齿轮设计的一般步骤
- 格式:doc
- 大小:26.50 KB
- 文档页数:12
齿轮的设计计算过程
齿轮的设计计算过程可以分为以下几个步骤:
1. 确定设计参数:确定齿轮的类型、传动功率、转速、齿数、模数等设计参数。
2. 确定齿轮的齿数和模数:根据设计参数中的传动功率和转速,计算出齿轮的齿数和模数。
3. 确定齿轮的几何参数:根据齿数和模数,计算齿轮的几何参数,如分度圆直径、齿高、齿厚等。
4. 确定齿轮的强度参数:根据设计参数中的功率和转速,计算齿轮的强度参数,如接触强度和弯曲强度。
5. 进行强度校核:根据计算出的齿轮强度参数,进行强度校核,确定齿轮的寿命和安全系数。
6. 进行结构设计:根据强度校核的结果,进行齿轮的结构设计,包括齿轮轴的直径、齿轮的材料选择等。
7. 进行CAD绘图和制造:根据设计结果,进行CAD绘图和制造,完成齿轮的设计和制造。
需要注意的是,在设计计算过程中,需要考虑到齿轮的噪音、磨损、振动等问题,以确保齿轮的设计质量和可靠性。
四、硬齿面斜齿轮传动设计步骤已知:传递功率P ,转速1n 、2n (或传动比i ,齿数比u );齿轮的布置情况,载荷的变动情况,每天工作小时数,使用年限等。
设计:齿轮的材料,热处理,主要尺寸等 步骤:1.选择齿轮材料:包括大小齿轮的材料,热处理,硬度,查表7-5选择精度等级(一般为6~9级);初选螺旋角()815β选12040Z = (闭式);117~20Z =(开式) 但1HBS 、2HBS >3502.确定许用应力1)许用接触应力的确定 式(7-24)[]lim H bH HL HK S σσ=① 由表7-8 ,查lim 1H b σ 、lim 2H b σ,并取二者的小值计算[]H σ② 取安全系数 H S (课本:P145) ③ 计算应力循环次数60nt H N =, n 是与[]H σ对应齿轮的转速。
④ 由图7-35 查循环基数 HO N⑤ 计算HL K = 当H HO N >N 时,取1HL K = ⑥ 计算[]H σ2) 许用弯曲应力 式(7-30)[]l i m F bF FC FL FK K S σσ=①由表7-9,查lim 1F b σ ,lim 2F b σ ②取安全系数F S (课本:P148) ③取K FC (课本:P148)④计算K FL 一般FV H N =N ,6FO N =410⨯当HBS >350时,FL K =1 ≥,但≤1.6⑤计算[]1F σ、[]2F σ3.计算工作转矩6PT=9.5510n⨯ (如果已知,就不必计算) 4.根据齿根弯曲强度公式,求模数式(7-29)n mm k ≥初步计算时,取 1.4m k = ;由表7-7查d ψ ;图7-32查K βY F1 、Y F2 由 Z 1 、 Z 2 查图7-38得到 计算[]11F F Y σ 、[]22F F Y σ 并代入二者中的大值求出n m ,并取标准值,则12()2cos n m Z Z a β+=,圆整后,重新计算β:12()arccos 2n m Z Z aβ+=精确到秒则11cos n m Z d β=,1d b d ψ= 圆整后作为b 2 ,12(5~10)b b =+ 实际的21d b d ψ=5. 精确验算齿根弯曲应力式(7-28))[]1212F F Fd nT K K Y Y Y d m βνεβσσψ=≤式中:1Y K εβαε= , 0.9 1.0K ε= 12111.88 3.2cos Z Z αεβ⎡⎤⎛⎫=-+⎢⎥⎪⎝⎭⎣⎦1140Y ββ=-, 11601000d n πν=⨯ m/s由图7-33查K ν,并计算:[]1111212F F F d n T K K Y Y Y d m βνεβσσψ=≤ ;[]1222212F F F d nT K K Y Y Y d m βνεβσσψ=≤如不满足,可增加模数重新验算,并将该模数作为该对齿轮的模数。
齿轮设计步骤范文齿轮设计是一项复杂的工程任务,需要考虑多个方面,包括应力分析、齿形设计、轴向力分析等。
以下是一个齿轮设计的基本步骤:1.确定设计需求:首先,需要明确齿轮的使用条件和要求,包括转速、扭矩、工作环境等。
这些条件将影响到齿轮的强度和材料的选择。
2.齿轮几何参数选择:根据设计需求,选择齿轮的几何参数,如模数、压力角、齿数等。
这些参数将决定齿轮的外形和尺寸,对应着材料的选择和强度的计算。
3.齿轮强度计算:根据齿轮的几何参数和工作条件,进行强度计算。
这包括齿轮的承载能力、寿命等。
需要考虑到不同类型的应力,如弯曲应力、接触应力等。
4.齿形设计:根据齿轮的几何参数和强度计算结果,进行齿形设计。
根据齿轮的模数和压力角,绘制出齿轮轮廓,包括齿廓曲线和齿宽等。
5.齿轮材料选择:根据齿轮的使用条件和强度要求,选择合适的齿轮材料。
齿轮常用的材料有钢、铸铁、铜合金等,不同材料有不同的强度和硬度特性。
6.热处理设计:对于一些高强度的齿轮,需要进行热处理来提高其硬度和强度。
