12x 121x 1x 1x 1+--==-+++. (1)将假分式2x 3x 1-+化为一个整式与一个真分式的和; (2)如果分式2x x 1-的值为整数,求x 的整数值. 【答案】(1)2-31x +;(2)x =2或0 【解析】【分析】(1)根据题意,把分式231-+x x ,分子化为“()213x +-”,再进行化简,写成整式与真分式的和的形式即可;(2)根据题中所给出的例子,把原式化为整式与真分式的和形式,再根据分式的值为整数即可得出x 的值.【详解】(1)由题可得,231-+x x =()2131x x +-+=2-31x +; (2)21x x -=2111x x -+-=x+1+11x -, ∵分式的值为整数,且x 为整数,∴x-1=±1, ∴x=2或0.【点睛】本题考查了分式的混合运算,熟知分式混合运算的法则是解答此题的关键.27. 【问题情境】如图,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分∠DAM .【探究展示】(1)直接写出AM 、AD 、MC 三条线段的数量关系: ;(2)AM =DE+BM 是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.【答案】(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立【解析】【分析】(1)从平行线和中点这两个条件出发,延长AE 、BC 交于点N ,如图1(1),易证△ADE ≌△NCE ,从而有AD=CN ,只需证明AM=NM 即可.(2)作FA ⊥AE 交CB 的延长线于点F ,易证AM=FM ,只需证明FB=DE 即可;要证FB=DE ,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【详解】解:(1)证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.∴△ADE≌△NCE(AAS)∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点睛】本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.。
江苏省泗阳县众兴二中 八年级放学期期中数学试题苏科版一、选择题:(每题 3 分,共 24 分.)1、不等式组x 2的解集是()x 1A 、 x > 1B 、x >- 2C 、- 2< x < 1D 、 x >1 或 x <- 22、不等式 x-1 ≤ 0 的非负整数解的个数为()A .1 个B .2 个C .3 个D .4 个3.若分式 x21的值为零,则x 的值为 ( )x 1A .-1 B.1C .1 或-1 D .04.若方程x7 k 7 有增根,则 k 的值是 ()x6 6 xA .- 1B .0C . 1D .65.函数 y =x +1中自变量 x 的取值范围是( )xA . x ≥- 1B . x >- 1C . x ≥- 1 且 x ≠ 0D .x >- 1 且 x ≠ 06.以下各分式中,最简分式是()A . 34 x yB . y 2x 2C .x 2 y 2 D . x 2y 285 x yx yx 2 y xy 2 x y 27、正比率函数 y =m x 和反比率函数 ny的一个交点为 ()()x 1, 2 ,则另一个交点为A . ( -1,- 2)B .( -2,- 1) C.(1,2)D .(2,1)8、反比率函数 yk 2 所示,则 k 的值可能是 () y在第一象限的图象如图x2A . 1B . 2C . 3D . 41二、填空题:(每空 3 分,共 33 分)O1 2 x 9、用不等式表示“ x 的 3 倍与 8 的和是一个负数”为 _________________. 第 8 题10.当 x =___________ 时,分式3无心义。
4 x 211. 已知函数 y = 2,当 x >0 时,函数图象在第 ______象限,此时 y 随 x 的增大而.x12.计算:a 29__________.a3 a313、若不等式 3x n > 0 的解集是 x < 2,则不等式 3x n < 0 的解集是14、当 a时,不等式 (a — 1)x > 1 的解集是 x <1a 115.点 p(x-2,3+x) 在第三象限 , 则 x 的取值范围是 __________________.16、反比率函数 y =k - 3的图象,当 x > 0 时, y 随 x 的增大x而增大,则 k 的取值范围是 _________________17、如 , 点 P 在反比率函数 y2的 象上, 点 P3x作 PQ ⊥y 于 Q , △ OPQ 的面 ______________18、 依据下表,作了三个推 :x 1lO 100 1000 10000 ⋯3-x-1 2.12.Ol2.0012.0001 ⋯3x① 3- x-1 (x>0)的 跟着 x 的增大愈来愈小;②3- x-1(x>0) 的 有可能等于2;x xx-1③ 3- x (x>O) 的 跟着 x 的增大愈来愈靠近于2.推 正确的有 __ 个。
八年级下学期数学期中测试卷一、单项选择题:(本题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.下列图形中,是中心对称图形的是( )A .B .C .D .2.相关部门对某厂生产的学生营养午餐重量是否达标进行检查,该厂准备运送午餐有20辆车,每辆车装100箱,每箱有50盒营养午餐,随机选取20箱,每箱抽取3盒进行称重检测,以下说法正确的是( ) A .本次抽查的总体是100营养午餐 B .本次抽查的样本是20箱营养午餐重量 C .本次抽查的个体是1盒营养午餐 D .本次抽查的样本容量是603.将分式方程5231(1)1x x x x --=++去分母,整理后得( )A .830x -=B .2410x x --=C .2720x x -+=D .2720x x --=4.下列各点在反比例函数4y x=-图像上的是( ) A .()1,4B .()2,2-C .()2,2--D .()4,1--5.平面直角坐标系中,以原点O 为旋转中心,将点(9,5)P --顺时针旋转90︒,得到点Q ,则点Q 的坐标为( ). A .(5,9)-B .(5,9)-C .(9,5)D .(9,5)-6.已知平行四边形ABCD 中,8AC =,E 是AD 上一点,DCE 的周长是平行四边形ABCD 周长的一半,且5EC =,连结EO ,则EO 的长为( )A .2B .3C .4D .5二、填空题:(本题共10小题,每小题2分,共20分)7.经过有交通信号灯的路口,遇到红灯,这是一个______事件(从“随机、不可能、必然”中选一个填入). 8.如果函数()21k y k x-=+是反比例函数,那么k 的值为________.9.若0ab ≠,且23b a =,则2a bb+的值是________. 10.如图,风车图案围绕着旋转中心至少旋转_________度,会与原图案重合.11.化简:11123x x x++= __________. 12.