实数与向量相乘二
- 格式:pptx
- 大小:399.86 KB
- 文档页数:16
向量相乘运算公式
向量相乘是在向量运算中常用的一种操作,有两种形式:点积和叉积。
1.点积(又称为内积、数量积):点积是指两个向量按照相同位置的元素分别相乘,并将得到的乘积相加的运算。
点积的计算公式如下:
对于两个n维向量A和B:A·B=A1B1+A2B2+...+AnBn
其中,A1、A2、...、An和B1、B2、...、Bn分别表示两个向量A和B在对应位置的元素。
点积的结果是一个标量(即一个实数),表示两个向量的夹角的余弦值乘以两个向量的模的乘积。
2.叉积(又称为外积、向量积):叉积是指根据右手法则,通过两个向量的模和夹角计算出一个与这两个向量同时垂直的新向量的运算。
叉积的计算公式如下:
对于三维空间中的向量A=(A1,A2,A3)和B=(B1,B2,B3):A×B=(A2B3A3B2,A3B1A1B3,A1B2A2B1)
叉积的结果是一个新的向量,它的模表示两个向量张成的平行四边形的面积,方向垂直于两个向量所在的平面,并符合右手法则。
需要注意的是,点积和叉积只适用于特定维度的向量运算,分别是点积适用于任意维度的向量,而叉积只适用于三维空间中的向量。
此外,点积和叉积具有不同的性质和应用领域,在物理、数学等领域都有广泛的应用。
向量与实数之间的计算公式向量与实数是线性代数中的重要概念,它们之间的计算关系在数学和物理学中都有着广泛的应用。
在本文中,我们将探讨向量与实数之间的计算公式,包括向量的数乘、向量加法、向量减法等基本运算,以及这些运算在实际问题中的应用。
1. 向量的数乘。
向量的数乘是指一个向量与一个实数相乘的运算。
假设有一个向量a和一个实数k,那么向量a乘以实数k的结果是一个新的向量,记作ka。
具体计算公式如下:ka = (ka1, ka2, ..., kan)。
其中,a = (a1, a2, ..., an)是原始向量,k是实数,ka是数乘后的新向量。
数乘的运算规律包括分配律、结合律和交换律,即:k(a + b) = ka + kb。
(k1k2)a = k1(k2a)。
k(a + b) = ka + kb。
数乘的概念在物理学中有着广泛的应用,例如力的大小和方向就可以用向量来表示,而力的大小和方向的变化可以通过数乘来描述。
2. 向量加法。
向量加法是指两个向量相加的运算。
假设有两个向量a和b,它们的加法结果记作a + b,具体计算公式如下:a +b = (a1 + b1, a2 + b2, ..., an + bn)。
其中,a = (a1, a2, ..., an)和b = (b1, b2, ..., bn)分别是两个原始向量,a + b是它们相加后的新向量。
向量加法满足交换律和结合律,即:a +b = b + a。
(a + b) + c = a + (b + c)。
向量加法在几何学中有着重要的应用,例如两个力的合成就可以用向量加法来表示。
3. 向量减法。
向量减法是指一个向量减去另一个向量的运算。
假设有两个向量a和b,它们的减法结果记作a b,具体计算公式如下:a b = (a1 b1, a2 b2, ..., an bn)。
其中,a = (a1, a2, ..., an)和b = (b1, b2, ..., bn)分别是两个原始向量,a b是它们相减后的新向量。
沪教版数学九年级上册24.6《实数与向量相乘》(第2课时)教学设计一. 教材分析《实数与向量相乘》是沪教版数学九年级上册第24.6节的内容,这部分内容是在学生已经掌握了实数和向量的基本概念,以及向量的数乘运算的基础上进行学习的。
实数与向量相乘是向量运算中的一个重要部分,它不仅加深了学生对向量运算的理解,也为后续学习向量的线性组合以及向量空间等高级内容打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于实数和向量的基本概念有一定的了解。
但是,对于实数与向量相乘的理解可能会存在一定的困难,因此,在教学过程中,需要教师通过生动的例子和实际操作,帮助学生理解和掌握这一概念。
三. 教学目标1.让学生理解实数与向量相乘的概念和运算规则。
2.培养学生运用实数与向量相乘解决实际问题的能力。
3.提高学生的抽象思维能力和逻辑推理能力。
四. 教学重难点1.实数与向量相乘的概念。
2.实数与向量相乘的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过生动具体的例子,引导学生思考和探索实数与向量相乘的概念和运算规则,通过小组合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和实例。
2.准备教学PPT和板书设计。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出实数与向量相乘的概念。
例如,在平面直角坐标系中,给定一个向量和一个实数,如何通过平移的方式得到一个新的向量。
2.呈现(10分钟)通过PPT展示实数与向量相乘的定义和运算规则,同时给出相关的实例,让学生直观地理解和感受实数与向量相乘的概念。
3.操练(10分钟)让学生通过实际的例题,练习实数与向量相乘的运算,教师在这个过程中,及时给予指导和反馈,帮助学生理解和掌握实数与向量相乘的规则。
4.巩固(5分钟)通过一些选择题和填空题,让学生巩固实数与向量相乘的概念和运算规则。
5.拓展(5分钟)让学生思考和探索实数与向量相乘的应用,例如,在物理中,实数与向量相乘可以表示力的大小和方向,引导学生将数学知识应用到实际问题中。
向量数乘运算及其几何意义夏季的雷雨天,我们往往先看到闪电,后听到雷声,雷闪发生于同一点而传到我们这儿为什么有个时间差?这说明声速与光速的大小不同,光速是声速的88万倍.若设光速为v1,声速为v2,将向量类比于数,则有v1=880 000v2.对于880 000v2,我们规定是一个向量,其方向与v2相同,其长度为v2长度的880 000倍.这样实数与向量的积的运算称为向量的数乘.那么向量数乘的几何意义及运算律是怎样规定的呢?1.向量的数乘2.数乘的几何意义λa的几何意义就是把向量a沿着a的方向或反方向扩大或缩小|λ|倍.[知识点拨](1)λ是实数,a是向量,它们的积λa仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a,λ-a均没有意义.(2)对于非零向量a,当λ=1|a|时,λa表示a方向上的单位向量.(3)注意向量数乘的特殊情况:①若λ=0,则λa=0;②若a=0,则λa=0.应该特别注意的是结果是向量0,而非实数0.3.向量数乘的运算律向量的数乘运算满足下列运算律:设λ、μ为实数,则(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb(分配律).特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使 b =λa . 5.向量的线性运算向量的__加__、__减__、__数乘__运算统称为向量的线性运算,对于任意向量a 、b 以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )= λμ1a ±λμ2b .[知识点拨]向量共线定理的理解注意点及主要应用1.定理中a ≠0不能漏掉.若a =b =0,则实数λ可以是任意实数;若a =0,b ≠0,则不存在实数λ,使得b =λa .2.这个定理可以用一般形式给出:若存在不全为0的一对实数t ,s ,使t a +s b =0,则a 与b 共线;若两个非零向量a 与b 不共线,且t a +s b =0,则必有t =s =0.1.已知非零向量a 、b 满足a =4b ,则( C ) A .