根据齿轮的材料和使用条件,选择合适的热处理方法,如淬火、回火等。
7.轴向力分析:在设计齿轮传动系统时,需要考虑轴向力的影响。
根据齿轮的几何参数和工作条件,计算齿轮的轴向力,以确定轴承的选型和轴的强度。
8.传动效率计算:根据齿轮的几何参数和齿轮材料的选择,计算齿轮传动的效率。
传动效率与齿轮的设计和制造质量,以及润滑和摩擦等因素有关。
9.优化设计:根据以上步骤的结果,对齿轮设计进行优化。
可以对齿轮的几何参数、材料和热处理等进行调整,以提高齿轮的强度、耐用性和传动效率。
10.齿轮制造和测试:最后,根据设计结果,进行齿轮的制造和测试。
在齿轮的制造过程中,需要严格控制齿轮的几何尺寸和精度,以及材料的选择和热处理等。
齿轮设计涉及多个学科领域,需要综合考虑多个因素。
设计人员需要有扎实的理论知识和丰富的工程经验,以确保齿轮的正常工作和可靠性。
同时,设计人员还需要对相关的标准和规范有充分的了解,并密切关注齿轮设计领域的最新发展。
齿轮的设计参数(直齿圆柱齿轮)2009年07月30日星期四 11:58由于齿轮所采用的标准制度各不相同,有时还遇到采用短齿齿形、变位齿轮,需要测量的参数很多,所以齿轮测量是一项比较复杂的工作。
但是各种齿轮标准制度,都是规定以模数(或径节)作为齿轮其他参数和尺寸的计算依据,因此首先要准确地判定模数(或径节)的大小;同时压力角是决定齿形的基本参数,所以也要准确判定。
一般齿轮参数测量的步骤大体如下:(1)数出齿数;(2)测量模数模数(或径节)、判定压力角;(3)测定齿顶高系数;(4)测量顶隙系数;(5)测定变位(移距)系数;(6)测定齿高变动系数。
直齿圆柱齿轮的基本参数、各部分的名称和尺寸关系当圆柱齿轮的轮齿方向与圆柱的素线方向一致时,称为直齿圆柱齿轮。
表10.1.2-1列出了直齿圆柱齿轮各部分的名称和基本参数。
表10.1.2-1 直齿圆柱齿轮各部分的名称和基本参数名称符号说明示意图齿数z模数mπd=zp, d=p/πz,令m=p/π齿顶圆da通过轮齿顶部的圆周直径齿根圆df通过轮齿根部的圆周直径分度圆d齿厚等于槽宽处的圆周直径齿高h齿顶圆与齿根圆的径向距离模数m是设计和制造齿轮的重要参数。
不同模数的齿轮要用不同的刀具来加工制造。
为了便于设计和加工,模数数值已标准化,其数值如表10.1.2-2所示。
表10.1.2-2 齿轮模数标准系列(摘录GB/T1357-1987)注:选用模数时,应优先选用第一系列;其次选用第二系列;括号内的模数尽可能不用。
标准直齿圆柱齿轮各部分的尺寸与模数有一定的关系,计算公式如表10.1.2-3。
表10.1.2-3 标准直齿圆柱齿轮轮齿各部分的尺寸计算一对相互啮合的齿轮,模数、压力角必须相等。
标准齿轮的压力角(对单个齿轮而言即为齿形角)为20°。
CATIA____斜齿轮教程CATIA是一款知名的三维设计软件,广泛应用于机械设计领域。
斜齿轮是一种常见的齿轮类型,其特点是齿轮的齿面与齿轮轴线呈一定的角度。
本文将介绍使用CATIA软件进行斜齿轮设计的基本步骤,以帮助读者更好地了解和使用CATIA进行斜齿轮设计。
首先,启动CATIA软件并创建一个新的零件文件。
选择“零件设计”模板,然后在工作区中选择适当的坐标系。
接下来,选择绘图工具栏上的“齿轮”功能。
在弹出的对话框中,选择所需的齿轮类型为“斜齿轮”。
根据需要设置斜齿轮的系数和参数,如模数、齿数、螺旋角等。
点击确定按钮后,齿轮的几何形状将被创建。
接下来,选择“操作”菜单中的“修剪”功能,用于修剪斜齿轮的边缘。
选择需要修剪的边缘,然后点击确定按钮。
然后,选择“操作”菜单中的“倒角”功能,用于给斜齿轮的边缘添加倒角。
选择需要添加倒角的边缘,然后设置合适的倒角半径和倒角类型,最后点击确定按钮。
接下来,选择“操作”菜单中的“镜像”功能,用于创建斜齿轮的镜像副本。
选择需要镜像的斜齿轮,并选择适当的镜像平面,最后点击确定按钮。
最后,选择“文件”菜单中的“保存”功能,将斜齿轮设计保存为CATIA文件格式。
为了方便之后的参考和修改,建议给文件起一个合适的名称,并选择一个合适的文件夹进行保存。
通过以上步骤,我们完成了使用CATIA软件进行斜齿轮的基本设计。
在实际设计过程中,还可以根据需要对斜齿轮进行进一步的修改和优化,如添加孔洞、修改齿轮参数等。
此外,CATIA还提供了许多其他高级功能,如齿轮的齿面修整、齿轮的装配设计等,可以根据需要深入学习和应用。
总结起来,CATIA是一款功能强大的三维设计软件,在斜齿轮设计中具有广泛的应用。
掌握CATIA的基本操作和斜齿轮的设计原理,能够帮助我们更好地进行斜齿轮的设计和优化。
以上是CATIA斜齿轮设计的基本步骤,希望对读者有所帮助。
如果想要深入学习CATIA的其他设计功能和技巧,还需要进一步的学习和实践。
直齿圆柱齿轮设计1.齿轮传动设计参数的选择齿轮传动设计参数的选择:1)压力角α的选择2)小齿轮齿数Z1的选择3)齿宽系数φd的选择齿轮传动的许用应力精度选择压力角α的选择由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。