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________.13.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 14.如图,菱形ABCD 中,若BD =8,AC =6,则该菱形的面积为___.15.若关于x 的方程211333x kx x x x +-=--有增根,k 的值是_____;若关于x 的方程211333x kx x x x +-=--无解,k 的值是_____.16.如图,矩形ABCD 中,AD =5,AB =7,正方形MBND ′的顶点M ,N 分别在矩形的边AB ,BC 上,点E 为DC 上一个动点,当点D 与点D ′关于AE 对称时,DE 的长为_____.三、解答题:(本题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤.)17.解方程 (1)1214x x =+- (2)()()71112x x x x =+--+18.对某厂生产的直径为4cm 的乒乓球进行产品质量检查,结果如下: (1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少?19.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,其中201(2021)2x π-⎫⎛=-+ ⎪⎝⎭.20.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1;(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.21.我校为了丰富学生课余生活,计划开设以下课外活动项目:A-篮球,B-乒乓球,C-羽毛球,D-足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅统计图,请回答下列问题:(1)这次被调查的学生共有______人,扇形统计图中,“D-足球”所占圆心角的度数是______︒;(2)请你将条形统计图补充完整;(3)若该校学生总数为1000人,试估计该校学生中最喜欢“乒乓球”项目的人数.=,连接AF.求22.如图,点E在矩形ABCD的边BC上,延长EB到点F,使BF CE=.证:AD EF23.列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.24.阅读:对于两个不等的非零实数,a b ,若分式x a x b x(-)(-)的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为12,x a x b ==. 应用上面的结论解答下列问题: (1)方程86x x+=有两个解,分别为1x =_____,2x =______. (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为()1212,x x x x <,若1x 与2x 互为倒数,则1x =_____,2x =______;(3)关于x 的方程22221n nx n x -+=-的两个解分别为()1212,x x x x <,求12212x x -的值.25.已知:如图,在△ABC 中,△ABC =90°, AB =BC ,D 是AC 的中点,DE △DF ,DE 交AB 于点E ,DF 交BC 于点F . (1)求证:AE =BF ;(2)连接EF ,求△DEF 的度数;(3)若AC=EF 的取值范围.26.对于两个不等的非零实数a b 、,若分式()()x a x b x--的值为0,则x a =或x b =,又因为()()()()2x a x b x a b x ab abx a b xxx---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为1x a =,2x b =,应用上面的结论解答下列问题: (1)方程8x 6x+=的两个解中较大的一个为_______.(2)关于x 的方程m n m 4mn nx mnx 2mn -+-+=的两个解分别为12x x ,(12x x <),若1x 与2x 互为倒数,则1x =______,2x =_______.(3)关于x 的方程2n 2n 32x 2n 32x 1+-+=+-的两个解分别为12x x ,(12x x <),求21x 22x -的值.27.在直角三角形ABC 中,△B =90°,BC =6 cm ,AB =8 cm ,有一动点P 以3cm/s 的速度从点C 出发向终点B 运动,同时还有一动点Q 以5 cm/s 的速度也从点C 出发,向终点A 运动,连结PQ ,并且PQ △BC ,以CP 、CQ 为邻边作平行四边形CQMP ,设动点P 的运动时间为t (s )(0<t <2).(1)BP = (用含t 的代数式表示); (2)当点M 在△B 的平分线上时,求此时的t 值; (3)当四边形BPQM 是平行四边形时,求CM 的值; (4)连结AM ,直接写出当△AMQ 是等腰三角形时t的值.答案与解析一、单项选择题:(本题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【答案】A【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了中心对称图形的判断,掌握中心对称图形的概念并能准确运用概念对图形进行判断是解题的关键.2.相关部门对某厂生产的学生营养午餐重量是否达标进行检查,该厂准备运送午餐有20辆车,每辆车装100箱,每箱有50盒营养午餐,随机选取20箱,每箱抽取3盒进行称重检测,以下说法正确的是()A.本次抽查的总体是100营养午餐B.本次抽查的样本是20箱营养午餐重量C.本次抽查的个体是1盒营养午餐D.本次抽查的样本容量是60【答案】D【分析】根据总体、个体、样本、样本容量的定义即可判断.【详解】解:A、本次抽查的总体是100000盒营养午餐的重量的全体,故选项错误;B、本次抽查的样本是60盒营养午餐的重量,故选项错误;C 、本次抽查的个体是1盒营养午餐的重量,故选项错误;D 、样本容量是60,故选项正确. 故选:D . 【点睛】此题考查的是总体、个体、样本、样本容量.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”正确理解总体、个体、样本的概念是解决本题的关键.3.将分式方程5231(1)1x x x x --=++去分母,整理后得( )A .830x -=B .2410x x --=C .2720x x -+=D .2720x x --=【答案】C 【分析】方程两边都乘最简公分母,可把分式方程转换为整式方程. 【详解】解:方程两边都乘x (x+1), 得()(1)523x x x x +--=, 化简得:2720x x -+=. 故选:C . 【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解. 4.下列各点在反比例函数4y x=-图像上的是( ) A .