|a |=|b | B .4|a |=|b |C .a 与b 的方向相同D .a 与b 的方向相反[解析] ∵a =4b,4>0,∴|a |=4|b |. ∵4b 与b 的方向相同, ∴a 与b 的方向相同.2.将112[2(2a +8b )-4(4a -2b )]化简成最简式为( B )A .2a -bB .2b -aC .a -bD .b -a[解析] 原式=112(4a +16b -16a +8b )=112[(4-16)a +(16+8)b ]=112(-12a +24b )=2b -a3.在▱ABCD 中,AB →=2a ,AD →=3b ,则AC →等于( C ) A .a +b B .a -b C .2a +3bD .2a -3b[解析] AC →=AB →+AD →=2a +3b .4.已知AB →=a +4b ,BC →=2b -a ,CD →=2(a +b ),则( B ) A .A 、B 、C 三点共线 B .A 、B 、D 三点共线 C .A 、C 、D 三点共线 D .B 、C 、D 三点共线[解析] ∵BC →+CD →=a +4b , 即BC →+CD →=AB →,∴BD →=AB →,即存在λ=1使BD →=λAB →. ∴BD →、AB →共线.又∵两向量有公共点B , ∴A 、B 、D 三点共线.命题方向1 ⇨向量的线性运算 典例1 计算:(1)4(a +b )-3(a -b )-8a ; (2)(5a -4b +c )-2(3a -2b +c ); (3)23[(4a -3b )+13b -14(6a -7b )]. [思路分析] 运用向量数乘的运算律求解.[解析] (1)原式=4a +4b -3a +3b -8a =-7a +7b . (2)原式=5a -4b +c -6a +4b -2c =-a -c .(3)原式=23(4a -3b +13b -32a +74b )=23(52a -1112b )=53a -1118b .『规律总结』 向量的线性运算类似于代数多项式的运算,实数运算中去括号、移项、合并同类项、提取公因式等变形手段在向量线性运算中也可以使用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.〔跟踪练习1〕计算:(1)25(a -b )-13(2a +4b )+215(2a +13b ); (2)(m +n )(a -b )-(m -n )(a +b ).[解析] (1)25(a -b )-13(2a +4b )+215(2a +13b )=25a -25b -23a -43b +415a +2615b =(25-23+415)a +(-25-43+2615)b =0a +0b =0. (2)原式=m (a -b )+n (a -b )-m (a +b )+n (a +b ) =(m +n -m +n )a +(-m -n -m +n )b =2n a -2m b . 命题方向2 ⇨共线向量定理及其应用 典例2 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 与a +k b 共线.[思路分析] (1)欲证三点A 、B 、D 共线,即证存在实数λ,使AB →=λBD →,只要由已知条件找出λ即可.(2)由两向量共线,列出关于a 、b 的等式,再由a 与b 不共线知,若λa =μb ,则λ=μ=0.[解析] 证明:(1)∵AB →=a +b ,BC →=2a +8b , CD →=3(a -b )∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B ,∴A 、B 、D 三点共线. (2)∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ) 即k a +b =λa +λk b ,∴(k -λ)a =(λk -1)b , ∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.『规律总结』 用向量法证明三点共线时,关键是能否找到一个实数λ,使得b =λa (a 、b 为这三点构成的其中任意两个向量).证明步骤是先证明向量共线,然后再由两向量有公共点,证得三点共线.〔跟踪练习2〕已知向量AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ), (1)求证:A 、B 、D 三点共线;(2)求证:CA →=xCB →+yCD →(其中x +y =1). [解析] (1)∵BD →=BC →+CD →=-2a +8b +3(a -b ) =a +5b ,AB →=a +5b ,∴AB →=BD →,∴AB ∥BD , 又AB →、BD →有公共点B ,所以A ,B ,D 三点共线. (2)∵CA →=CB →+BA →=-BC →-AB → =2a -8b -a -5b =a -13b , xCB →+yCD →=x (2a -8b )+3y (a -b ) =(2x +3y )a +(-8x -3y )b .∴⎩⎪⎨⎪⎧ 2x +3y =1-8x -3y =-13,所以⎩⎪⎨⎪⎧x =2y =-1 ∴CA →=xCB →+yCD →,其中x +y =1.命题方向3 ⇨用向量的线性运算表示未知向量典例3 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形,又BM =13BC ,CN =13CD ,试用a ,b 表示OM →、ON →、MN →.[思路分析] 用a ,b 表示BM →→表示OM →,ON →→MN →=ON →-OM → [解析] BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ), ∴OM →=OB →+BM →=b +16a -16b =16a +56b .∵CN →=13CD →=16OD →,∴ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →) =23a +23b , MN →=ON →-OM →=23(a +b )-16a -56b=12a -16b . 『规律总结』 解决此类问题的思路一般是将所表示向量置于某一个三角形内,用减法法则表示,然后逐步用已知向量代换表示.〔跟踪练习3〕(2018·全国卷Ⅰ理,6)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( A )A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →[解析] 作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 故选A .命题方向4 ⇨单位向量的应用典例4 O 为平面上的一定点,A 、B 、C 是平面上不共线的三个动点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞ ),则P 的轨迹一定通过△ABC 的( B )A .外心B .内心C .重心D .垂心[思路分析] 题目向量式中有OP →,OA →两共起点的向量,于是可利用移项得:OP →-OA →=AP →,从而将向量式中的点O 去掉,转化为以A 为起点的两向量相等.[解析] 由OP →=OA →+λ(AB →|AB →|+AC →|AC →|),则OP →-OA →=λ(AB →|AB →|+AC →|AC →|),则AP →=λ(AB →|AB →|+AC →|AC →|).