算法大全第22章 模糊数学模型
- 格式:pdf
- 大小:7.98 MB
- 文档页数:52
模糊数学模型
模糊数学模型是一种基于模糊集合理论,将模糊概念引入数学模型中,用来解决模糊
不确定性问题的数学方法。
模糊数学模型具有在模糊情况下进行决策和优化的能力,可以
有效地处理模糊性和不确定性的问题。
模糊数学模型最早是由L.A. Zadeh于1965年提出的,它可以被广泛地应用于工程、
管理、经济、环境等领域。
通过构建模糊数学模型,可以将人类对事物的模糊认知转化为
数学形式,用数学语言来描述和解决实际问题。
模糊数学模型基本元素包括:模糊集合、隶属函数和运算。
其中,模糊集合是一种比
传统集合更为广泛的概念,它可以描述某个事物与某种属性之间的关系。
隶属函数是模糊
集合的核心,它用来描述每个元素与模糊集合之间的隶属关系,通常用数学函数来表示。
运算则是针对模糊集合进行的各种运算,包括交、并、补、复合等。
在实际应用中,模糊数学模型可以用来解决许多具有模糊性和不确定性的问题。
比如,在工程中,可以利用模糊数学模型来设计模糊控制器,对不确定的系统进行控制;在管理中,可以利用模糊数学模型进行模糊决策,对模糊问题进行分析和解决;在经济学中,可
以利用模糊数学模型进行模糊预测,对经济变量进行分析和预测。
总之,模糊数学模型是一种能够应对模糊不确定性、处理大量信息、解决复杂问题的
有效工具,具有非常广泛的应用前景。
第四讲 模糊数学模型(Fuzzy )过份的精确反而模糊;适当的模糊反而精确。
起源:1965年 L.A.Zadeh 在杂志“ Information and Control ”上发表著名论文,首先提出模糊集合的概念,标志着模糊理论的产生。
一、模糊综合评判法 (一)模糊集合:1、X 上的模糊集合A ,由()A U x 表示的隶属函数的集合。
()A U x 表示X 隶属集合A 的程度,()A U x 越接近1 ,表示X 属于A 的程度越大。
当()A U x =1时,X 肯定属于A ; 当()A U x =0时,X 肯定不属于A ;2、若X 为离散空间,则X 可以表示为:{}12,,,n X x x x =,则模糊集合A 可以表示为:{}1122(,()),(,()),,(,())A A n A n A x U x x U x x U x =。
{}:1,2,,9Eg X =,A=“大体上与5接近的数”,模糊集合A 可以表示为A ={(1,0),(2,0),(3,0.4),(4,0.8),(5,1),(6,0.8),(7,0.4),(8,0),(9,0)}。
3、若X 为连续空间,则X 可以表示为:{},,X x x R R =∈为某连续区域,模糊集合{}(,()),A A x U x x R =∈。
Eg:若建立年轻人的隶属函数,可以根据统计资料,作出年轻人的隶属函数的大致曲线,发现与柯西分布接近。
21 ()()11()11(30)0.3 13.51(3025)10A A x aU x P x x a x a U βαβα≤⎧⎪==⎨>⎪+-⎩===+-1取a=25,=2,=10不合理11()0.8125100A U x αα==⇒=+进行反推,A 2U )1 x 251 x>25()()25110A x U x P x x ≤⎧⎪⎪==⎨-⎛⎫⎪+ ⎪⎪⎝⎭⎩从而得到( 例:为解决某一地区的交通运输问题,有两个方案可供选择:评价准则有如下四个: ①费用效益②对区域发展的贡献 ③对社会安全的贡献, ④对环境保护的贡献,评价的结果为: 满意,较满意,不太满意,不满意因素集合(准则)U ={ 费用效益, 区域发展, 社会安全, 环境保护 } 评语集(结论集)V ={ 满意, 较满意, 不太满意, 不满意 }AHP 法。