()1,4 B .()2,2-C .()2,2--D .()4,1--【答案】B 【分析】 根据4y x=-得k =xy =﹣4,所以只要点的横坐标与纵坐标的积等于−4,就在函数图象上.【详解】A 、1×4=4≠﹣4,故点()1,4不在反比例函数4y x=-图像上,A 选项不符合题意; B 、﹣2×2=﹣4,故点()2,2-在反比例函数4y x=-图像上,B 选项符合题意; C 、﹣2×﹣2=4≠﹣4,故点()2,2--不在反比例函数4y x=-图像上,C 选项不符合题意; D 、﹣4×﹣1=4≠﹣4,故点()4,1--不在反比例函数4y x =-图像上,D 选项不符合题意; 故选:B【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.平面直角坐标系中,以原点O 为旋转中心,将点(9,5)P --顺时针旋转90︒,得到点Q ,则点Q 的坐标为( ).A .(5,9)-B .(5,9)-C .(9,5)D .(9,5)- 【答案】A【分析】如图,连接OP ,将OP 顺时针旋转90︒可得到OQ ,过P 点作PM y ⊥轴,过Q 点作QN y ⊥轴,根据旋转的性质可得OP=OQ ,根据角的和差关系可得NOQ MPO ∠=∠,利用AAS 可证明△OPM △△QON ,根据全等三角形的性质可得ON 、QN 的长,即可得答案.【详解】如图,连接OP ,将OP 顺时针旋转90︒可得到OQ ,且90POQ ∠=︒,OP=OQ ,过P 点作PM y ⊥轴,过Q 点作QN y ⊥轴,90QOP ∠=︒,90NOQ POM ∴∠+∠=︒,90OMP ∠=︒,90MPQ POM ∴∠+∠=︒NOQ MPO ∴∠=∠,在OPM 和QON 中,NOQ MPO QNO OMP OQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△(AAS)OPM QON ≅,△5QN OM ==,9ON PM ==, Q 在第二象限,△Q 的坐标为(-5,9).故选:A .【点睛】本题考查坐标与图形变化——旋转,正确添加辅助线构造全等三角形是解题关键. 6.已知平行四边形ABCD 中,8AC =,E 是AD 上一点,DCE 的周长是平行四边形ABCD 周长的一半,且5EC =,连结EO ,则EO 的长为( )A .2B .3C .4D .5【答案】B【分析】 利用DCE 的周长是平行四边形ABCD 周长的一半,可得出AE=EC .再根据点O 为AC 中点,可知EO 垂直平分AC ,再利用勾股定理即可求出EO .【详解】△DCE 的周长是平行四边形ABCD 周长的一半,即AD+CD=CD+DE+EC ,△AE=EC=5,即ACE △为等腰三角形.△点O 是平行四边形ABCD 对角线交点,△点O 为AC 中点.△EO 垂直平分AC .△AO=4.在Rt AOE 中,3EO ===.故选:B .【点睛】本题考查等腰三角形的判定和性质、平行四边形的性质以及勾股定理.根据题意得出AE=EC 是解答本题的关键.二、填空题:(本题共10小题,每小题2分,共20分)7.经过有交通信号灯的路口,遇到红灯,这是一个______事件(从“随机、不可能、必然”中选一个填入).【答案】随机【分析】根据事件发生的可能性的大小,从而可得:经过有交通信号灯的路口,遇到红灯是随机事件,从而可得答案.【详解】解:经过有交通信号灯的路口,遇到红灯,这是一个随机事件,故答案:随机.【点睛】本题考查的是确定事件与随机事件的概念,掌握确定事件分为必然事件,不可能事件,及随机事件的概念是解题的关键.8.如果函数()21k y k x-=+是反比例函数,那么k 的值为________.【答案】1【解析】【分析】根据反比例函数的定义.即y =k x (k≠0),只需令k −2=−1、k +1≠0即可. 【详解】因为()21k y k x-=+是反比例函数,所以2110k k ⎧-=-⎨+≠⎩,所以1k =故答案为:1.【点睛】 本题考查了反比例函数的定义,重点是将一般式y =k x (k≠0)转化为y =kx −1(k≠0)的形式.9.若0ab ≠,且23b a =,则2a b b +的值是________. 【答案】73 【分析】已知等式变形后,代入原式计算即可得到结果.【详解】解:由2b=3a ,得到a=23b , 则原式=4733b b b +=, 故答案为:73. 【点睛】此题考查了分式的求值,熟练掌握运算法则是解本题的关键.10.如图,风车图案围绕着旋转中心至少旋转_________度,会与原图案重合.【答案】60【分析】根据旋转角及旋转对称图形的定义结合图形特点解答即可.【详解】因为该图形被平分为6份,则每一份中心的角度为360660︒÷=︒,即至少旋转60度可与原图形重合,故答案为:60.【点睛】本题考查旋转角的定义及求法,熟记定义是解题关键.11.化简:11123x x x++= __________. 【答案】116x【分析】 先通分,然后再计算即可.【详解】 解:11163223661616x x x x x x x++=++=. 故答案为116x . 【点睛】本题考查了异分母分式加法,正确的通分是解答本题的关键.12.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________.【答案】9cm 12cm 34cm 36cm【分析】(1)根据平行四边形对角线互相平分,对边相等可得结果;(2)根据△AOB 的周长和AB 的长度,得到AO+BO ,从而得到AC+BD .【详解】解:(1)在平行四边形ABCD 中,△AC=18cm ,BD=24cm , △AO=12AC=9cm=CO ,BO=12BD=12cm=DO , △AB=13cm ,△CD=13cm ,△COD △的周长为CO+DO+CD=9+12+13=34cm ,故答案为:9cm ,12cm ,34cm ;(2)△△AOB 的周长为30cm ,△AB+AO+BO=30cm ,△AB=12cm ,△AO+BO=30-12=18cm ,△AC+BD=2AO+2BO=36cm .【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,平行四边形的对边相等.13.对于实数a 、b ,定义一种新运算“⊗”为:21 a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 【答案】5x =【分析】根据题中的新运算法则列出分式方程,再根据分式方程的解法解答即可.【详解】 解:211(2)(2)4x x x ⊗-==--- △方程为:12144x x =--- 去分母得124x =-+,解得:5x =,经检验,5x =是原方程的解,故答案为:x=5.【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.14.如图,菱形ABCD 中,若BD =8,AC =6,则该菱形的面积为___.【答案】24【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】△菱形ABCD 的对角线AC =6,BD =8,△菱形的面积=1·2AC BD =1682⨯⨯=24, 故答案为:24.