而AB →|AB →|是与AB →同向的单位向量,AC →|AC →|是与AC →同向的单位向量,以这两个单位向量为邻边作平行四边形AB 1P 1C 1,易得平行四边形AB 1P 1C 1是菱形,对角线AP 1平分∠B 1AC 1,且AB 1→=AB →|AB →|,AC 1→=AC →|AC →|,所以AB →|AB →|+AC →|AC →|=AB 1→+AC 1→=AP 1→,则AP →=λAP 1→. 由λ∈[0,+∞),可知点P 在∠BAC 的平分线上,即动点P 的轨迹经过△ABC 的内心. 〔跟踪练习4〕若题设中的条件“OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞).”改为“OP→=OA →+λ(AB →+AC →),λ∈[0,+∞).”则P 的轨迹一定通过△ABC 的( B )A .外心B .重心C .垂心D .内心[解析] 由OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),得AP →=λ(AB →+AC →),则AP →与△ABC 中边BC 的中线共线,又由λ∈[0,+∞),知点P 的轨迹通过△ABC 的重心.三点共线定理 1.三点共线的判定定理在实际问题的描述中经常会遇到判断三点共线的问题,那么如何利用向量共线的判定定理来寻找三点共线的判定呢?我们知道,对于平面内任意三点A ,B ,C ,都可以写成AB →,AC →,BC →的形式,若存在一个实数λ使得AB →=λAC →(或AB →=λBC →或AC →=λBC →),则根据向量共线的判定定理可知向量AB →,AC →共线(或AB →,BC →共线或AC →,BC →共线).又由它们具有公共点A (或B 或C )可知三点A ,B ,C 共线.所以我们有:对于平面内任意三点A ,B ,C ,O 为不同于A ,B ,C 的任意一点,设OC →=λOA →+μOB →,若实数λ,μ满足λ+μ=1,则三点A ,B ,C 共线.2.三点共线的性质定理根据向量共线的性质定理及三点共线的判定定理不难得到三点共线的性质定理.若平面内三点A ,B ,C 共线,O 为不同于A ,B ,C 的任意一点,设OC →=λOA →+μOB →,则存在实数λ,μ使得λ+μ=1.典例5 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,求x +y 的值.[解析] 由于A ,B ,P 三点共线,所以向量AB →,AP →在同一直线上,由向量共线定理可知,必定存在实数λ使AP →=λAB →,即OP →-OA →=λ(OB →-OA →),所以OP →=(1-λ)OA →+λOB →,故x =1-λ,y =λ,即x +y =1.,〔跟踪练习5〕在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( D )A .(0,12)B .(0,13)C .(-12,0)D .(-13,0)[解析] 当点O 与点C 重合时AC →=0AB →+(1-0)AC →,所以x =0;当点O 与点D 重合时AD →=-13AB →+43AC →,此时x =-13,所以-13<x <0.向量的起点、终点弄不清楚,导致向量表示错误典例6 已知E ,F 分别为四边形ABCD 的边CD ,BC 的中点,设AD →=a ,BA →=b ,则EF →=( )A .12(a +b )B .-12(a +b )C .-12(a -b )D .12(a -b )[错解] 如图,连接BD ,则EF →=12DB →=12(AD →-AB →)=12(a +b ).故选A .[错因分析] 向量DB →用向量的差表示时,DB →的终点应该为被减向量的终点. [正解] EF →=12DB →=12(CB →-CD →)=12(DA →-BA →)=12(-a -b ) =-12(a +b ),故选B .[点评] 在向量的线性运算中,向量的差、向量的方向都是易错点,在运算中要高度重视.另外,几何图形的性质还要会准确应用.〔跟踪练习6〕已知任意平面四边形ABCD 中,E 、F 分别是AD 、BC 的中点. 求证:EF →=12(AB →+DC →).[解析] 取以点A 为起点的向量,应用三角形法则求证,如图.∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →).又∵AC →=AD →+DC →, ∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).1.(2a -b )-(2a +b )等于( B ) A .a -2b B .-2b C .0D .b -a2.已知λ、μ∈R ,下面式子正确的是( C )A .λa 与a 同向B .0·a =0C .(λ+μ)a =λa +μaD .若b =λa ,则|b |=λ|a |[解析] 对A ,当λ>0时正确,否则错误;对B,0·a 是向量而非数0;对D ,若b =λa ,则|b |=|λa |.3.点C 在直线AB 上,且AC →=3AB →,则BC →等于( D ) A .-2AB →B .13AB →C .-13AB →D .2AB →[解析] BC →=AC →-AB →=3AB →-AB →=2AB →.4.已知向量a =e 1+λe 2,b =2e 1,λ∈R ,且λ≠0,若a ∥b ,则( D ) A .λ=0 B .e 2=0C .e 1∥e 2D .e 1∥e 2或e 1=0 [解析] 当e 1=0时,显然有a ∥b ; 当e 1≠0时,b =2e 1≠0,又a ∥b ,∴存在实数μ,使a =μb ,即e 1+λe 2=2μe 1, ∴λe 2=(2μ-1)e 1,又λ≠0,∴e 1∥e 2.5.已知两个非零向量e 1、e 2不共线,若AB →=2e 1+3e 2,BC →=6e 1+23e 2,CD →=4e 1-8e 2.求证:A 、B 、D 三点共线.[证明] ∵AD →=AB →+B C →+CD →=2e 1+3e 2+6e 1+23e 2+4e 1-8e 2 =12e 1+18e 2=6(2e 1+3e 2)=6A B →, ∴AD →∥AB →.又∵AD 和AB 有公共点A ,∴A 、B 、D 三点共线.A 级 基础巩固一、选择题1.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则AP →=( A ) A .λ(AB →+BC →) λ∈(0,1) B .λ(AB →+BC →) λ∈(0,22)C .λ(AB →-BC →) λ∈(0,1)D .λ(AB →-BC →) λ∈(0,22)[解析] 设P 是对角线AC 上的一点(不含A 、C ),过P 分别作BC 、AB 的平分线,设AP→=λAC →,则λ∈(0,1),于是AP →=λ(AB →+BC →),λ∈(0,1).2.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( A )A .23B .13C .-13D .-23[解析] (方法一):由AD →=2DB →,可得CD →-CA →=2(CB →-CD →)⇒CD →=13CA →+23CB →,所以λ=23.故选A .(方法二):CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23,故选A .3.点P 是△ABC 所在平面内一点,若CB →=λP A →+PB →,其中λ∈R ,则点P 一定在( B ) A .△ABC 内部 B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上 [解析] ∵CB →=λP A →+PB →,∴CB →-PB →=λP A →. ∴CP →=λP A →.∴P 、A 、C 三点共线.∴点P 一定在AC 边所在的直线上.4.