我国对一般用途的齿轮传动规定的压力角为α=20o。
为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。
但增大压力角并不一定都对传动有利。
对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16 o~18 o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。
小齿轮齿数Z1的选择若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。
另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。
但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。
不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。
闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。
开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。
为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z1≥17。
Z2=u·z1。
齿宽系数φd的选择由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。
圆柱齿轮齿宽系数的荐用值列于下表。
对于标准圆柱齿轮减速器,齿宽系数取为所以对于外捏合齿轮传动φa的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。
机械制造工艺学课程设计题目:直齿圆柱齿轮设计姓名(学号):)教学院:专业班级:指导教师:完成时间:教务处制目录引言 (1)1.齿轮零件结构分析 (1)1.1 齿轮零件图分析 (1)1.2 齿轮零件结构分析 (2)1.2.1零件表面组成 (2)1.2.2确定主要表面与次要表面 (2)1.2.3零件结构工艺性分析 (2)2.毛坯的确定 (2)2.1毛坯的确定原则 (2)2.2毛胚的选择原则 (2)3.选择定位基准 (3)3.1以内孔和端面定位 (3)3.2以外圆和端面定位 (3)4.拟定齿轮的工艺路线 (3)4.1确定加工方案 (3)4.1.1齿坯加工方案的选择 (3)4.1.2齿形加工 (4)4.2划分加工阶段 (4)4.3选择定位基准 (4)4.4加工工序安排 (4)5.确定加工尺寸和切削用量 (4)5.1背吃刀量的选择 (4)5.2进给量的选择 (5)5.3切削速度的选择 (5)6.设计工序内容 (5)6.1确定工序尺寸 (5)6.2选择设备工装 (6)7.夹具设计 (6)7.1机床夹具的定位误差 (6)7.1.1心轴 (6)7.1.2定位套 (7)7.2机床夹具的对刀装置 (7)7.2.1确定插床夹具对刀块位置尺寸的步骤 (8)7.2.2精度校验 (8)7.3机床夹具的选择原则 (8)9.附件 (9)参考文献 (10)致谢词 (10)引言机械制造工艺学课程设计是我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的。
这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要的地位。
就我个人而言,我希望能通过这次课程设计,了解并认识一般机器的生产工艺过程,巩固和加深已学过的技术基础课和专业课的知识,理论联系实际,对自己未来将从事的工作惊醒一次适应性训练,从中锻炼自己分析问题、解决问题的能力。
为今后的工作打下一个良好的基础。
直齿圆柱齿轮设计1.齿轮传动设计参数的选择齿轮传动设计参数的选择:1)压力角α的选择2)小齿轮齿数Z1的选择3)齿宽系数φd的选择齿轮传动的许用应力精度选择压力角α的选择由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。
我国对一般用途的齿轮传动规定的压力角为α=20o。
为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。
但增大压力角并不一定都对传动有利。
对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16 o~18 o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。
小齿轮齿数Z1的选择若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。
