高考导数的题型及解题技巧
- 格式:doc
- 大小:11.00 KB
- 文档页数:2
导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。
下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。
2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。
3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。
4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。
以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。
单调区间和极值1. (最值应用,转换变量)设函数221()(2)ln (0)ax f x a x a x+=-+<.(1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.解:⑴221()2a f x a x x -'=+-222(2)1ax a x x+--=2(1)(21)ax x x +-=. 当2a <-时,112a -<,增区间为11(,)2a -,减区间为1(0,)a -,1(,)2+∞. 当2a =-时,112a -=,减区间为(0,)+∞.当20a -<<时,112a ->,增区间为11(,)2a -,减区间为1(0,)2,1(,)a-+∞.⑵由⑴知,当(3,2)a ∈--时,()f x 在[1,3]上单调递减,∴12,[1,3]x x ∈,12|()()|f x f x -≤(1)(3)f f -1(12)[(2)ln 36]3a a a =+--++, 即12|()()|f x f x -≤24(2)ln 33a a -+-. ∵12(ln 3)2ln 3|()()|m a f x f x +->-恒成立, ∴(ln 3)2ln 3m a +->24(2)ln 33a a -+-,即243ma a >-, 又0a <,∴243m a<-. ∵(3,2)a ∈--,∴132384339a -<-<-,∴m ≤133-.恒成立问题2. (最值应用)已知二次函数()g x 对x R ∀∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数19()()ln 28f xg x m x =+++(m R ∈,0x >).(Ⅰ)求()g x 的表达式;(Ⅱ)若x R +∃∈,使()0f x ≤成立,求实数m 的取值范围;(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ∀∈,,恒有12|()()|1H x H x -<.解:(Ⅰ)设()2g x ax bx c =++,于是()()()()2211212212g x g x a x c x -+-=-+=--,所以121.a c ⎧=⎪⎨⎪=-⎩,又()11g =-,则12b =-.所以()211122g x x x =--. …………3分 (Ⅱ)()2191()ln ln (0).282f xg x m x x m x m x =+++=+∈>R ,当m >0时,由对数函数性质,f (x )的值域为R ;…………4分当m =0时,2()02x f x =>对0x ∀>,()0f x >恒成立; …………5分 当m <0时,由()0mf x x x m x'=+=⇒=-,列表: x (0)m -, m - ()m -+∞,()f x '- 0 + ()f x减极小增[]min ()()ln .2mf x f m m m =-=-+-这时, []minln 0()0e<0.20mm m f x m m ⎧-+->⎪>⇔⇒-<⎨⎪<⎩,所以若0x ∀>,()0f x >恒成立,则实数m 的取值范围是(e 0]-,.故0x ∃>使()0f x ≤成立,实数m 的取值范围()(,e]0-∞-+∞ ,.…………9分(Ⅲ)因为对[1]x m ∀∈,,(1)()()0x x m H x x --'=≤,所以()H x 在[1,]m 内单调递减.于是21211|()()|(1)()ln .22H x H x H H m m m m -≤-=--2121113|()()|1ln 1ln 0.2222H x H x m m m m m m-<⇐--<⇔--< 记13()ln (1e)22h m m m m m=--<≤,则()221133111()022332h'm m m m =-+=-+>, 所以函数13()ln 22h m m m m=--在(1e],是单调增函数, 所以()()e 3e 1e 3()(e)1022e 2eh m h -+≤=--=<,故命题成立. …………12分3. 设3x =是函数()()()23,xf x x ax b e x R -=++∈的一个极值点.(1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4xa g x a e ⎛⎫>=+⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.解:(1)∵()()23xf x x ax b e-=++∴()()()()''32321x x f x x a e x ax b e --=++++-()232xx a x b a e-⎡⎤=-+-+-⎣⎦ 由题意得:()'30f=,即()23320a b a +-+-=,23b a =--∴()()2323xf x x ax a e-=+--且()()()'331x fx x x a e -=--++令()'0fx =得13x =,21x a =--∵3x =是函数()()()23,xf x x ax b ex R -=++∈的一个极值点∴12x x ≠,即4a ≠-故a 与b 的关系式为()23,4b a a =--≠-. 当4a <-时,213x a =-->,由()'0f x >得单增区间为:()3,1a --;由()'0fx <得单减区间为:(),3-∞和()1,a --+∞;当4a >-时,213x a =--<,由()'0f x >得单增区间为:()1,3a --;由()'0fx <得单减区间为:(),1a -∞--和()3,+∞;(2)由(1)知:当0a >时,210x a =--<,()f x 在[]0,3上单调递增,在[]3,4上单调递减,{},)32()4(),0(min )(3min e a f f x f +-==()()max 36f x f a ==+, ∴()f x 在[]0,4上的值域为]6,)32([3++-a e a . 易知()2254xg x a e ⎛⎫=+⎪⎝⎭在[]0,4上是增函数, ∴()g x 在[]0,4上的值域为2242525,44a a e ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦. 由于()222516042a a a ⎛⎫⎛⎫+-+=-≥ ⎪ ⎪⎝⎭⎝⎭,又∵要存在[]12,0,4ξξ∈,使得()()121f g ξξ-<成立,∴必须且只须()2025614a a a >⎧⎪⎨⎛⎫+-+< ⎪⎪⎝⎭⎩解得:302a <<.所以,a 的取值范围为30,2⎛⎫⎪⎝⎭.4. (2011北京理18倒数第3大题,最值的直接应用) 已知函数2()()xk f x x k e =-。