【点睛】本题考查了菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键. 15.若关于x 的方程211333x k x x x x +-=--有增根,k 的值是_____;若关于x 的方程211333x k x x x x +-=--无解,k 的值是_____. 【答案】6 6或2【分析】△增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母3(1)0x x -=,得到0x =或3,然后代入化为整式方程的方程算出k 的值; △分式方程去分母转化为整式方程,由分式方程无解,得到最简公分母为0求出x 的值,代入整式方程即可求出k 的值.【详解】解:△方程两边都乘3(1)x x -,得3(1)1x x kx +-+=△原方程有增根,△最简公分母3(1)0x x -=,解得0x =或1,当0x =时,方程不成立.当1x =时,6k =,故k 的值是6.△分式方程去分母得:331x x kx +-+=,移项合并得:(2)4k x -=,当20k -=,即2k =时,方程无解;当6k =时,分式方程有增根,故k 的值是6或2,故答案为6;6或2.【点睛】本题考查对分式方程的增根和无解的理解,分式方程有增根即对应化简后的整式方程有解,并且解为使得最简公分母为0的值,而分式方程无解包含有增根或对应整式方程无解两种情况.16.如图,矩形ABCD 中,AD =5,AB =7,正方形MBND ′的顶点M ,N 分别在矩形的边AB ,BC 上,点E 为DC 上一个动点,当点D 与点D ′关于AE 对称时,DE 的长为_____.【答案】52或53【分析】 连接ED ′,AD ′,延长MD ′交DC 于点P .根据题意设MD ′=ND ′=BM =x ,则AM =AB -BM =7-x , AD =AD ′=5,在Rt AMD '△中,利用勾股定理可求出x=3或4,即MD ′的长,分类讨论△当MD ′=3时,设ED ′=a ,则AM =7-3=4,D ′P =5-3=2,EP =4-a ,在Rt△EPD ′中利用勾股定理可求出a 的值,即DE 的长;△当MD ′=4时,同理即可求出DE 的长.【详解】解:如图,连接ED ′,AD ′,延长MD ′交DC 于点P ,△正方形MBND ′的顶点M ,N 分别在矩形的边AB ,BC 上,点E 为DC 上一个动点,点D 与点D ′关于AE 对称,△设MD ′=ND ′=BM =x ,△AM =AB ﹣BM =7﹣x ,△AE 为对称轴,△AD =AD ′=5,在Rt AMD '△中,222AM MD AD ''+=,即22725x x +-()=,解得1234x x ==,,即MD ′=3或4.在Rt△EPD ′中,设ED ′=a ,△当MD ′=3时,AM =7﹣3=4,D ′P =5﹣3=2,EP =4﹣a ,△222PE PD ED ''+=,即22224a a +-=(), 解得a =52,即DE =52. △当MD ′=4时,AM =7﹣4=3,D ′P =5﹣4=1,EP =3﹣a ,同理,22213a a +=(﹣), 解得a =53,即DE =53. 综上所述:DE 的长为:52或53. 故答案为:52或53. 【点睛】本题考查图形对称的性质,矩形的性质以及勾股定理.根据对称并利用勾股定理求出MD ′的长度是解答本题的关键.三、解答题:(本题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤.)17.解方程(1)1214x x =+- (2)()()71112x x x x =+--+ 【答案】(1)x =-6;(2) x =5【分析】(1)由去分母、去括号、移项合并,系数化为1,即可得到答案;(2)由去分母、去括号、移项合并,系数化为1,即可得到答案;【详解】解:()12114x x =+- 方程两边同乘以(x +1)(x -4),得x -4=2(x +1),去括号,得422x x -=+,移项合并,得6x -=,系数化为1,得 x =-6,经检验, x =-6是原分式方程的解;()()()721112x x x x =+--+ 方程两边同乘以(x -1)(x +2),得x (x +2)=(x -1)(x +2)+7去括号,得22227x x x x +=+-+,移项合并,得5x =,经检验, x =5是原分式方程的解;【点睛】本题考查了解分式方程,解题的关键是熟练掌握解饿分式方程的方法,注意解分式方程需要检验.18.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少?【答案】(1)见解析;(2)0.9【分析】(1)根据表格中所给的样本容量和频数,由频率=频数:样本容量,得出“优等品”的频率,然后填入表中即可;(2)用频率来估计概率,频率一般都在0.9左右摆动,所以估计概率为0.9,这是概率与频率之间的关系,即用频率值来估计概率值.【详解】解:(1)“优等品”的频率分别为45÷50=0.9,92÷100=0.92,455÷500=0.91,890÷1000=0.89,4500÷5000=0.9.填表如下:(2)由于“优等品”的频率都在0.9左右摆动,故该厂生产的羽毛球“优等品”的概率约是0.9.【点睛】本题是一个统计问题,考查样本容量,频率和频数之间的关系,这三者可以做到知二求一,本题是一个基础题,可以作为选择题和填空题出现.19.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,其中201(2021)2x π-⎫⎛=-+ ⎪⎝⎭. 【答案】()212x -,1.9【分析】先通分,计算括号内的分式的减法运算,同步把除法转化为乘法运算,约分后得到化简的结果,再按照零次幂与负整数指数幂的含义化简,x 再代入化简后的代数式求值即可. 【详解】 解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭()()221242x x xx x x x ⎡⎤+-=-⎢⎥---⎢⎥⎣⎦ ()()22224422x x x x x x x x x ⎡⎤--=-⎢⎥---⎢⎥⎣⎦()2442x xx x x -=-- ()212x =-当20141(2021)52x π-⎛=⎫=-+⎝⎭+ =⎪时, 原式()211.952==- 【点睛】本题考查的是分式的化简求值,零次幂与负整数指数幂的含义,掌握以上知识是解题的关键. 20.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.【答案】(1)△AB1C1如图所示;见解析;(2)△A2B2C2如图所示;见解析.【分析】(1)依据△ABC绕点A顺时针旋转90°,即可得到△AB1C1;(2)依据中心对称的性质进行作图,即可得到△ABC关于坐标原点O成中心对称的△A2B2C2.【详解】(1)△AB1C1如图所示;(2)△A2B2C2如图所示.【点睛】本题主要考查了利用旋转变换进行作图,解题时注意:旋转作图有自己独特的特点,决定图形位置的因素有旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.21.