-257- 第二十二章 模糊数学模型模糊数学是研究和处理模糊性现象的数学,是在美国控制论专家A. Zadeh 教授于1965年提出的模糊集合(Fuzzy Set )基础上发展起来的一门新兴的数学分支。
这门学科经过多年的发展。
它在现实世界中的应用越来越广泛。
§1 模糊数学基本知识1.1 集合与特征函数集合是现代数学的重要概念。
一般地说,具有某种属性的事物的全体或确定对象的汇总称为一个集合。
不含任何元素的集合称为空集,记为Φ。
由所研究的所有事物构成的集合称为全集,记为Ω。
若集合Ω⊆A ,则将集合},|{Ω∈∉x A x x 且称为集合A 的补集,记为c A 。
集合及其性质可用所谓特征函数来描述。
定义 1 设Ω为全集,A 为Ω的子集,则集合A 的特征函数指的是Ω到集合}1,0{=V 的一个映射A μV A →Ω:μ)(x x A μ→其中对应规则A μ满足⎩⎨⎧∉∈=Ax A x A 01μ 集合的特征函数具有以下性质:)}(),(max{)(x x x B A B A μμμ= ,记作)()(x x B A μμ∨)}(),(min{)(x x x B A B A μμμ= ,记作)()(x x B A μμ∧)(1)(x x A A cμμ-= 1.2 模糊集合1.2.1 模糊集合的概念对于普通集合A 及其余集c A ,任何元素A x ∈或cA x ∈,二者必居其一,且仅居其一;用特征函数来表示就是0)(=x A μ或1)(=x A μ有且仅有一个成立。
然而,客观-258-世界中存在着大量的模糊概念,如“高个子”,“老年人”,这些概念无法用普通集合表示,因为这些概念与其对立面之间无法划出一条明确的分界线。
为了研究和处理这类模糊概念(或现象),就需要把普通集合引申到模糊集合,用特征函数来描述就是将集合的特征函数的值域由}1,0{两个数扩展到闭区间]1,0[,这就是建立模糊集合的基本思想。
下面我们把所讨论对象的全体称为论域。
模糊数学法引言模糊数学法是一种用于处理模糊不确定性问题的数学方法。
它是由美国数学家洛特菲尔德于1965年提出的,被认为是一种在现实世界中处理不明确、含糊和不确定性信息的有效工具。
在传统的数学中,我们通常使用精确的数值来进行计算和推导。
然而,在现实生活中,很多问题都是模糊不清的,无法用精确的数值来描述。
例如,判断一个人的身高是否高大,这个问题就存在模糊性,因为高大的标准因人而异。
在这种情况下,传统的数学方法就失去了效力,需要使用模糊数学法来处理。
模糊集合模糊集合是模糊数学的核心概念之一。
传统的集合理论中,元素要么属于集合,要么不属于集合,不存在属于程度的概念。
而在模糊集合中,元素的归属程度可以是模糊的。
一个元素可以部分属于集合,部分不属于集合。
这种归属程度的模糊性可以用[0,1]之间的数值来表示,称为隶属度。
模糊集合可以用一个隶属函数来描述。
隶属函数是一个将元素映射到隶属度的函数。
例如,对于一个描述“高大”人的模糊集合,可以用一个隶属函数将每个人映射到0到1之间的一个隶属度,表示这个人属于“高大”这个集合的程度。
模糊逻辑模糊逻辑是模糊数学的另一个重要概念。
传统的逻辑推理是基于真假的二值逻辑,而模糊逻辑则允许命题的真实性程度是模糊的。
模糊逻辑中的命题可以是“完全真”、“完全假”或者处于两者之间的模糊状态。
模糊逻辑使用模糊推理来推导出模糊命题的真实性程度。
它可以用于解决模糊不确定性问题,例如模糊控制系统中的决策问题、模糊信息检索等。
模糊数学应用模糊数学方法在很多领域都有广泛的应用。
以下是一些常见的应用领域:模糊控制模糊控制是模糊数学的一个重要应用领域。
在传统的控制系统中,输入和输出之间的关系通常是精确的,可以用精确的数学模型来描述。
然而,在现实生活中,很多控制系统的输入和输出之间的关系是模糊的,无法用精确的数学模型来描述。
在这种情况下,可以使用模糊控制方法来设计控制系统,通过模糊推理来处理模糊的输入和输出。