已知平行四边形ABCD 中,DA →=a ,DC →=b ,其对角线交点为O ,则OB →等于( C ) A .12a +bB .a +12bC .12(a +b )D .a +b[解析] DA →+DC →=DA →+AB →=DB →=2OB →, 所以OB →=12(a +b ),故选C .5.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( A )A .A 、B 、D B .A 、B 、C C .B 、C 、DD .A 、C 、D [解析] BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2AB →,所以,A 、B 、D 三点共线.6.如图所示,向量OA →、OB →、OC →的终点A 、B 、C 在一条直线上,且AC →=-3CB →.设OA →=p ,OB →=q ,OC →=r ,则以下等式中成立的是( A )A .r =-12p +32qB .r =-p +2qC .r =32p -12qD .r =-q +2p[解析] ∵OC →=OB →+BC →,AC →=-3CB →=3BC →, ∴BC →=13AC →.∴OC →=OB →+13AC →=OB →+13(OC →-OA →).∴r =q +13(r -p ).∴r =-12p +32q .二、填空题7.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x = 12 ;y = -16.[解析] 由题中条件得MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,所以x =12,y =-16.8.(2016·潍坊高一检测)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为 12.[解析] 由已知DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB →+23AC →,∴λ1=-16,λ2=23,从而λ1+λ2=12.三、解答题9.已知▱ABCD 中,AB →=a ,AD →=b ,对角线AC 、BD 交于点O ,用a 、b 表示OA →,BO →. [解析] OA →=12CA →=12(CB →+BA →)=12(-a -b ).BO →=12BD →=12(AD →-AB →)=12(b -a ).10.已知向量e 1、e 2是两个共线向量,若a =e 1-e 2,b =2e 1+2e 2,求证:a ∥b . [证明] 若e 1=e 2=0,则a =b =0, 所以a 与b 共线,即a ∥b ;若e 1、e 2中至少有一个不为零向量,不妨设e 1≠0,则e 2=λe 1(λ∈R ),且a =(1-λ)e 1, b =2(1+λ)e 1,所以a ∥e 1,b ∥e 1. 因为e 1≠0,所以a ∥b . 综上可知,a ∥b .B 级 素养提升一、选择题1.设a 是非零向量,λ是非零实数,下列结论正确的是( C ) A .a 与-λa 的方向相反 B .|-λa |≥|a | C .a 与λ2a 的方向相同D .|-λa |=|λ|a[解析] A 错误,因为λ取负数时,a 与-λa 的方向是相同的;B 错误,因为当|λ|<1时,该式不成立;D 错误,等号左边的结果是一个数,而右边的结果是一个向量,不可能相等;C 正确,因为λ2(λ≠0)一定是正数,故a 与λ2a 的方向相同.故选C .2.设e 1、e 2是两个不共线的向量,则向量a =2e 1-e 2,与向量b =e 1+λe 2(λ∈R )共线,当且仅当λ的值为( D )A .0B .-1C .-2D .-12[解析] ∵向量a 与b 共线,∴存在唯一实数u ,使b =u a 成立.即e 1+λe 2=u (2e 1-e 2)=2u e 1-u e 2.∴⎩⎪⎨⎪⎧1=2u ,λ=-u .解得λ=-12.3.在▱ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线交CD 于点F ,若AC →=a ,BD →=b ,则AF →=( D )A .14a +12bB .13a +23bC .12a +14bD .23a +13b[解析] AF →=AC →+CF →=a +23CD →=a +23(OD →-OC →)=a +23(12BD →-12AC →)=a +13(b -a )=a+13(b -a )=23a +13b . 4.在△ABC 中,点D 在BC 边所在直线上.若CD →=4BD →=sAB →-rAC →,则s +r 等于( C ) A .0 B .43C .83D .3[解析] 由题意可得,CD →=AD →-AC →=AB →+BD →-AC →=AB →+13CB →-AC →=AB →+13(AB →-AC →)-AC →=43AB →-43AC →, ∴s +r =83.二、填空题5.若2(x -13a )-12(b +c -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x = 421a-17b +17c . [解析] ∵2x -23a -12b -12c +32x +b =0,∴72x =23a -12b +12c .∴x =421a -17b +17c . 6.如图所示,在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →= 14(b -a ) .(用a 、b 表示).[解析] MN →=MB →+BA →+AN →=-12BC →+BA →+34AC →=-12AD →-AB →+34(AB →+AD →)=-12b -a +34(a +b )=14b -14a =14(b -a ). 三、解答题7.如图,已知E 、F 、G 、H 分别是四边形ABCD 的边AB 、BC 、CD 、DA 的中点,用向量法证明:四边形EFGH 是平行四边形.[证明] 在△BCD 中,∵G ,F 分别是CD ,CB 的中点, ∴CG →=12CD →,CF →=12CB →.∴GF →=CF →-CG →=12CB →-12CD →=12DB →. 同理HE →=12DB →.∴GF →=HE →,即GF →与HE →共线.又∵G 、F 、H 、E 四点不在同一条直线上, ∴GF ∥HE ,且GF =HE . ∴四边形EFGH 是平行四边形.8.设两个不共线的向量e 1、e 2,若向量a =2e 1-3e 2,b =2e 1+3e 2,向量c =2e 1-9e 2,问是否存在这样的实数λ、μ,使向量d =λa +μb 与向量c 共线?[解析] ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2)=(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k 使d =k ·c ,即:(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 2-9k e 2.由⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ,故存在这样的实数λ和μ, 只要λ=-2μ,就能使d 与c 共线.C 级 能力拔高过△OAB 的重心G 的直线与边OA ,OB 分别交于点P ,Q ,设OP →=h ·OA →,OQ →=kOB →,则1h +1k=__3__. [解析] 延长OG 交边AB 于点M ,则M 为AB 边的中点, ∴OM →=12(OA →+OB →)=12(1h OP →+1k OQ →)=12h OP →+12k OQ →,又OM →=32OG →,∴OG →=13h OP →+13K OQ →.∵P 、Q 、G 三点共线, 且OP →,OQ →是不共线的向量, ∴13h +13k =1, 即1h +1k =3.。