我校为了丰富学生课余生活,计划开设以下课外活动项目:A-篮球,B-乒乓球,C-羽毛球,D-足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅统计图,请回答下列问题:(1)这次被调查的学生共有______人,扇形统计图中,“D-足球”所占圆心角的度数是______︒;(2)请你将条形统计图补充完整;(3)若该校学生总数为1000人,试估计该校学生中最喜欢“乒乓球”项目的人数.【答案】(1)200,72°;(2)见详解;(3)400人【分析】(1)根据统计图可得喜欢篮球的人数所占的百分比为10%,进而可得总数,然后问题可求解;(2)由(1)及统计图可直接求解;(3)先求出喜欢乒乓球的百分比,然后问题可求解.【详解】解:(1)由统计图可得:喜欢篮球的百分比为3610010 360︒⨯=︒%%,△被调查的学生共有20÷10%=200人,△喜欢足球的百分比为40÷200×100%=20%,△“D-足球”所占圆心角的度数为360°×20%=72°;故答案为200,72°;(2)由(1)及统计图可得:喜欢“C-羽毛球”的人数为200-20-80-40=60人,△补全条形统计图如图所示:(3)由(2)得:喜欢“B -乒乓球”的人数为80人, △“B -乒乓球”所占百分比为80÷200×100%=40%,△该校学生中最喜欢“乒乓球”项目的人数1000×40%=400人, 答:该校学生中最喜欢“乒乓球”项目的人数1000×40%=400人. 【点睛】本题主要考查条形统计图及扇形统计图,关键是根据统计图得到基本信息,然后进行求解即可.22.如图,点E 在矩形ABCD 的边BC 上,延长EB 到点F ,使BF CE =,连接AF .求证:AD EF =.【答案】见解析 【分析】根据矩形性质可得AD BC =,然后结合等式的性质求得BF CE =,从而使问题得证. 【详解】证明:四边形ABCD 是矩形,AD BC ∴=EF BF BE =+,=+BC CE BE ,BF CE =△EF=BCAD EF ∴=.【点睛】本题考查矩形的性质及等式的性质,题目比较简单,掌握相关性质正确推理论证是解题关键.23.列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.【答案】橘子每千克的价格为10元 【分析】设橘子每千克的价格为x 元,则香蕉每千克的价格为70%x 元,根据题意可得等量关系:2800元所购买的香蕉的重量-2500元所购买的橘子的重量=150,再列出方程,解出x 的值即可. 【详解】解:设橘子每千克的价格为x 元,则香蕉每千克的价格为70%x 元. 根据题意,得2800250015070%x x-=, 解得10x =,检验:当10x =时,70%0x ≠.所以原分式方程的解为10x =且符合题意. 答:橘子每千克的价格为10元. 【点睛】本题考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.24.阅读:对于两个不等的非零实数,a b ,若分式x a x b x(-)(-)的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为12,x a x b ==.应用上面的结论解答下列问题: (1)方程86x x+=有两个解,分别为1x =_____,2x =______. (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为()1212,x x x x <,若1x 与2x 互为倒数,则1x =_____,2x =______;(3)关于x 的方程22221n nx n x -+=-的两个解分别为()1212,x x x x <,求12212x x -的值. 【答案】(1)2,4;(2)12;2;(3)11n n -+. 【分析】(1)方程变形后,利用题中的结论确定出方程的解即可;(2)方程变形后,根据利用题中的结论,以及1x 与2x 互为倒数,确定出1x 与2x 的值即可; (3)方程变形后,根据利用题中的结论表示出为12x x 、,代入原式计算即可得到结果. 【详解】 解:(1)248,246⨯=+=,△方程86x x+=的两个解分别为122,4x x ==. 故答案为:122,4x x ==.(2)方程变形得:2222m nm n mn x x mn-⨯-+=+,由题中的结论得:方程有一根为2,另一根为12, 则121,22x x ==; 故答案为:12;2 (3)方程整理得:(1)21121n n x n n x --+=+--,得211x n -=-或21x n -=, 可得121,22n n x x +==,则原式11 nn-=+.【点睛】本题考查解分式方程、分式方程的解,整体代入法解方程,难度较大,解题时先搞清楚规律,把握已知的结论是解本题的关键.25.已知:如图,在△ABC中,△ABC=90°,AB=BC,D是AC的中点,DE△DF,DE 交AB于点E,DF交BC于点F.(1)求证:AE=BF;(2)连接EF,求△DEF的度数;(3)若AC=EF的取值范围.【答案】(1)见解析;(2)△DEF=45°;(3)≤EF≤4【分析】(1)连结BD,由等腰直角三角形,结合D为AC中点可得AD=BD=CD,BD△AC,可求△A=△DBF=45º,由DE△DF,可得△ADE=△BDF,再证△ADE△△BDF(ASA)即可;(2)由△ADE△△BDF得DE=DF,由DE△DF,可证△DEF是等腰直角三角形即可;(3)由AC=AB=BC=4,当点E与点A重合时EF最大=4,当DE△AB时,由△DEB=△B=△EDF=90º,DE=DF,可证四边形EBFD正方形,可得EF最小=BD=即可求出EF的取值范围为.【详解】解:(1)证明:连结BD,△在△ABC中,△ABC=90°,AB=BC,△△A=△C=45º,△D是AC的中点,△AD=BD=CD,BD△AC,△△DBC=△DBA=45º,△△A=△DBF=45º,△DE△DF,△△ADE+△EDB=90°,△EDB+△BDF=90°,△△ADE=△BDF,△△ADE△△BDF(ASA),△AE=BF,(2)△△ADE△△BDF,△DE=DF,△DE△DF,△△DEF是等腰直角三角形,△△DEF=△DFE=45°;(3)若AC=,在Rt△ABC中,由勾股定理AB=BC=AC=,22当点E与点A重合时EF最大=4,当DE△AB时,△△DEB=△B=△EDF=90º,DE=DF,四边形EBFD正方形,EF 最小=BD=EF的取值范围为. 【点睛】本题考查等腰直角三角形的性质与判定,三角形全等判定与性质,正方形的判定与性质,勾股定理,掌握等腰直角三角形的性质与判定方法,三角形全等判定的方法与性质,正方形的判定方法与性质,勾股定理的应用是解题关键. 26.对于两个不等的非零实数a b 、,若分式()()x a x b x--的值为0,则x a =或x b =,又因为()()()()2x a x b x a b x ab abx a b xxx---++==+-+,所以关于x 的方程abx a b x+=+有两个解,分别为1x a =,2x b =,应用上面的结论解答下列问题: (1)方程8x 6x+=的两个解中较大的一个为_______.