另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。
但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。
不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。
闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。
开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。
为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z1≥17。
Z2=u·z1。
齿宽系数φd的选择由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。
圆柱齿轮齿宽系数的荐用值列于下表。
对于标准圆柱齿轮减速器,齿宽系数取为所以对于外捏合齿轮传动φa的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。
齿轮传动的设计步骤齿轮传动的设计步骤齿轮传动是一种常见且重要的机械传动方式,广泛应用于机械设备和工业机械中。
其作用是通过两个或多个齿轮之间的啮合,将动力或运动传递给其他零件或机械系统。
齿轮传动设计的核心在于确定合适的齿轮参数,以满足传动系统的要求。
下面,我们将介绍齿轮传动的设计步骤。
第一步:确定传动比和传动功率在开始齿轮传动的设计前,需要明确传动系统所需的传动比和传动功率。
传动比是指输入轴的转速与输出轴的转速之间的比值。
传动功率则是指传递给输出轴的功率大小。
根据具体应用需求,我们可以确定传动比和传动功率的数值。
第二步:计算齿轮的模数在传动比和传动功率确定后,接下来需要计算齿轮的模数。
齿轮的模数是指齿轮齿数与齿轮模的比值,用来描述齿轮齿数和齿轮大小的关系。
一般来说,根据传动功率和转速来计算齿轮的模数,以满足传动的要求。
第三步:选择合适的齿轮材料齿轮传动的设计过程中,选择合适的齿轮材料十分重要。
齿轮材料应具有良好的耐磨性、耐蚀性、强度和刚度,以确保传动系统的可靠性和寿命。
常用的齿轮材料包括钢、铸铁、铜合金等。
根据具体的应用需求和工作环境选择合适的齿轮材料。
第四步:确定齿轮的齿数和齿形根据传动比和齿轮模数,确定齿轮的齿数。
齿数的确定需要考虑到齿轮啮合条件的要求,如齿面接触、齿轮强度等。
齿形的设计也是十分重要的一步,合理的齿形设计可以提高齿轮传动的效率和传动能力。
常见的齿形有直齿、斜齿、渐开线齿等。
第五步:计算齿轮的几何参数在确定齿数和齿形后,需要计算齿轮的几何参数。
包括齿轮的分度圆直径、齿顶圆直径、齿根圆直径、齿隙等。
这些参数直接影响着齿轮的传动特性,如传动比、啮合条件等。
通过计算这些几何参数,可以确保齿轮传动的可靠性和稳定性。
第六步:计算齿轮的强度在齿轮传动设计的过程中,还需要计算齿轮的强度。
齿轮的强度是指齿轮在工作过程中能够承受的最大载荷。
通过计算齿轮的强度,可以判断齿轮是否能够满足工作条件下的要求。
齿轮加工方法
齿轮加工是一种制造过程,通常用于生产用于传递动力和驱动机械装置的齿轮。
齿轮加工的目的是根据设计要求,精确地加工出具有特定模数、齿数和齿形的齿轮。
齿轮加工通常包括以下步骤:
1. 设计和准备工作:在加工齿轮之前,需要进行设计和准备工作。
设计包括确定齿轮的模数、齿数、齿轮类型等。
准备工作包括选择合适的材料,准备加工设备和工具等。
2. 齿轮铣削:齿轮铣削是齿轮加工中常用的一种方法。
它通过在齿轮上使用铣床和刀具来逐渐移除材料,形成齿槽和齿形。
在铣削过程中,需要根据设计要求来调整铣刀的位置和切削深度。
3. 齿轮磨削:齿轮磨削是一种用来提高齿轮精度和表面质量的加工方法。
它使用磨削机床和磨削工具将齿轮的尺寸和形状精确地磨削到设计要求的尺寸。
磨削过程中,需要控制磨削的速度、进给量和切削深度,以获得最佳的磨削效果。
4. 齿轮成型:齿轮成型是一种通过齿轮成型机床来制造齿轮的加工方法。
它使用切削刀具和工件的相对运动来形成齿轮的齿槽和齿形。
在成型过程中,需要根据设计要求来调整切削刀具的位置和姿态。
除了以上这些传统的齿轮加工方法,还有一些新的加工技术正
在不断发展,例如激光加工、电火花加工和3D打印等。
这些新技术能够更加精确和高效地制造齿轮,使齿轮加工更加灵活和多样化。
总的来说,齿轮加工是一项复杂的制造工艺,需要经验丰富的操作人员和精密的加工设备。
通过合理选择合适的加工方法和技术,可以生产出高精度和高质量的齿轮,满足各种不同应用的需求。