沪教版数学九年级上册24.6《实数与向量相乘》(第1课时)教学设计一. 教材分析沪教版数学九年级上册24.6《实数与向量相乘》是本册教材中的一个重要内容,主要让学生了解实数与向量相乘的定义和性质。
本节课的内容对于学生来说是比较抽象的,需要通过具体实例和实际操作来理解和掌握。
教材中通过丰富的例题和练习题,帮助学生逐步掌握实数与向量相乘的方法和应用。
二. 学情分析九年级的学生已经具备了一定的实数和向量的基础知识,对于实数与向量的乘法有一定的了解。
但是,对于实数与向量相乘的定义和性质,以及其在实际问题中的应用,还需要进一步的引导和培养。
因此,在教学过程中,需要注重学生的实际操作和思考,通过具体的实例和问题,引导学生理解和掌握实数与向量相乘的概念和方法。
三. 教学目标1.了解实数与向量相乘的定义和性质。
2.能够运用实数与向量相乘的方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.实数与向量相乘的定义和性质。
2.实数与向量相乘的方法和应用。
五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握实数与向量相乘的概念和方法。
2.问题驱动法:通过提出实际问题,引导学生运用实数与向量相乘的方法解决问题。
3.小组合作法:通过小组合作讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教材和教学参考书。
2.教学PPT或者黑板。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,如一个人在平面上向右移动3个单位,向上移动2个单位,引导学生思考如何用数学语言来描述这个人的移动。
2.呈现(15分钟)介绍实数与向量相乘的定义和性质,通过具体的实例来解释和展示实数与向量相乘的方法。
3.操练(15分钟)让学生分组进行实际操作,利用实数与向量相乘的方法解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对实数与向量相乘的理解和掌握程度。
实数与向量相乘及向量的线性运算(基础) 知识讲解【学习目标】1.理解实数与向量相乘的定义及向量数乘的运算律;2. 对于给定的一个非零实数和一个非零向量,能画出它们相乘所得的向量; 3.认识两个平行向量的代数表达形式;4. 在向量的线性运算和平行向量定理的学习与应用中体会代数与几何的联系. 【要点梳理】要点一、实数与向量相乘 1. 实数与向量相乘的意义:一般地,设n 为正整数,a 为向量,我们用a n表示n 个a 相加;用an -表示n 个-相加.又当m 为正整数时,a m n 表示与同向且长度为a mn的向量. 要点诠释:设P 为一个正数,P a 就是将a 的长度进行放缩,而方向保持不变;-P a 也就是将a 的长度进行放缩,但方向相反.2.向量数乘的定义一般地,实数k 与向量a 的相乘所得的积是一个向量,记作ka ,它的长度与方向规定如下:(1)如果k 0,a 0且≠≠时,则:①ka 的长度:||||||ka k a =;②ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a 反方向;(2)如果k 0,a=0=或时,则:0ka =,ka 的方向任意.实数k 与向量a 相乘,叫做向量的数乘.要点诠释:(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算;(4)ka 表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面;(5)向量的数乘体现几何图形中的位置关系和数量关系. 3. 实数与向量的相乘的运算律: 设m n 、为实数,则:(1)()()m na mn a =(结合律);(2)()m n a ma na +=+(向量的数乘对于实数加法的分配律);(3)m (+b )=m a a mb + (向量的数乘对于向量加法的分配律) 要点二、平行向量定理1.单位向量:长度为1的向量叫做单位向量. 要点诠释:任意非零向量a 与它同方向的单位向量0a 的关系:0a a a =,01a a a=.2.平行向量定理:如果向量b 与非零向量a 平行,那么存在唯一的实数m ,使b ma =. 要点诠释: (1)定理中,b m a=,m 的符号由b 与a 同向还是反向来确定.(2)定理中的“a 0≠”不能去掉,因为若a 0=,必有b 0=,此时m 可以取任意实数,使得b ma =成立.(3)向量平行的判定定理:a 是一个非零向量,若存在一个实数m ,使b ma =,则向量b 与非零向量a 平行.(4)向量平行的性质定理:若向量b 与非零向量a 平行,则存在一个实数m ,使b ma =. (5)A 、B 、C 三点的共线⇔AB//BC ⇔若存在实数λ,使 AB BC λ=. 要点三、向量的线性运算 1.向量的线性运算定义:向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 要点诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解:平面向量基本定理:如果12,e e 是同一平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量a ,有且只有一对实数12,λλ,使得1122a e e λλ=+. 要点诠释:(1)同一平面内两个不共线(或不平行)向量12,e e 叫做这一平面内所有向量的一组基底. 一组基底中,必不含有零向量.(2) 一个平面向量用一组基底12,e e 表示为1122a e e λλ=+形式,叫做向量的分解,当12,e e 相互垂直时,就称为向量的正分解.(3) 以平面内任意两个不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同. 3.用向量方法解决平面几何问题: (1)利用已知向量表示未知向量用已知向量来表示另外一些向量,除利用向量的加、减、数乘运算外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.(2)用向量方法研究平面几何的问题的“三步曲”:①建立平面几何与向量的联系,将平面几何问题转化为向量问题. ②通过向量运算,研究几何元素的关系. ③把运算结果“翻译”成几何关系. 【典型例题】类型一、实数与向量相乘1. 已知非零向量a,求作,a 3,a 25- 并指出它们的长度和方向. 【答案与解析】解:如下图, (1)在平面内任取一点O ,作OA a =; (2)在射线OA 上,取5OB OA 2=,则5OB a 2=;a 25的长度是5a 2且与a 同向.(3)在射线OA 的反向延长线上,取OC =,则OC 3a =-a 且与a 反向.【总结升华】向量既有大小又有方向,作实数与向量相乘的积向量时两方面都要考虑. 举一反三:【变式】已知单位向量e ,若向量a 与e 的方向相同,且长度为4,则向量a = (用e 表示).【答案】4e2. 已知平行四边形ABCD 中,E 、F 、G 、H 分别是各边的中点,EG 与FH 相交于点O.设AD a =,BA b =,请用向量a 或b 表示向量,OE OF ,并写出图中与向量OE 相等的量.【答案与解析】解:11OE FA BA b 22===;11OF EA AD a 22==-=-与OE 相等的向量有:BF ,FA ,GO ,CH ,HD【总结升华】用已知向量表示未知向量,既要看未知向量与已知向量之间的大小关系又要看方向关系.