(2)关于x 的方程m n m 4mn nx mnx 2mn -+-+=的两个解分别为12x x ,(12x x <),若1x 与2x 互为倒数,则1x =______,2x =_______.(3)关于x 的方程2n 2n 32x 2n 32x 1+-+=+-的两个解分别为12x x ,(12x x <),求21x 22x -的值.【答案】(1)4;(2)12;2;(3)12【分析】(1)方程变形后,利用题中的结论确定出较大的解即可;(2)方程变形后,根据利用题中的结论,以及1x 与2x 互为倒数,确定出1x 与2x 的值即可; (3)方程变形后,根据利用题中的结论表示出为1x 、2x ,代入原式计算即可得到结果. 【详解】 解:(1)方程86x x+=变形得:2424x x ⨯+=+, 根据题意得:12x =,24x =,则方程较大的一个解为4,故答案为:4;(2)方程变形得:2222m n m n mn x x mn-⨯-+=+,由题中的结论得:方程有一根为2,另一根为12, 则112x =,22x =; 故答案为:12;2; (3)方程整理得:(1)(3)211321n n x n n x -+-+=-++-, 得211x n -=-或213x n -=+, 可得12n x =,242n x +=, 则原式4212222n n +-==. 【点睛】此题考查了分式方程的解,弄清题中的规律是解本题的关键.27.在直角三角形ABC 中,△B =90°,BC =6 cm ,AB =8 cm ,有一动点P 以3cm/s 的速度从点C 出发向终点B 运动,同时还有一动点Q 以5 cm/s 的速度也从点C 出发,向终点A 运动,连结PQ ,并且PQ △BC ,以CP 、CQ 为邻边作平行四边形CQMP ,设动点P 的运动时间为t (s )(0<t <2).(1)BP = (用含t 的代数式表示);(2)当点M 在△B 的平分线上时,求此时的t 值;(3)当四边形BPQM 是平行四边形时,求CM 的值;(4)连结AM ,直接写出当△AMQ 是等腰三角形时t 的值.【答案】(1)BF=6-3t ;(2)35t =;(3)(4)t=54或43或5043 【分析】(1)运用线段和差直接用t 表示出BP 即可;(2)如图1,连接BM ,过EM 、DM 作ME△AB ,MD△BC,先说明EM=MD,然后再用t 表示出EM 和MD,最后列方程求出t 即可;(3)先说明四边形BPQM 是平行四边形是矩形,即M 在AB 上,然后求出BM 的长,最后运用勾股定理解答即可;(4)先用t 分别表示出AM 、QM 、AQ,分AM=QM 、AM=AQ 、AQ=QM 三种情况分别解答即可.【详解】解:(1)△PC=3t ,BP=BC -PC△BP=6-3t ;(2)如图1,连接BM ,过EM 、DM 作ME△AB ,MD△BC,△当点M 在△B 的平分线上时△EM=MD△PQ △BC△四边形EBPQ 为矩形, 四边形MDPQ 为矩形△BE=MD=PQ ,MQ=DP△平行四边形CQMP△MQ=PC=3t,即DP=PC=3t△BD=6-6t ,即EM=6-6t△CQ=5t4t = ,即MD=4t △EM=MD△6-6t=4t ,解得35t =;(3)如图2,连接CM△四边形BPQM是平行四边形,PQ△BC△四边形BPQM是矩形,△BM=QP,MQ=BP△△B=90°△M在AB上△平行四边形CQMP,△MQ=PC=3t△BP=PC=3t△BC= BP+PC=6t,即t=1△PC=3t=3,CQ=5t=5==,即BM=44△△B=90°==(4)延长QM交AB于E,过M作MD△BC△BC=6 cm,AB=8 cm,10=,△CQ=5t,△AQ=10-5t,△PC=3t4t=△△B=90°,PQ△BC,∠EQP=90°, MD△BC△四边形BEQP是矩形,四边形MQPD是矩形△BE=QP=4t,MQ=DP=3t,ME=MD△AE=8-4t,EM=6-6t==△AQ=10-5t,MQ=3t,△AMQ是等腰三角形△△AM=QM,即=3t,解得t=5043或t=2(舍);△AM=AQ,即=10-5t,解得t=43或t=0(舍);△MQ=AQ,即3t=10-5t,解得t=5 4 .综上,当△AMQ是等腰三角形时,t=54或43或5043.。
江苏沛2018-2019学度初二下学期年中考试数学试题2018~2018学年度第二学期期中考试八年级数学试题参考答案及评分意见20、解:〔1〕因为四边形ABCD是平行四边形所以∠ADC =∠ABC =120°……………………………2分∠BCD =180°-∠ABC = 60°…………………………4分〔2〕因为四边形ABCD是平行四边形所以OD=错误!未找到引用源。
BD=3 CM,OA=错误!未找到引用源。
AC=5 CM,AD=BC=7 CM…………………7分所以错误!未找到引用源。
的周长为3+5+7=15〔CM〕………………8分21、解:〔1〕90÷45%=200,200-20-30-90=60……………………2分条形统计图补充正确…………………………………3分,扇形统计图中篮球部分的圆心角的度数为:错误!未找到引用源。
……5分〔2〕55…………………7分获得的信息只要言之有理即可…………………8分22、解:∵四边形ABCD是平行四边形∴ AB∥CD,AB =CD………………………………2分∴∠BAC =∠DCA…………………………………………3分又∵AE=CF∴△ABE≌△CDF…………………………………………6分∴EB=DF……………………………………………………8分23、解:四边形EHFG是菱形………………………………………………1分理由:因为点F、G分别是AD、BD的中点,所以FG =错误!未找到引用源。
AB………………………………………………3分同理HE=错误!未找到引用源。
AB,FH=错误!未找到引用源。
CD,EG=错误!未找到引用源。
CD……………………………6分因为AB=CD,所以FG=HE=FH= EG…………………………………8分所以四边形EHFG是菱形……………………………10分24、解:〔1〕200,70,0.12,…………………………………6分〔2〕图略……………………………………………………8分〔3〕只要言之有理即可……………………………………10分25、〔1〕证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD +∠DCM=180°,…………………………………………1分∴ F、C、M三点共线,DE =DM,∠ADE =∠CDM ,………………………3分∴∠EDM = 90°∵∠EDF=45°,∴∠FDM =∠EDF = 45°. …………………………………4分在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,∴△DEF≌△DMF…………………………………………………5分∴ EF=MF. …………………………………………………6分〔2〕解:设EF= X,∵AE = CM =1,且BC = 3,∴ BM =BC + CM = 3+1= 4,∴BF=BM-MF=BM-EF = 4-X. …………………………………………7分∵EB=AB-AE=3-1=2,在RT△EBF中,由勾股定理得错误!未找到引用源。