1.选定类型,精度等级,材料及齿数 (1)直齿圆柱硬齿面齿轮传动 (2)精度等级初定为8级 (3)选择材料及确定需用应力小齿轮选用45号钢,调质处理,(217-255)HBS 大齿轮选用45号钢,正火处理,(162-217)HBS (4)选小齿轮齿数为Z1=24,Z2=3.2x24=76.8.取Z2=772. 按齿面接触强度设计计算(1)初选载荷系数K t电动机;载荷状态选择:中等冲击;载荷系数K t 的推荐范围为(1.2-2.5),初选载荷系数K t :1.3, (2)小齿轮转矩)(29540/97039550000/9550111mm N n P T ⋅=⨯==(3)选取齿宽系数1=d φ.⑷取弹性影响系数218.189MPa Z E =⑸按齿面硬度查得小齿轮的接触疲劳强度极限为MPa 5801lim =σ。
大齿轮的接触疲劳强度极限为MPa 5202lim =σ ⑹计算应力循环次数N 1=60n 1jl h =60X970X1X(16X300X15)=4.470X109N 99210397.12.310470.4⨯=⨯=⑺取接触疲劳寿命系数K .89.0,88.021==HN HN K⑻计算接触疲劳许用应力 取失效概率为1%,安全系数S=1[]a HN H MP MPa SK 4.5105709.01lim 11=⨯==σσ[]a HN H MP MPa SK 8.46253095.02lim 22=⨯==σσ⑼按齿面接触强度设计计算 ①试算小齿轮分度圆直径mm Z u u T K d H E d t t 248.56)8.4628.189(2.32.4110954.28.132.2)][(132.23243211=⨯⨯⨯=+〉σφ②计算齿轮圆周转速v 并选择齿轮精度 s m n d V t /48.2100060970248.5610006011=⨯⨯⨯=⨯=ππ③计算齿轮宽度bmm d b t d 248.56248.5611=⨯=⨯=φ④计算齿轮宽度b 与齿高h 之比 模数 mm mm Z d m t 033.22272.44111===齿高 mm mm m h 574.4033.225.225.21=⨯==67.10=hb⑤计算载荷系数根据v=2.27m/s 。
齿轮传动的设计计算
齿轮传动的设计计算通常涉及以下几个方面:
1. 齿轮尺寸计算:首先需要确定主动轮和从动轮的模数(齿轮的模数是齿轮齿数与齿轮直径的比值),根据传动比和齿数关系,计算主动轮和从动轮的齿数。
然后根据齿轮的模数和齿数,计算出齿轮的分度圆直径、齿顶圆直径和齿根圆直径。
2. 传动比计算:根据所需的输入转速和输出转速,计算传动比。
传动比可以通过齿轮齿数之比来确定。
3. 齿轮强度计算:根据传动功率和转速,计算齿轮的弯曲强度和接触强度。
弯曲强度是指齿轮在承受力矩时的抗弯能力,接触强度是指齿轮齿面在传递力矩时的抗磨损能力。
根据齿轮材料的强度参数和几何参数,使用相应的公式计算弯曲强度和接触强度,并与所需的传动功率和转速进行比较,确保齿轮能够满足设计要求。
4. 齿轮齿形计算:根据齿轮的模数、齿数和压力角,计算齿轮的齿形。
齿形计算包括计算齿顶高度、齿根高度、齿根圆曲率半径等参数。
通过合理选择这些参数,可以确保齿轮传动的平稳运行和高效传动。
5. 齿轮轴的计算:根据齿轮的传动功率和转速,计算齿轮轴的强度。
齿轮轴的强度计算涉及到材料的抗弯强度和抗剪强度,并考虑到齿轮轴的几何参数。
以上是齿轮传动设计计算的一般步骤,具体的计算方法和公式可能会根据不同的设计要求和标准有所差异。
在实际的工程设计中,通
常需要参考相关的齿轮设计手册或使用专业的齿轮设计软件来完成计算。
齿轮轴的加工工艺步骤
一、前期准备
齿轮轴是一种重要的机械零件,其加工工艺需要进行严密的前期准备。
首先,需要确定齿轮轴的材质和规格。
其次,需要了解齿轮轴的设计
图纸和加工要求。
最后,需要准备好各种加工设备和工具。
二、车削加工
1.粗车
首先,在车床上将齿轮轴的原材料进行粗车,使其外形尺寸达到设计
要求。
2.细车
接下来,在车床上对齿轮轴进行细车,使其表面光滑度达到设计要求。
三、铣削加工
1.铣平端面
在铣床上对齿轮轴两端进行铣削,使其两端面平行度达到设计要求。
2.铣削键槽
在铣床上对齿轮轴进行键槽的铣削,使其与配合零件相匹配。
四、热处理
1.淬火处理
将经过精密加工的齿轮轴放入淬火炉中进行淬火处理,以提高其硬度和强度。
2.回火处理
将淬火后的齿轮轴放入回火炉中进行回火处理,以降低其脆性和提高其韧性。
五、磨削加工
1.粗磨
在磨床上对齿轮轴进行粗磨,使其表面光滑度达到设计要求。
2.细磨
在磨床上对齿轮轴进行细磨,使其表面光滑度更加精细。
六、齿轮加工
1.车削齿形
在齿轮车床上对齿轮进行车削,使其齿形符合设计要求。
2.滚削齿形
在滚齿机上对齿轮进行滚削,使其齿形更加精细。
七、组装
将已经经过各种加工的零部件按照设计要求进行组装,完成整个齿轮轴的制作过程。
八、检验和调试
最后,在专业的检测设备上对制作好的齿轮轴进行检验和调试,确保其质量符合设计要求。