类型二、向量的线性运算3.(1)3(a -b )-2(a +2b ); (2)2(2a +6b -3c )-3(-3a +4b -2c )【答案与解析】解:(1)原式=(3a -3b )+(-2)a +(-2)2b = 3a -3b -2a -4b =a -7b(2)原式=2(2a )+2(6b )-2(3c )+(-3)(-3a )+(-3))(4b )+(-3)(-2c )=(4a +12b -6c )+9a -12b +6c =(4+9)a +(12-12)b +(-6+6)c =13a【总结升华】向量的线性运算与多项式的运算相类似. 举一反三:【变式】计算:(1)(3)4a -⨯; (2)3()2()a b a b a +---; 【答案】解:(1)原式=12a -; (2)原式=5b .4.已知向量a 和向量b ,求作向量a -2b .【答案与解析】解:如图,在平面内任取一点O ,作OA a =,2OB b =,则2BA OA OB a b =-=-即BA 即为所求.【总结升华】解题的关键是向量加法,减法及数乘运算法则,掌握数形结合思想的应用. 举一反三:【变式】已知向量a 表示“向东航行1km ”,向量b 表示“向南航行1km ”,则向量a+b 表( ).A .向东南航行2km C .向东北航行2km D .向东北航行2km 【答案】A5.如图,点M 是△ABC 的边AB 的中点.设CA a =,CB b =,试用a b、的线性组合表示向量CM .【答案与解析】解:∵ M 是线段AB 的中点, ∴12AM AB =,得12AM AB =. 又∵AB b a =-∴111()222CM CA AM a b a a b =+=+-=+【总结升华】若点M 是△ABC 的边AB 的中点,则1122CM CA CB =+,应熟练记忆并灵活运用.举一反三:【变式】如图,AD 是△ABC 中BC 边上的中线,点G 是△ABC 的重心,设AB a =,AC b = 则向量AG = (用a ,b 表示).【答案】1()3a b +【答案与解析】解:∵AD 是△ABC 中BC 边上的中线,点G 是△ABC 的重心, AB=a ,AC=b , ∴1()2AD a b =+,而2211()()3323AG AG a b a b ==⨯+=+ .类型三、平面向量定理的应用6. 如果2,3a b c a b c +=-=,其中c 是非零向量,求证://a b【答案与解析】证法一:由2,3a b c a b c +=-=,可得:3()2()a b a b +=-, 化简得:5a b =- 由平面向量定理得://a b证法二:把已知的向量关系式看作关于,a b 的方程,得向量组:23a b ca b c⎧+=⎪⎨-=⎪⎩ 解得: 51,22a cbc ==-由平行向量定理得://,//a c b c 所以//a b【总结升华】已知条件是两个向量的关系式,其中有三个向量.为判断a 与 b 是否平行,一种思路是利用已知两个向量的关系式,消去c ,找到a 与 b 之间的关系式;另一种思路是把这两个向量的关系式看作关于a 、b 的向量方程,通过解由它们组成的向量方程组,可将这两个向量用c 表示出来.7.如图,已知向量,OA OB 和,p q ,求作:(1)向量p 分别在,OA OB 方向上的分向量; (2)向量q 分别在,OA OB 方向上的分向量.【答案与解析】解:(1)如图1,作向量OP p =;再过点P 分别作//PE OA ,//PD OB ,E 为直线PE 与直线OB 的交点,D 为直线PD 与直线OA 的交点,作向量,OD OE , 则,OD OE 是向量p 分别在,OA OB 方向上的分向量.(2) 如图2,作向量OQ q =;再过点Q 分别作//QF OA ,//QG OB ,F 为直线QF 与直线OB 的交点,G 为直线QG 与直线OA 的交点,作向量,OG OF , 则,OG OF 是向量q 分别在,OA OB 方向上的分向量.【总结升华】这种分解与向量加、减法及数乘运算紧密联系,实际上是这些运算的综合应用. 类型四、综合应用8.如图,已知点A 、B 、C 在射线OM 上,点A 1、B 1、C 1在射线ON 上,111OB OB k OA OA ==,121OC OC k OA OA ==.设OA a =,1OA b =. (1) 分别求向量111AA BB CC 、、关于a 、b 的分解式;(2) 判断向量111AA BB CC 、、是否平行,再指出直线111AA BB CC 、、的位置关系. 【答案与解析】 解:(1)111OB OB k OA OA ==,121OC OC k OA OA ==. 设OA a =,1OA b =可得:12,OB k a OC k a ==,1112,OB k b OC k b == 由向量减法的三角形法则可得:11AA OA OA b a =-=-,11111()BB OB OB k b k a k b a =-=-=-; 11222()CC OC OC k b k a k b a =-=-=-(2)由(1)得:111BB k AA =, 121CC k AA = 由平行向量基本定理得: 11//BB AA ,11//CC AA , 所以 111////BB AA CC ,又它们所在的直线不共线, 所以直线111AA BB CC 、、相互平行. 【总结升华】若证直线AA 1与BB 1平行,需证向量1AA 与1BB 平行且没有公共点;若证A 、A 1 、B 、B 1四点共线,需证向量1AA 与1BB 平行且有公共点. 举一反三:【变式】设1e 和2e 是两个不共线的非零向量,若向量1232AB e e =-,1224BC e e =-+ ,1224CD e e =--,试证明:A 、C 、D 三点共线.【答案】证明:12121232(24)2,AC AB BC e e e e e e =+=-+-+=+∴122,CA e e =--又1224,CD e e =-- ∴2,CD CA =∴CD 与CA 共线, ∴A 、C 、D 三点共线.。
第四节 平面向量的线性运算§24.6实数与向量相乘教学目标(1)理解实数与向量相乘的意义,掌握实数与向量相乘的表示方法;对于给定的一个非零实数和一个非零向量,能画出它们相乘所得的向量。
(2)知道实数与向量相乘的运算律,会根据运算律对向量算式进行计算、化简。
(3)知道平行向量定理,会用向量关系式表示两个向量的平行关系;知道单位向量的意义,知道一个非零向量与同方向的单位向量之间的联系。
(4)在从数的运算到向量的运算的认识过程中体会类比的思想;在实数与向量相乘和平行向量定理的学习中体会代数与几何的联系。
教学重点引进实数与向量相乘的运算,使学生掌握实数与向量相乘的表示方法和画图方法。
引进实数与向量相乘的运算律,并用于化简关于向量的算式。
引进平行向量定理和单位向量,并让学生了解利用向量关系式判断两个向量平行的方法。
知识精要1.实数与向量相乘的意义:一般地,设n 为正整数,a 为向量,那么我们用na 表示n 个a 相加;用na -表示n 个a -相加。
又当m 为正整数时,n a m 表示与a 同向且长度为na m的向量。
2.实数与向量相乘的运算规定:设k 是一个实数,a 是向量,那么k 与a 相乘所得的积是一个向量,记作ka 。
如果0k ≠,且0a ≠,那么ka 的长度ka k a =;ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a 反方向。
如果0k =或0a ≠,那么0ka =。
根据实数与向量相乘的意义,可知//ka a 。
ka 实际上将a 的长度进行放缩,方向与a 相同或相反。
ka 表示实数k 与a 相乘的运算,规定应把实数写在向量的前面并省略乘号;注意不要将表示向量的箭头写在数字上面。