一、选择题(每题4分,共40分)1. 下列数中,有理数是()。
A. √9B. √-4C. πD. √32. 下列方程中,无解的是()。
A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = -7D. 2x - 3 = -73. 下列图形中,是轴对称图形的是()。
A. 正方形B. 长方形C. 等腰三角形D. 梯形4. 若 a > b > 0,则下列不等式中正确的是()。
A. a² > b²B. a² < b²C. a³ > b³D. a³ < b³5. 下列函数中,是反比例函数的是()。
A. y = 2x + 3B. y = 3/xC. y = x²D. y = 2x³6. 若一个三角形的两边长分别为3cm和4cm,则第三边长的取值范围是()。
A. 1cm到7cmB. 2cm到7cmC. 3cm到7cmD. 4cm到7cm7. 下列方程中,x=2是它的解的是()。
A. x - 2 = 0B. x + 2 = 0C. 2x - 4 = 0D. 2x + 4 = 08. 在直角坐标系中,点A(2,3)关于x轴的对称点是()。
A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)9. 若 a > 0,b < 0,则下列不等式中正确的是()。
A. a + b > 0B. a - b > 0C. a + b < 0D. a - b < 010. 下列函数中,是二次函数的是()。
A. y = x² + 2x + 1B. y = x² - 2x + 1C. y = x² + 3x + 1D. y = x² - 3x + 1二、填空题(每题4分,共40分)11. 已知 a = 5,b = -3,则a² - b² = _______。
一、选择题(每题5分,共25分)1. 下列数中,有理数是()A. √2B. πC. -3/5D. 0.1010010001...答案:C解析:有理数是可以表示为两个整数比的数,选项C可以表示为-3除以5,因此是有理数。
2. 如果a < b,那么下列不等式中正确的是()A. a - 2 < b - 2B. a + 2 > b + 2C. 2a < 2bD. 3a > 3b答案:A解析:在不等式两边同时加上或减去同一个数,不等式的方向不变,所以选项A正确。
3. 已知等腰三角形ABC中,AB=AC,且底边BC的长度为10cm,那么腰AB的长度为()A. 5cmB. 10cmC. 15cmD. 20cm答案:C解析:等腰三角形的两腰相等,所以腰AB的长度为BC长度的一半加上BC长度,即10cm + 5cm = 15cm。
4. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x^3 - 3x + 4C. y = 3x - 4D. y = x^2 + 2x + 5答案:A解析:二次函数的一般形式是y = ax^2 + bx + c,其中a ≠ 0,选项A符合这个形式。
5. 一个正方形的周长是24cm,那么它的面积是()A. 36cm^2B. 48cm^2C. 64cm^2D. 96cm^2答案:C解析:正方形的周长是四边之和,所以每边长度为24cm / 4 = 6cm。
面积是边长的平方,即6cm 6cm = 36cm^2。
二、填空题(每题5分,共25分)6. -3的倒数是______。
答案:-1/3解析:一个数的倒数是1除以这个数,所以-3的倒数是-1除以3。
7. 如果x + 2 = 5,那么x的值是______。
答案:3解析:将等式两边同时减去2,得到x = 5 - 2。
8. 下列数中,属于负数的是______。
答案:-2/3解析:负数是小于零的数,选项中的-2/3小于零。
第1页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………江苏省泗阳县实验初级中学2018-2019学年八年级下学期期中考试数学试题考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共8题)1. 下列各式中,分式的个数有()、、、、、、.A .个B .个C .个D .个2.下列图形中,中心对称图形有()A .1个B .2个C .3个D .4个3. 下列事件:①如果a 、b 都是实数,那么a•b =b•a ;②打开电视机,正在播少儿节目;③百米短跑比赛,一定产生第一名;④掷一枚骰子,点数不超过5.其中是随机事件的有( )A .1个B .2个C .3个D .4个4. 下列约分中,正确的是( )A .=x 3B .=0C .D .5. 下列命题中,正确的是( )A .两条对角线相等的四边形是平行四边形B .两条对角线相等且互相垂直的四边形是矩形C .两条对角线互相垂直平分的四边形是菱形D .两条对角线互相平分且相等的四边形是正方形6. 如果把代数式中的x 与y 都扩大到原来的8倍,那么这个代数式的值( )答案第2页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .不变B .扩大为原来的8倍C .缩小为原来的D .扩大为原来的16倍7. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB =5,AC =6,过点D 作AC 的平行线交BC 的延长线于点E ,则△BDE 的面积为()A .24B .18C .48D .448. 如图,在△ABC 中,AB=8, AC=10,D 点在AC 上,AB =CD ,E 、F 分别是BC 、AD 的中点,连结EF 并延长,与BA 的延长线交于点G ,连接GD ,若△EFC =60°,则EG 的长为()A .4B .5C .6D .7第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共10题)1. 为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.2. 当x =_____时,分式的值等于0.3. 化简分式的结果是_____.4. 下列三个分式、、的最简公分母是____。