导数题型总结1、分离变量—————用分离变量时要特别注意是否需分类讨论(>0,=0,<0)2、变更主元-—-——已知谁的范围就把谁作为主元3、根分布4、判别式法--——-结合图像分析5、二次函数区间最值求法—--—-(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数)———-—(已知谁的范围就把谁作为主元)。
例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数",求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=-- (1)()y f x =在区间[]0,3上为“凸函数”,则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值(03x <≤)恒成立, 而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数" 则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x xF x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩ 2b a ∴-=例),10(3322R b a b x a ∈<<+-(Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围。
高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。
比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。
2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。
对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。
比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。
2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。
比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。
二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
高考压轴题:导数题型及解题方法一.切线问题题型1求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例已知函数f(x)=x 3﹣3x.(1)求曲线y=f(x)在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)题型3求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )二.单调性问题题型1求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。
分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3)在求极值点的过程中,极值点的大小关系不定而引起的分类;(4)在求极值点的过程中,极值点与区间的关系不定而引起分类等。
数学高考导数解题技巧数学导数解题方法及策略一、专题综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等伟德国际次多项式的.导数问题属于较难类型。
2.伟德国际函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高考数学导数大题技巧(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。
这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的.导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。
注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。
导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。
下面介绍一些解题技巧。
1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。
常见的函数有多项式函数、指数函数、对数函数、三角函数等。
2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。
注意求导的顺序和方法。
3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。
常见的参数方程有直角坐标系和极坐标系。
4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。
然后利用求导公式进行计算,最后求得导数。
5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。
例如,奇偶性、周期性、对称性等。
6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。
例如,物体的位移、速度和加速度。
以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。
高中数学导数难题七大题型答题技巧全解析,转给所有高中生
在考试过程中,很多高中生由于没有掌握适用的解题技巧,尤其是对相关的知识点掌握不够牢固的同学,只能放弃,今天,小编为大家总结了导数七大题型,帮助大家在高考数学中多拿一分,轻松拿下140+!