3.同向的两个向量相加,和向量的方向取同向,长度取和;反向的两个向量相加,和向量的方向同较长向量,长度取差正;相反向量的和向量为零向量。
4.一般地,如果m n 、是非零实数,a 是非零向量,那么 ()m n a ma na +=+。
数乘向量的运算律数乘向量的运算律是线性代数中的一项重要概念,它描述了数和向量之间的关系以及它们在线性空间中的运算规则。
本文将详细介绍数乘向量的运算律及其应用。
一、数乘向量的定义数乘向量的定义是指一个实数与一个向量相乘的运算。
具体来说,如果k是一个实数,向量v是一个n维向量,那么k乘以v的结果是一个与v同维度的向量,它的每个分量都等于k乘以v对应分量的值,即:k × [v, v, …, vn] = [kv, kv, …, kvn]例如,如果k=2,v=[1, 3, -2],那么2乘以v的结果是[2, 6, -4]。
二、数乘向量的运算律数乘向量的运算律包括以下几个方面:1. 数量乘法结合律对于任意实数k1和k2,以及任意n维向量v,有:(k1k2) × v = k1 × (k2 × v)这个结合律的意义是,无论先乘以k1还是k2,再乘以向量v,最终结果都是相同的。
2. 数量乘法分配律对于任意实数k1和k2,以及任意n维向量v,有:(k1 + k2) × v = k1 × v + k2 × v这个分配律的意义是,一个实数k1+k2乘以向量v的结果,等于实数k1乘以向量v和实数k2乘以向量v的和。
3. 向量乘法分配律对于任意实数k和任意n维向量v1、v2,有:k × (v1 + v2) = k × v1 + k × v2这个分配律的意义是,一个实数k乘以向量v1+v2的结果,等于实数k分别乘以向量v1和向量v2的结果之和。
4. 数量乘法单位元对于任意实数k和任意n维向量v,有:1 × v = v这个单位元的意义是,一个实数1乘以任意向量v的结果,等于向量v本身。
5. 数量乘法逆元对于任意实数k和任意n维向量v,有:(-1) × v = -v这个逆元的意义是,一个实数-1乘以任意向量v的结果,等于向量v的相反数。
数乘向量的运算律数乘向量的运算律是线性代数中的基本概念之一,它描述了一个数与一个向量相乘的结果。
本文将从定义、性质和应用等方面对数乘向量的运算律进行详细介绍。
一、定义数乘向量的运算律是指一个实数与一个向量相乘的运算法则。
设实数 k 和向量 v,k 与 v 的乘积表示为 kv,即:kv = (k·v1, k·v2, …, k·vn)其中,v1, v2, …, vn 是向量 v 的分量。
二、性质1. 数乘向量的运算满足交换律,即 kv = vk。
2. 数乘向量的运算满足结合律,即 (ab)v = a(bv)。
3. 数乘向量的运算满足分配律,即 (a+b)v = av + bv。
4. 数乘向量的运算满足分配律,即 a(v+w) = av + aw。
5. 数乘向量的运算满足单位元律,即 1v = v。
6. 数乘向量的运算满足零元律,即 0v = 0。
三、应用数乘向量的运算律在线性代数中有广泛的应用,下面介绍其中的几个应用:1. 向量的线性组合向量的线性组合是指将若干个向量按一定比例相加的结果。
例如,设向量 v1、v2、…、vn 和实数 k1、k2、…、kn,则它们的线性组合可以表示为:k1v1 + k2v2 + … + knvn这里的 k1、k2、…、kn 称为系数,它们可以是任意实数。
根据数乘向量的运算律,可以将向量的线性组合写成下面的形式:k1v1 + k2v2 + … + knvn = (k1v1, k2v2, …, knvn) 这种形式更加简洁明了,方便计算和理解。
2. 向量的投影向量的投影是指将一个向量投影到另一个向量上的过程。
假设有两个非零向量 u 和 v,它们的夹角为θ,向量 u 在向量 v 上的投影为 p,则有:p = |u|cosθ·(v/|v|)其中,|u| 和 |v| 分别是向量 u 和向量 v 的模,cosθ是向量 u 和向量 v 的夹角的余弦值,v/|v| 是向量 v 的单位向量。
实数与向量相乘1.实数与向量相乘的意义一般的,设为正整数n ,a 为向量,我们用表示ann 个a 相加;用表示个相a n -n a -加.又当为正整m 数时,a m n 表示与同向a 且长度为的a mn 向量. 要点诠释:设P 为一个正数,P 就是将的a a 长度进行放缩,而方向保持不变;—P 也就是将a a 的长度进行放缩,但方向相反. 2.向量数乘的定义 一般地,实数与向量k a 的相乘所得的积是一个向量,记作ka,它的长度与方向规定如下:(1)如果k 0,a 0且≠≠时,则:①ka 的长度:||||||ka k a = ;②ka 的方向:当0k >时,ka 与a 同方向;当0k <时,ka 与a反方向;(2)如果k 0,a=0=或时,则:0ka = ,ka 的方向任意.实数与向量k a 相乘,叫做向量的数乘. 要点诠释:(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算; (3)ka表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面; (4)向量的数乘体现几何图形中的位置关系和数量关系. 3.实数与向量相乘的运算律 设m n 、为实数,则:(1)()()m na mn a =(结合律);(2)()m n a ma na +=+(向量的数乘对于实数加法的分配律);(3)m (+b )=m a a mb +(向量的数乘对于向量加法的分配律)4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 要点诠释:任意非零向量与它同方a 向的单位向量0a 的关系:0a a a = ,01a a a=.(2)平行向量定理:如果向量与b 非零向量平a 行,那么存在唯一的实数m ,使b ma =.要点诠释:(1)定理中,bm a =,m 的符号由与b a 同向还是反向来确定.(2)定理中的“a 0≠ ”不能去掉,因为若a 0= ,必有b 0=,此时可以取m 任意实数,使得b ma =成立.(3)向量平行的判定定理:a 是一个非零向量,若存在一个实数m ,使b m a =,则向量与非b 零向量平行a .(4)向量平行的性质定理:若向量与非b 零向量平行a ,则存在一个实数m ,使b ma =.(5)A 、B 、C 三点的共线若存在实⇔AB//BC ⇔数λ,使 AB BC λ=.要点五、向量的线性运算 1.向量的线性运算定义 向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 要点诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果是同一12,e e 平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量a ,有且只有一对实数12,λλ,使得1122a e e λλ=+.要点诠释:(1)同一平面内两个不共线(或不平行)向量叫做这12,e e 一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底表示为形12,e e 1122a e e λλ=+ 式,叫做向量的分解,当相互垂直12,e e时,就称为向量的正分解.每家都会装修,我们可以用一根电线将一盏电灯吊在天花板上,为了保险我们也可以用两根绳将这盏电灯吊在同一位置。
向量数乘的定义向量数乘的定义向量数乘是线性代数中的基本概念之一,它是指将一个实数或复数与一个向量相乘,从而得到一个新的向量。
在实际应用中,向量数乘广泛应用于物理、工程、计算机科学等领域。
一、基本概念1. 向量在线性代数中,向量是指具有大小和方向的量。