1、根据负载、以及运动状态(速度、是垂直运动还是水平运动)来计算驱动功率2、初步估定齿轮模数(必要时,后续进行齿轮强度校核,若在强度校核时,发现模数选得太小,就必须重新确定齿轮模数,关于齿轮模数的选取,一般凭经验、或是参照类比,后期进行安全校核)3、进行初步的结构设计,确定总传动、以及确定传动级数(几级传动)4、根据总传动比进行分配,计算出各级的分传动比5、根据系统需要进行详细的传动结构设计(各个轴系的详细设计),这样的设计一般还在总装图上进行。
6、在结构设计的时候,若发现前期的参数不合理(包括齿轮过大、相互有干涉、制造与安装困难等),就需要及时的返回上面程序重新来过7、画出关键轴系的简图(一般是重载轴,当然,各个轴系都做一遍当然好),画出各个轴端的弯矩图、转矩图,从而找出危险截面,并进行轴的强度校核8、低速轴齿轮的强度校核9、安全无问题后,拆分零件图渐开线圆柱齿轮传动设计程序主要用于外啮合渐开线圆柱标准直齿齿轮传动设计、渐开线圆柱标准斜齿齿轮传动设计和渐开线圆柱变位齿轮传动设计。
程序中的各参数和各设计方法符合相关的国家标准,即:渐开线圆柱齿轮基本轮廓(GB/T1356-2001)、渐开线圆柱齿轮模数(GB/T1357-1987等效采用ISO54-1977),以及《渐开线圆柱齿轮承载能力计算方法》(GB/T3480-1997等效ISO6336-1966)、渐开线圆柱齿轮精度(GB/T10095-2001等效ISO1328-1997)。
程序根据输入的齿轮传动设计参数和相关设计要求,进行齿轮几何尺寸的计算、齿轮接触疲劳强度校核和弯曲疲劳强度校核的计算,以及相关公差值的计算等。
整个设计过程分步进行,界面简洁,操作方便硬齿面齿轮风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。
中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。
输出轴上的齿轮承受中间轴传过来的扭矩,同时也承受输出端刹车时带来的刹车力矩。
齿轮设计毕业论文齿轮设计毕业论文齿轮设计是机械工程领域中一个重要的研究方向,它涉及到机械传动系统的设计和优化。
在现代工业中,齿轮作为一种常见的传动元件,广泛应用于各种机械设备中,如汽车、飞机、船舶等。
因此,齿轮设计的合理性和可靠性对于机械系统的性能和寿命具有重要影响。
一、齿轮设计的背景和意义齿轮传动是一种基本的机械传动形式,其主要作用是将动力从一个轴传递到另一个轴,实现速度和扭矩的变换。
齿轮传动具有传递效率高、传动精度高、传动比稳定等优点,因此被广泛应用于各个行业。
齿轮设计的目标是在满足传动需求的前提下,尽可能地提高传动效率和传动精度,减小噪声和振动,延长齿轮寿命。
这对于提高机械设备的可靠性、降低维护成本具有重要意义。
二、齿轮设计的基本原理和步骤齿轮设计的基本原理包括齿轮传动的几何关系、齿轮材料力学性能、齿轮啮合原理等。
在进行齿轮设计时,需要根据实际应用需求选择合适的齿轮类型和参数,然后进行齿轮的几何设计、强度计算和动力学分析等步骤。
1. 齿轮几何设计齿轮几何设计是齿轮设计的第一步,它包括齿轮的模数、齿数、压力角等参数的确定。
在进行齿轮几何设计时,需要考虑到传动比、齿轮尺寸、齿轮强度等因素,并通过计算和优化来确定最佳设计方案。
2. 齿轮强度计算齿轮强度计算是齿轮设计的关键步骤,它涉及到齿轮的弯曲强度、接触强度和疲劳强度等方面。
在进行齿轮强度计算时,需要考虑到齿轮材料的力学性能、齿轮的载荷和工作条件等因素,并通过计算和分析来评估齿轮的强度和可靠性。
3. 齿轮动力学分析齿轮动力学分析是齿轮设计的重要内容,它主要涉及到齿轮的运动学和动力学特性。
在进行齿轮动力学分析时,需要考虑到齿轮的转速、传动比、齿轮啮合的冲击和振动等因素,并通过数值模拟和试验来评估齿轮的运动和动力学性能。
三、齿轮设计的挑战和发展方向齿轮设计面临着一些挑战,如齿轮的噪声和振动问题、齿轮的磨损和故障问题等。
为了解决这些问题,齿轮设计领域正在不断发展和创新。
1、根据负载、以及运动状态(速度、是垂直运动还是水平运动)来计算驱动功率2、初步估定齿轮模数(必要时,后续进行齿轮强度校核,若在强度校核时,发现模数选得太小,就必须重新确定齿轮模数,关于齿轮模数的选取,一般凭经验、或是参照类比,后期进行安全校核)3、进行初步的结构设计,确定总传动、以及确定传动级数(几级传动)4、根据总传动比进行分配,计算出各级的分传动比5、根据系统需要进行详细的传动结构设计(各个轴系的详细设计),这样的设计一般还在总装图上进行。
6、在结构设计的时候,若发现前期的参数不合理(包括齿轮过大、相互有干涉、制造与安装困难等),就需要及时的返回上面程序重新来过7、画出关键轴系的简图(一般是重载轴,当然,各个轴系都做一遍当然好),画出各个轴端的弯矩图、转矩图,从而找出危险截面,并进行轴的强度校核8、低速轴齿轮的强度校核9、安全无问题后,拆分零件图渐开线圆柱齿轮传动设计程序主要用于外啮合渐开线圆柱标准直齿齿轮传动设计、渐开线圆柱标准斜齿齿轮传动设计和渐开线圆柱变位齿轮传动设计。