1 导数单调性、极值、最值的直接应用
2 交点与根的分布
3 不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
4 不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
5 函数与导数性质的综合运用
6 导数应用题
7 导数结合三角函数。
导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。
也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。
整个过程可简记为分解——求导——回代。
熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(lim 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。
导数题型及解题方法归纳一、导数概述导数是微积分学中的一个重要概念,它描述了函数在某一点的变化率。
具体来说,导数表示函数在某一点的切线斜率。
导数不仅在微积分中有重要应用,而且在物理、经济等领域也有广泛的应用。
二、导数的定义1. 函数f(x)在x=a处可导的充分必要条件是:$$\lim_{x \to a} \frac{f(x)-f(a)}{x-a}$$存在,若该极限存在,则称其为函数f(x)在x=a处的导数,记作$f'(a)$或$\frac{df}{dx}(a)$。
2. 函数f(x)在区间I上可导的充分必要条件是:对于I上任意一点$x_0$,极限$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$存在。
3. 函数f(x)在区间I上可导,则称函数f(x)在I上为可导函数。
若函数f(x)在区间I上每个点都可导,则称函数f(x)在I上为光滑函数。
三、常见的求导法则1. 常数法则:若c为常数,则$(c)'=0$。
2. 幂法则:若$f(x)=x^n$,其中n为正整数,则$f'(x)=nx^{n-1}$。
3. 和差法则:若$f(x)=u(x)+v(x)$,则$f'(x)=u'(x)+v'(x)$。
4. 积法则:若$f(x)=u(x)v(x)$,则$f'(x)=u'(x)v(x)+u(x)v'(x)$。
5. 商法则:若$f(x)=\frac{u(x)}{v(x)}$,其中$v(x)\neq0$,则$$f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}$$6. 复合函数求导法则:若$y=f(u), u=g(x)$,则$$\frac{dy}{dx}=\frac{dy}{du} \cdot \frac{du}{dx}=f'(u) \cdot g'(x)$$四、高阶导数1. 函数f的一阶导数为$f'$,二阶导数为$(f')'$或$f''$。
导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。
2.变更主元:已知谁的范围就把谁作为主元。
3.根分布。
4.判别式法:结合图像分析。
5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。
基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。
2.画两图或列表。
3.由图表可知。
另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。
例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。
已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。
解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。
当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。
根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。
由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。
因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。
高中导数七大题型解题技巧高中导数七大题型解题技巧1. 导数的定义与计算•理解导数的定义:导数表示函数在某一点的变化率,可以通过极限的方法求得。
•使用导数的基本计算公式:对于常见的函数,可以根据函数的性质和导数的定义来计算导数。
2. 函数的求导法则•使用求导法则简化求导过程:如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
•注意链式法则的应用:当函数由多个复合函数组成时,可以使用链式法则简化求导过程。
3. 高阶导数的计算•理解高阶导数的概念:高阶导数表示导数的导数,可以通过多次求导得到。
•使用链式法则和求导法则计算高阶导数:根据函数的性质和导数的法则,可以计算出高阶导数。
4. 函数的极值与单调性•寻找函数的极值点:通过判断导数的正负来确定函数的增减性和极值点。
•判断函数的单调性:根据导数的正负判断函数的单调递增和单调递减区间。
5. 函数的凹凸性与拐点•判断函数的凹凸性:通过求导数的二阶导数和符号判断函数的凹凸性。
•寻找函数的拐点:通过判断导数的二阶导数的变化来确定函数的拐点。
6. 函数的渐近线与极限•理解函数的渐近线:渐近线是函数在无穷远点或某一点趋近于无穷时的极限情况。
•计算函数的极限:根据导数和高阶导数的性质计算函数在某一点的极限。