通常用箭头表示,箭头的长度表示其大小,箭头的方向表示其方向。
例如,在二维空间中,可以用两个实数x和y来表示一个二维向量v=(x,y)。
2. 数乘数乘是指将一个实数或复数与一个向量相乘,从而得到一个新的向量。
例如,在二维空间中,如果a为实数,则可以将一个二维向量v=(x,y)与a相乘得到另一个二维向量av=(ax,ay)。
二、定义及性质1. 定义设k为任意实数或复数,v为任意n维列向量,则kv就是v与k的积。
即:kv = (kv1, kv2, ..., kvn)^T其中^T表示转置。
2. 性质(1)对于任意实数或复数k和l以及任意n维列向量v和w,有:k(v+w) = kv + kw(k+l)v = kv + lv(kl)v = k(lv)1v = v其中,+表示向量的加法。
(2)向量数乘满足分配律和结合律:k(u+v) = ku + kv(kl)v = k(lv)(3)向量数乘也满足交换律:kv = vk三、应用举例1. 物理学中的应用在物理学中,向量数乘常常被用来计算物体的力和加速度。
例如,在二维平面上,如果一个物体受到一个力F=(Fx, Fy),则其加速度a=(ax, ay)可以通过以下公式计算:a = (1/m)F其中m为物体的质量。
2. 工程学中的应用在工程学中,向量数乘常常被用来计算电路中电流和电压之间的关系。
例如,在一个简单的电路中,如果电流I通过一个电阻R,则其产生的电压V可以通过以下公式计算:V = IR3. 计算机科学中的应用在计算机科学中,向量数乘常常被用来表示图像、音频等多媒体数据。
例如,在图像处理中,可以将每个像素点表示为一个n维列向量,并将其与一个实数或复数相乘以改变图像亮度、对比度等属性。
向量的运算的乘法公式一、向量的点乘(数量积)向量的点乘是指两个向量相乘得到一个标量的运算。
用符号"."表示,表示为A·B,并且满足以下运算规律:1.结合律:(A·B)·C=A·(B·C)2.分配律:A·(B+C)=A·B+A·C3.交换律:A·B=B·A4.数乘结合律:k(A·B)=(kA)·B=A·(kB),其中k为实数点乘的计算方法:如果A=(x1,y1,z1)和B=(x2,y2,z2)是两个三维向量,那么A·B=x1x2+y1y2+z1z2,即各个分量乘积的和。
点乘的意义:1.判断两个向量是否垂直:如果A·B=0,那么向量A与向量B垂直。
2.求解向量的模:A·A=,A,^2,其中,A,表示A的模。
3. 计算两个向量的夹角:cosθ = A·B / (,A,·,B,),其中θ是向量A和向量B之间的夹角。
二、向量的叉乘(向量积、叉积)向量的叉乘是指两个向量相乘得到一个新的向量的运算。
用符号"×"表示,表示为A×B,并且满足以下运算规律:1.分配律:A×(B+C)=A×B+A×C2.反交换律:A×B=-B×A3.数乘结合律:k(A×B)=(kA)×B=A×(kB),其中k为实数叉乘的计算方法:如果A=(x1,y1,z1)和B=(x2,y2,z2)是两个三维向量,那么A×B=(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2),即各个分量分别计算。
叉乘的意义:1.求解平行四边形的面积:平行四边形的面积等于两个边的模的乘积乘以它们之间的夹角的正弦值。
2.判断向量的方向:A×B的方向垂直于A和B的平面,其方向遵循右手定则。
主课题:实数与向量相乘知识精要1. 实数与向量相乘的运算设k 是一个实数,a 是向量,那么k 与a 相乘所得的积是一个向量,记作k a 。
如果k ≠0,且≠0,那么k 的长度|k |=|k|||;k 的方向:当k >0时,k 与同方向;当k <0时k 与反方向, 如果k=0或=,那么k =。
2. 实数与向量相乘满足的运算律:设m ,n 为实数,则 (1) 实数与向量相乘的结合律:m(n )=(mn);(2) 实数与向量相乘对于实数加法的分配律:(m+n )a =m a +n a ; (3) 实数与向量相乘对于向量加法的分配律:m(a +b )=m a +m b 。
3. 平行向量定理如果向量与非零向量平行,那么存在唯一的实数m ,使=m 。
4. 单位向量长度为1的向量叫单位向量。
设为单位向量,则||=1。
单位向量有无数个,不同的单位向量,是指它们的方向不同。
对于任意非零向量,与它同方向的单位向量记作0。
由实数与向量的乘积可知:a =|a |a 0 ,a 0a 。
精解名题例1. 如图,已知非零向量,求作:(1)-2+32; (2)3-25−→−a例2. 计算:(1)-23+(-23) (2) 2(31+21)-5(2+41)=-21a -23b =-328a -41b (3))3(23c b a c b a -+--+)( (4))23(223b a c b a----)(解:原式=cb a cb ac b a25-6-23--=+--+ 原式=c b a b a c b a 6323636--=+---例3. 如图,已知△ABC ,AD 、BE 、CF 是中线,G 为重心,且BC =a , AD =b 。
用a 、b 表示下列向量:(1)AB ;(2)CA ;;(3)BE ;(4)CF 。
解:(1)=-21 (2)=--21(3)=-21b +43 (4)=-21b -43例4. 下列语句中,错误的是( A ) A. 单位向量与任何向量都平行B. 已知a 、b 、c 是非零向量,如果a ∥b ,b ∥c ,那么a ∥cC. 已知、、c 是非零向量,如果+=2c ,-=3c ,那么与是平行向量D. 对于非零向量,它的长度为5,与它同方向的单位向量记作0,由实数与向量的乘积,可知0=51例5. 如图,在△ABC 中,=a,AC =b ,延长AB 到点B 1,使AB 1=5AB ,延长AC 到点C 1,使AC 1=5AC ,连接B 1C 1,求和11C B ,并判断BC 与11C B 是否平行。
数乘向量运算律的证明数乘向量运算律是线性代数中非常重要的一个定理,它描述了数与向量相乘的性质。
在本文中,我们将证明数乘向量运算律,并讨论其在实际应用中的重要性。
首先,让我们回顾一下数乘向量的定义。
给定一个实数k和一个n维向量v,数乘向量的结果记作kv,它是一个n维向量,其中每个分量都是k与v对应分量的乘积。
即,如果v=(v1, v2, ..., vn),那么kv=(kv1, kv2, ..., kvn)。
现在,让我们证明数乘向量运算律。
我们需要证明以下两个性质:1. 数与向量的乘法满足结合律,(ab)v = a(bv),对任意实数a、b和向量v成立。
2. 数与向量的乘法满足分配律,(a+b)v = av + bv,对任意实数a、b和向量v成立。
首先证明结合律:设v=(v1, v2, ..., vn),则。
(ab)v = (ab)v1, (ab)v2, ..., (ab)vn.= a(bv1), a(bv2), ..., a(bvn)。
= a(bv)。
接下来证明分配律:设v=(v1, v2, ..., vn),则。
(a+b)v = (a+b)v1, (a+b)v2, ..., (a+b)vn.= av1 + bv1, av2 + bv2, ..., avn + bvn.= av1, av2, ..., avn + bv1, bv2, ..., bvn.= av + bv.因此,数乘向量满足结合律和分配律,即数乘向量运算律得证。
数乘向量运算律在实际应用中具有广泛的应用。
例如,在物理学中,力和加速度的关系可以用数乘向量运算律来描述;在工程学中,矩阵运算中也经常用到数乘向量运算律。
因此,深入理解并掌握数乘向量运算律对于理解和应用线性代数是非常重要的。
综上所述,数乘向量运算律是线性代数中的重要定理,它描述了数与向量相乘的性质,并在实际应用中发挥着重要作用。
通过本文的证明,我们对数乘向量运算律有了更深入的理解,希望能对读者有所帮助。