程序中的各参数和各设计方法符合相关的国家标准,即:渐开线圆柱齿轮基本轮廓(GB/T1356-2001)、渐开线圆柱齿轮模数(GB/T1357-1987等效采用ISO54-1977),以及《渐开线圆柱齿轮承载能力计算方法》(GB/T3480-1997等效ISO6336-1966)、渐开线圆柱齿轮精度(GB/T10095-2001等效ISO1328-1997)。
程序根据输入的齿轮传动设计参数和相关设计要求,进行齿轮几何尺寸的计算、齿轮接触疲劳强度校核和弯曲疲劳强度校核的计算,以及相关公差值的计算等。
整个设计过程分步进行,界面简洁,操作方便硬齿面齿轮风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。
中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。
输出轴上的齿轮承受中间轴传过来的扭矩,同时也承受输出端刹车时带来的刹车力矩。
一、齿轮箱输入轴、中间轴和输出轴上各种齿轮的受力分析风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。
中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。
输出轴上的齿轮承受中间轴传过来的扭矩,同时也承受输出端刹车时带来的刹车力矩。
二、齿轮箱齿轮的常用材料及其性能分析风力发电增速齿轮箱中,齿轮的常用材料为低碳合金钢,重齿公司常用20CrMnTi、20CrMnMo、17CrNiMo6等材料;内齿圈用42CrMoA材料。
它们的力学分析见下表:钢号试样毛坯尺寸(mm) 热处理力学性能供应状态硬度HB淬火温度(℃)冷却回火温度(℃) 冷却σb(MPa) σs(MPa) δ5(%)ψ(%)AK(J)第一次第二次不小于不大于20CrMnTi 15 880 870 油200 水、空1080 835 10 45 55 21720CrMnMo 15 850 油200 水、空1175 885 10 45 55 21717CrNiMo6 11 855 815 油180 水、空1300 830 7 30 41 22942CrMoA 15 840 油610 水、空1150 885 10 40 34齿轮材料为渗碳钢,渗碳钢载未渗碳前进行的各种试验只能测定零件心部的性能,渗碳淬火后的性能除与心部性能有关外,还受渗碳层深度、渗碳层的碳含量与金相组织。
内应力的分布等因素的影响。
1、抗弯强度渗碳钢的静强度一般通过弯曲试验测定。
零件心部硬度、钢材的化学成分合面层碳含量都影响弯曲强度。
在渗碳层深度一定的情况下,心部硬度增加时,弯曲强度随之增加;当渗碳层组织相同时,渗碳层深度增加,弯曲强度随之增加;在渗碳层深度与心部硬度相同时,含镍的钢材弯曲强度比其他钢材弯曲强度高;渗碳层面层碳含量增加时弯曲强度降低。
2、疲劳强度齿轮多因变载荷作用而疲劳损坏,如齿根弯曲疲劳损坏合齿面接触疲劳损坏。
影响疲劳损坏的因素有:(1)心部硬度(强度)(2)渗碳层内的氧化物当渗碳钢中含有钛、硅、锰和等合金元素,并在吸热性渗碳气氛中渗碳时容易形成这些元素的氧化物,他们存在于晶界或晶粒内部。
在氧化物附近这些元素贫化,降低了淬透性。
这种氧化物还会成为高温转变产物的核心,导致淬火后在表面形成一些非马氏体产物从而降低了最表面的硬度。
(3)渗碳层内的碳化物碳含量的数量、大小、形状和分布对渗碳钢的接触疲劳和弯曲疲劳性能都有影响,网状碳化物会明显降低渗碳钢的弯曲疲劳性能。
(4)渗碳层内的残余奥氏体残余奥氏体本身强度低,它的存在还降低对疲劳性能有利的残余压应力,因此渗碳层组织中有残余奥氏体会降低疲劳性能,但经滚压和喷丸强化会提高疲劳强度。
三、硬齿面齿轮的特点及运行注意事项(一)、高精度硬齿面齿轮的优点众所周知,齿轮的强度设计是从考虑润滑条件的齿面压力和齿根强度两个方面进行的。
随着技术的发展和计算机的应用,世界传动技术的发展趋于采用硬齿面。
据统计,由于硬齿面齿轮的采用大大地促进了机器的重量轻、小型化和质量性能的提高,使机器工作速度提高了一个等级。
如高速线材轧机的轧制速度从过去的30m/s以下提高到90-120m/s。
采用硬齿面齿轮传动使传动装置的体积大大地减少,可以降低制造成本,一某轧机主减速机为例进行比较:中心距表面积重量轧制速度硬度调质齿轮 2400 100% 100% 30m/s HB360硬齿面齿轮 1695 34% 60% 90-120m/s HRC57+4硬齿面中氮化硬齿面,由于氮化层深度很浅,不适合作低俗重载齿轮传动,而且氮化工艺本身的成本较贵,所以很少采用。
表面淬火(如高、中频或火焰淬火)的淬硬层与非淬硬层过渡界面明显,硬度的分布剃度太大,同时淬硬质量不均匀,齿根淬硬困难,易生成表面裂纹,齿面硬度较低(HRC55左右)所以应用也逐渐减少。