7. 应用题的解题方法•理解应用题的背景和要求:应用题通常涉及到实际问题,需要将问题转化为数学模型进行求解。
•使用导数解决应用题:根据问题的要求,建立函数模型并使用导数来解决问题。
以上是高中导数七大题型解题的一些基本技巧和方法,希望可以帮助到你在学习导数时的理解和应用。
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
二、热点题型分析题型一:利用导数研究函数的极值、最值。
1. 32()32f x x x =-+在区间[]1,1-上的最大值是 22.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P Θ所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f 当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。
导数题型归纳请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;0)('=x f 第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数在区间D 上的导数为,在区间D 上的导数为,若在区间D 上,()y f x =()f x '()f x '()g x 恒成立,则称函数在区间D 上为“凸函数”,已知实数m 是常数,()0g x <()y f x =4323()1262x mx x f x =--(1)若在区间上为“凸函数”,求m 的取值范围;()y f x =[]0,3(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.2m ≤m ()f x (),a b b a -解:由函数 得4323()1262x mx x f x =--32()332x mx f x x '=--2()3g x x mx ∴=--(1) 在区间上为“凸函数”,()y f x = []0,3则 在区间[0,3]上恒成立 2()30g x x mx ∴=--<解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当时, 恒成立,0x =2()330g x x mx ∴=--=-<当时, 恒成立03x <≤2()30g x x mx =--<等价于的最大值()恒成立,233x m x x x ->=-03x <≤而()是增函数,则3()h x x x=-03x <≤max ()(3)2h x h ==2m ∴>(2)∵当时在区间上都为“凸函数” 2m ≤()f x (),a b 则等价于当时 恒成立2m ≤2()30g x x mx =--<解法三:变更主元法再等价于在恒成立(视为关于m 的一次函数最值问题)2()30F m mx x =-+>2m ≤22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩2b a ∴-=例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a 的取值范围. ],2,1[++∈a a x ()f x a '≤(二次函数区间最值的例子)解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a <<令得,0)(>'x f )(x f 令得的单调递减区间为(-,a )和(3a ,+),0)(<'x f )(x f ∞∞∴当x=a 时,极小值= 当x=3a 时,极大值=b. )(x f ;433b a +-)(x f (Ⅱ)由||≤a ,得:对任意的恒成立①)(x f '],2,1[++∈a a x 2243a x ax a a -≤-+≤则等价于这个二次函数 的对称轴()g x max min ()()g x a g x a≤⎧⎨≥-⎩22()43g x x ax a =-+2x a =01,a << (放缩法)12a a a a +>+=即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
高考导数的题型及解题技巧
高考中,导数是数学必修内容之一,也是考生需要重点掌握的知识点之一。
导数作为微积分的基础,不仅能帮助我们求出函数的极值、最大值、最小值等,还能证明函数的性质,解决数学问题。
在高考中,涉及导数的题目类型有很多,以下是常见的几种题型及解题技巧。
一、求导数
求导数是导数的基础操作,也是高考中出现频率最高的题型之一。
求导数的方法有很多,如极限法、公式法、差商法、反函数法等。
在解题时,需要掌握各种方法,依据题目的具体情况选择合适的方法求解。
二、函数的单调性和极值
要判断函数的单调性和极值,需要先求出函数的导数,然后通过导数的符号来判断函数的单调性和极值。
如果导数为正,则函数单调递增;如果导数为负,则函数单调递减;如果导数为0,则函数取极值。
在解题时,需要注意导数为0时,还需要判断函数是否具有拐点。
三、曲线的凹凸性和拐点
要判断曲线的凹凸性和拐点,同样需要求出函数的导数和二阶导数,
然后通过二阶导数的符号来判断曲线的凹凸性和拐点。
如果二阶导数为正,则曲线凹向上;如果二阶导数为负,则曲线凹向下;如果二阶导数为0,则曲线具有拐点。
在解题时,需要注意拐点处是否是函数的极值点。
四、函数的应用题
导数在实际生活中有很多应用,如速度、加速度、最优化等。
在解决这类题目时,需要将问题转化为函数的导数问题,然后根据导数的性质求解。
在解题时,需要理解速度、加速度等概念,并注意题目中给定的条件。
总之,导数是高考数学的重点和难点,需要考生认真掌握,熟练运用。
在复习时,建议多做例题,掌握各种求导方法和计算技巧,熟悉各种题型的解题思路,才能在考试中发挥出自己的水平。