5. 如图,将Rt△ABC 绕直角顶点C 顺时针旋转90°,得到△A'B'C',连接AA′,若△1=25°,则△BAA'的度数是_____.第3页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 已知,则= .7. 小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .8. 如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合.若BC =,则折痕CE 的长为________.9. 如图,在□ABCD 中,AB =3,AD =4,△ABC =60°,过BC 的中点E 作EF △AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .10. 如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,△FBM =△CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.评卷人 得分二、解答题(共9题)11.计算:(1)(2)12. 如图,在□ABCD中,点E 、F分别在AD 、BC边上,且AE =CF ,求证:答案第4页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………BE //FD .13. (1).如果;求的值。
(2)先化简分式,然后在0,1,2三个数值中选择一个合适的a 求分式的值.14. 如图,平行四边形ABCD 中,AB=3cm ,BC=5cm ,△B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DA .(1)求证:四边形CEDF 是平行四边形; (2)①当AE= cm 时,四边形CEDF 是矩形;②当AE= cm 时,四边形CEDF 是菱形;(直接写出答案,不需要说明理由)15. 某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题: (1)该校对多少学生进行了抽样调查? (2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少? (3)若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?16. 某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:第5页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………分组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计 频数 220 16 450 频率0.040.160.400.321(1)频数、频率分布表中 , ;(2)补全频数分布直方图; (3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?17. 如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CA . (1) 求证:AF=DC ; (2) 若AC△AB ,试判断四边形ADCF 的形状,并说明理由; (3) 当△ABC 满足什么条件时,四边形ADCF 是正方形?请说明理由.18. 分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式是,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和;答案第6页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)如果分式的值为整数,求x 的整数值.19. (问题情境) 如图,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分△DAM . (探究展示) (1)直接写出AM 、AD 、MC 三条线段的数量关系: ; (2)AM =DE+BM 是否成立?若成立,请给出证明;若不成立,请说明理由. (拓展延伸) (3)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参数答案1.【答案】:mx_answer_7134337.png 【解释】:mx_parse_7134337.png 2.【答案】:mx_answer_1745082.png 【解释】:mx_parse_1745082.png 3.【答案】:mx_answer_7977597.png 【解释】:mx_parse_7977597.png 4.【答案】:mx_answer_5155243.png 【解释】:mx_parse_5155243.png第7页,总9页5.【答案】:mx_answer_7977598.png 【解释】:mx_parse_7977598.png 6.【答案】:mx_answer_7977599.png 【解释】:mx_parse_7977599.png 7.【答案】:mx_answer_5299748.png 【解释】:mx_parse_5299748.png 8.【答案】:mx_answer_7977600.png 【解释】:mx_parse_7977600.png 【答案】:mx_answer_7209058.png 【解释】:mx_parse_7209058.png 【答案】:mx_answer_7190876.png 【解释】:mx_parse_7190876.png 【答案】:mx_answer_7977601.png 【解释】:mx_parse_7977601.png 【答案】:mx_answer_2947275.png 【解释】:mx_parse_2947275.png 【答案】:mx_answer_5593042.png 【解释】:mx_parse_5593042.png 【答案】:答案第8页,总9页mx_answer_4249598.png 【解释】:mx_parse_4249598.png 【答案】:mx_answer_1735613.png 【解释】:mx_parse_1735613.png 【答案】:mx_answer_6584331.png 【解释】:mx_parse_6584331.png 【答案】:mx_answer_12342.png 【解释】:mx_parse_12342.png 【答案】:mx_answer_6977974.png 【解释】:mx_parse_6977974.png 【答案】:mx_answer_7977602.png 【解释】:mx_parse_7977602.png 【答案】:mx_answer_7850706.png 【解释】:mx_parse_7850706.png 【答案】:mx_answer_7977603.png 【解释】:mx_parse_7977603.png 【答案】:mx_answer_3195954.png第9页,总9页【解释】:mx_parse_3195954.png 【答案】:mx_answer_1128442.png 【解释】:mx_parse_1128442.png 【答案】:mx_answer_1618710.png 【解释】:mx_parse_1618710.png 【答案】:mx_answer_7977604.png 【解释】:mx_parse_7977604.png 【答案】:mx_answer_7807072.png 【解释】:mx_parse_7807072.png 【答案】:mx_answer_2427401.png 【解释】:mx_parse_2427401.png。