深层渗碳、淬火磨削的高精度硬齿面齿轮,精度高、表面硬度高(HRC58+4),齿面硬化层均匀等多方面的优点,特别适用于低速重载齿轮传动。
它表面硬度高,接触强度比调质齿轮成倍增长,而弯曲强度比调质齿轮约增加50%以上。
所以FALK、(LUS)、费兰特公司、雪铁龙-梅西安-杜朗公司等全部采用深层渗碳-淬火-磨齿齿轮。
高精度硬齿面齿轮代表了工业用,船用齿轮传动装置的发展方向。
(二)、齿轮强度计算公司引进了齿轮的设计计算程序,并与上海交大、重庆大学等合作开发,可按GB3480-83、AGMA、ISO、DIN、ZC、ABS、GL、Lioyd′s等标准和规范对齿轮强度进行计算。
为了提高齿轮的承载能力,利用计算机对齿轮的几何参数和变位系数,进行优化设计。
由于表面硬化技术的采用,齿轮承载能力得到提高,LUS通过多年生产实践认为:对于齿轮齿面应力的计算,对小型齿轮,用赫兹应力公式还可以,它基于齿面接触区的最大表面压缩。
而对于大模数、大直径的齿轮、用赫兹公式计算齿面压应力强度,则不能真实反映齿轮的实际受力情况。
因为随着模数的增大,齿高和齿轮当时接触半径增大,应力的危险点已不在齿轮硬化层的表面层,而是在内部的某一个深度。
例如:中心距A=1000(mm),I=3的齿轮箱的大齿轮,应力危险齿面以下应力分布及其强度计算的研究,提出了“三向应力理论“:齿面以下受三向单个应力组成的合成应力作用,应用主延伸假设得到包括齿面应力在内的齿截面的应力分布曲线。
能确切地反映齿面啮合时的应力状态。
计算齿根应力,主要考虑轮齿啮合时的弯曲强度、压缩应力、剪应力、齿轮热处理效应及装配时产生的内应力。
用计算机对齿面齿根合成应力的计算,综合考虑接触强度和弯曲疲劳强度,确定齿轮的几何参数、材料、许用疲劳强度及齿轮的硬度曲线和齿面的硬化层深度。
(三)、材料的选择为了提高齿轮的弯曲强度,我们选用国产优质合金钢。
这些材料经LUS与西德材料进行同炉处理对比试验。
结果证明其机械性能、淬硬性、硬化层金相组织、硬度、碳势层深度分布等性能略高于罗曼现用相应材料的性能。
利用国产材料,按我公司标准齿形(原引进的LUSI15)加工,采用现行热处理工艺渗碳淬火并磨齿制造的试验齿轮,与711所、上海交大合作,在国产CL-100型齿轮试验机上进行接触疲劳强度试验。
参试齿轮精度6HK(JB179-83),试验验证工作在GB3480-83规定的标准条件下进行,按升降法,测定材料的疲劳极限,通过试验,推荐设计选用值为1450-1550N/ ,国际标准化组织ISO268文推荐渗淬硬齿轮材料接触疲劳强度极限框图范围在1300-1650kg/ ,我公司试验齿轮材料在ISO268推荐框图的中上限。
试验时,齿轮单位齿宽、单位模数上的圆周力为171。
62N/ ,齿轮接触强度K系数为156kg/cm ,经5×107次循环,所有被试齿轮均未发生断齿和点蚀现象。
(四)、采用气体渗碳在表面硬化方法中,氮化由于硬化层薄而限制了齿轮的承载能力。
高频淬火又很难得到理想的硬化层分布,对大模数齿轮淬火时,齿轮淬硬深度太浅或没有淬火造成应力分布不均匀而降低了齿轮弯曲强度。
气体渗碳淬火,可以得到所需要的硬化层,热处理后具有较理想的残余应力。
用最新技术可准确地控制碳势而获得最佳硬度值,从而提高齿轮的接触强度和弯曲强度,是制造大型重载齿轮的一种好的表面处理方法。
为此,我厂从西德迪高沙公司引进了GSRU190×250型渗碳炉。
从日本中外炉株社引进了¢3000的渗碳炉。
该炉用氧探头或红外线CO2气体分析仪两种测定炉气碳势,通过微处理机和模拟计算机两套独立的自动控制系统对热处理过程进行适时控制,碳势控制偏差±0.05%。
与该炉配套使用硝盐淬火,可稳定淬火介质温度,减少工件变形,提高工件淬透性。
采用公法线千分尺型硬度检验仪检验齿顶到齿根的硬度,其硬度差很小。
经渗碳淬火后的齿轮MSF-2M型X射线应力分析仪上用侧倾法,X-20法测定齿面,齿根表面的残余奥氏体含量。
齿根残余压应力在490-588 N/ 范围内,国家标准中推荐的齿根弯曲持续极限为400-440 N/ ,大大提高了弯曲疲劳强度,残余奥氏体含量在5.8-20%范围内。
(五)、高精度齿轮齿轮精度的选择原则是工作线速度、要求的承载能力和公司设备的可能。
对硬齿面齿轮,经磨削后的齿轮精度一般选6级精度。
线速度特别高时选4-5级,对振动、噪音有特别要求时,目前最高可达3级精度。
硬齿面齿轮模数增大后,或调质齿轮直径增大后,如不提高齿轮精度,则模数,直径增大带来的强度的提高将被动负荷的增大所抵消。
这点以前的国内调质齿轮传动装置在水泥、冶金行业中的使用发生失效的经验和教训可以证明提高齿轮加工精度的必要。
为了保证齿轮的加工精度和国际先进标准的贯彻执行,先后MAAG系列磨齿机、ZST0.31m~2.5m磨齿机,Hoefler4000mm和NOVA1000CNC高精度磨齿机可加工直径4000,模数32mm,最高齿轮精度达到DIN3级的齿轮。